"vscode:/vscode.git/clone" did not exist on "f920eff8c35c9f0ce8a3708a8fb5fc67b95fa61e"
Unverified Commit 59499bbe authored by NielsRogge's avatar NielsRogge Committed by GitHub
Browse files

Update forward signature test for vision models (#27681)

* Update forward signature

* Empty-Commit
parent 1d7f406e
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch MaskFormer Swin model. """
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
......@@ -234,18 +233,6 @@ class MaskFormerSwinModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.Te
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
@unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions")
def test_attention_outputs(self):
pass
......
......@@ -14,7 +14,6 @@
# limitations under the License.
""" Testing suite for the PyTorch MGP-STR model. """
import inspect
import unittest
import requests
......@@ -151,18 +150,6 @@ class MgpstrModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
@unittest.skip(reason="MgpstrModel does not support feedforward chunking")
def test_feed_forward_chunking(self):
pass
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch MobileNetV1 model. """
import inspect
import unittest
from transformers import MobileNetV1Config
......@@ -177,18 +176,6 @@ class MobileNetV1ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestC
def test_attention_outputs(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch MobileNetV2 model. """
import inspect
import unittest
from transformers import MobileNetV2Config
......@@ -228,18 +227,6 @@ class MobileNetV2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestC
def test_attention_outputs(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch MobileViT model. """
import inspect
import unittest
from transformers import MobileViTConfig
......@@ -221,18 +220,6 @@ class MobileViTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCas
def test_attention_outputs(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch MobileViTV2 model. """
import inspect
import unittest
from transformers import MobileViTV2Config
......@@ -228,18 +227,6 @@ class MobileViTV2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestC
def test_multi_gpu_data_parallel_forward(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch Nat model. """
import collections
import inspect
import unittest
from transformers import NatConfig
......@@ -261,18 +260,6 @@ class NatModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_attention_outputs(self):
self.skipTest("Nat's attention operation is handled entirely by NATTEN.")
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch PoolFormer model. """
import inspect
import unittest
from transformers import is_torch_available, is_vision_available
......@@ -208,18 +207,6 @@ class PoolFormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCa
loss = model(**inputs).loss
loss.backward()
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
@slow
def test_model_from_pretrained(self):
for model_name in POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch Pvt model. """
import inspect
import unittest
from transformers import is_torch_available, is_vision_available
......@@ -253,18 +252,6 @@ class PvtModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
loss = model(**inputs).loss
loss.backward()
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
@slow
def test_model_from_pretrained(self):
for model_name in PVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch RegNet model. """
import inspect
import unittest
from transformers import RegNetConfig
......@@ -161,18 +160,6 @@ class RegNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
def test_model_common_attributes(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch ResNet model. """
import inspect
import unittest
from transformers import ResNetConfig
......@@ -206,18 +205,6 @@ class ResNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
def test_model_common_attributes(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
......
......@@ -16,7 +16,6 @@
import gc
import inspect
import unittest
import requests
......@@ -338,18 +337,6 @@ class SamModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch SegFormer model. """
import inspect
import unittest
from transformers import SegformerConfig, is_torch_available, is_vision_available
......@@ -212,18 +211,6 @@ class SegformerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCas
def test_model_common_attributes(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
......
......@@ -16,7 +16,6 @@
import copy
import inspect
import unittest
from transformers import PretrainedConfig, SwiftFormerConfig
......@@ -177,18 +176,6 @@ class SwiftFormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestC
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch Swin model. """
import collections
import inspect
import unittest
from transformers import SwinConfig
......@@ -300,18 +299,6 @@ class SwinModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
......
......@@ -13,7 +13,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Swin2SR model. """
import inspect
import unittest
from transformers import Swin2SRConfig
......@@ -232,18 +231,6 @@ class Swin2SRModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase)
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
@slow
def test_model_from_pretrained(self):
for model_name in SWIN2SR_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
......
......@@ -14,7 +14,6 @@
# limitations under the License.
""" Testing suite for the PyTorch Swinv2 model. """
import collections
import inspect
import unittest
from transformers import Swinv2Config
......@@ -220,18 +219,6 @@ class Swinv2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
......
......@@ -16,7 +16,6 @@
import copy
import inspect
import unittest
import numpy as np
......@@ -204,18 +203,6 @@ class TimesformerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestC
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
......
......@@ -15,7 +15,6 @@
""" Testing suite for the PyTorch UperNet framework. """
import inspect
import unittest
from huggingface_hub import hf_hub_download
......@@ -170,18 +169,6 @@ class UperNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase)
def create_and_test_config_common_properties(self):
return
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_for_semantic_segmentation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)
......
......@@ -16,7 +16,6 @@
import copy
import inspect
import unittest
import numpy as np
......@@ -228,18 +227,6 @@ class VideoMAEModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment