"docs/source/ko/tasks/masked_language_modeling.md" did not exist on "ba2a5f13f777e828cbabbee213dcc841dfef3d05"
Unverified Commit 59407bbe authored by NielsRogge's avatar NielsRogge Committed by GitHub
Browse files

Add Deformable DETR (#17281)



* First draft

* More improvements

* Improve model, add custom CUDA code

* Import torch before

* Add script that imports custom layer

* Add everything in new ops directory

* Import custom layer in modeling file

* Fix ARCHIVE_MAP typo

* Creating the custom kernel on the fly.

* Import custom layer in modeling file

* More improvements

* Fix CUDA loading

* More improvements

* Improve conversion script

* Improve conversion script

* Make it work until encoder_outputs

* Make forward pass work

* More improvements

* Make logits match original implementation

* Make implementation also support single_scale model

* Add support for single_scale and dilation checkpoint

* Add support for with_box_refine model

* Support also two stage model

* Improve tests

* Fix more tests

* Make more tests pass

* Upload all models to the hub

* Clean up some code

* Improve decoder outputs

* Rename intermediate hidden states and reference points

* Improve model outputs

* Move tests to dedicated folder

* Improve model outputs

* Fix retain_grad test

* Improve docs

* Clean up and make test_initialization pass

* Improve variable names

* Add copied from statements

* Improve docs

* Fix style

* Improve docs

* Improve docs, move tests to model folder

* Fix rebase

* Remove DetrForSegmentation from auto mapping

* Apply suggestions from code review

* Improve variable names and docstrings

* Apply some more suggestions from code review

* Apply suggestion from code review

* better docs and variables names

* hint to num_queries and two_stage confusion

* remove asserts and code refactor

* add exception if two_stage is True and with_box_refine is False

* use f-strings

* Improve docs and variable names

* Fix code quality

* Fix rebase

* Add require_torch_gpu decorator

* Add pip install ninja to CI jobs

* Apply suggestion of @sgugger

* Remove DeformableDetrForObjectDetection from auto mapping

* Remove DeformableDetrModel from auto mapping

* Add model to toctree

* Add model back to mappings, skip model in pipeline tests

* Apply @sgugger's suggestion

* Fix imports in the init

* Fix copies

* Add CPU implementation

* Comment out GPU function

* Undo previous change

* Apply more suggestions

* Remove require_torch_gpu annotator

* Fix quality

* Add logger.info

* Fix logger

* Fix variable names

* Fix initializaztion

* Add missing initialization

* Update checkpoint name

* Add model to doc tests

* Add CPU/GPU equivalence test

* Add Deformable DETR to pipeline tests

* Skip model for object detection pipeline
Co-authored-by: default avatarNicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: default avatarNouamane Tazi <nouamane98@gmail.com>
Co-authored-by: default avatarSylvain Gugger <Sylvain.gugger@gmail.com>
parent 5a70a77b
/*!
**************************************************************************************************
* Deformable DETR
* Copyright (c) 2020 SenseTime. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
**************************************************************************************************
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
**************************************************************************************************
*/
#pragma once
#include <torch/extension.h>
at::Tensor ms_deform_attn_cuda_forward(
const at::Tensor &value,
const at::Tensor &spatial_shapes,
const at::Tensor &level_start_index,
const at::Tensor &sampling_loc,
const at::Tensor &attn_weight,
const int im2col_step);
std::vector<at::Tensor> ms_deform_attn_cuda_backward(
const at::Tensor &value,
const at::Tensor &spatial_shapes,
const at::Tensor &level_start_index,
const at::Tensor &sampling_loc,
const at::Tensor &attn_weight,
const at::Tensor &grad_output,
const int im2col_step);
/*!
**************************************************************************************************
* Deformable DETR
* Copyright (c) 2020 SenseTime. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
**************************************************************************************************
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
**************************************************************************************************
*/
#pragma once
#include "cpu/ms_deform_attn_cpu.h"
#ifdef WITH_CUDA
#include "cuda/ms_deform_attn_cuda.h"
#endif
at::Tensor
ms_deform_attn_forward(
const at::Tensor &value,
const at::Tensor &spatial_shapes,
const at::Tensor &level_start_index,
const at::Tensor &sampling_loc,
const at::Tensor &attn_weight,
const int im2col_step)
{
if (value.type().is_cuda())
{
#ifdef WITH_CUDA
return ms_deform_attn_cuda_forward(
value, spatial_shapes, level_start_index, sampling_loc, attn_weight, im2col_step);
#else
AT_ERROR("Not compiled with GPU support");
#endif
}
AT_ERROR("Not implemented on the CPU");
}
std::vector<at::Tensor>
ms_deform_attn_backward(
const at::Tensor &value,
const at::Tensor &spatial_shapes,
const at::Tensor &level_start_index,
const at::Tensor &sampling_loc,
const at::Tensor &attn_weight,
const at::Tensor &grad_output,
const int im2col_step)
{
if (value.type().is_cuda())
{
#ifdef WITH_CUDA
return ms_deform_attn_cuda_backward(
value, spatial_shapes, level_start_index, sampling_loc, attn_weight, grad_output, im2col_step);
#else
AT_ERROR("Not compiled with GPU support");
#endif
}
AT_ERROR("Not implemented on the CPU");
}
/*!
**************************************************************************************************
* Deformable DETR
* Copyright (c) 2020 SenseTime. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
**************************************************************************************************
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
**************************************************************************************************
*/
#include "ms_deform_attn.h"
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("ms_deform_attn_forward", &ms_deform_attn_forward, "ms_deform_attn_forward");
m.def("ms_deform_attn_backward", &ms_deform_attn_backward, "ms_deform_attn_backward");
}
\ No newline at end of file
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Loading of Deformable DETR's CUDA kernels"""
import os
def load_cuda_kernels():
from torch.utils.cpp_extension import load
root = os.path.join(os.path.dirname(os.path.realpath(__file__)), "custom_kernel")
src_files = [
os.path.join(root, filename)
for filename in [
"vision.cpp",
os.path.join("cpu", "ms_deform_attn_cpu.cpp"),
os.path.join("cuda", "ms_deform_attn_cuda.cu"),
]
]
load(
"MultiScaleDeformableAttention",
src_files,
# verbose=True,
with_cuda=True,
extra_include_paths=[root],
# build_directory=os.path.dirname(os.path.realpath(__file__)),
extra_cflags=["-DWITH_CUDA=1"],
extra_cuda_cflags=[
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
],
)
import MultiScaleDeformableAttention as MSDA
return MSDA
......@@ -273,7 +273,7 @@ class DetrFrozenBatchNorm2d(nn.Module):
"""
def __init__(self, n):
super(DetrFrozenBatchNorm2d, self).__init__()
super().__init__()
self.register_buffer("weight", torch.ones(n))
self.register_buffer("bias", torch.zeros(n))
self.register_buffer("running_mean", torch.zeros(n))
......@@ -286,7 +286,7 @@ class DetrFrozenBatchNorm2d(nn.Module):
if num_batches_tracked_key in state_dict:
del state_dict[num_batches_tracked_key]
super(DetrFrozenBatchNorm2d, self)._load_from_state_dict(
super()._load_from_state_dict(
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
)
......@@ -387,14 +387,14 @@ class DetrConvModel(nn.Module):
return out, pos
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, target_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
Expands attention_mask from `[batch_size, seq_len]` to `[batch_size, 1, target_seq_len, source_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
batch_size, source_len = mask.size()
target_len = target_len if target_len is not None else source_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
expanded_mask = mask[:, None, None, :].expand(batch_size, 1, target_len, source_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
......@@ -449,12 +449,12 @@ class DetrLearnedPositionEmbedding(nn.Module):
self.column_embeddings = nn.Embedding(50, embedding_dim)
def forward(self, pixel_values, pixel_mask=None):
h, w = pixel_values.shape[-2:]
i = torch.arange(w, device=pixel_values.device)
j = torch.arange(h, device=pixel_values.device)
x_emb = self.column_embeddings(i)
y_emb = self.row_embeddings(j)
pos = torch.cat([x_emb.unsqueeze(0).repeat(h, 1, 1), y_emb.unsqueeze(1).repeat(1, w, 1)], dim=-1)
height, width = pixel_values.shape[-2:]
width_values = torch.arange(width, device=pixel_values.device)
height_values = torch.arange(height, device=pixel_values.device)
x_emb = self.column_embeddings(width_values)
y_emb = self.row_embeddings(height_values)
pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1)
pos = pos.permute(2, 0, 1)
pos = pos.unsqueeze(0)
pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
......@@ -506,8 +506,8 @@ class DetrAttention(nn.Module):
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
return tensor if position_embeddings is None else tensor + position_embeddings
......@@ -526,7 +526,7 @@ class DetrAttention(nn.Module):
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = hidden_states.size()
batch_size, target_len, embed_dim = hidden_states.size()
# add position embeddings to the hidden states before projecting to queries and keys
if position_embeddings is not None:
......@@ -543,35 +543,36 @@ class DetrAttention(nn.Module):
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states_original), -1, bsz)
key_states = self._shape(self.k_proj(key_value_states), -1, batch_size)
value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states_original), -1, bsz)
key_states = self._shape(self.k_proj(hidden_states), -1, batch_size)
value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
proj_shape = (batch_size * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
source_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
if attention_mask.size() != (batch_size, 1, target_len, source_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is"
f" {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask
attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
......@@ -580,8 +581,8 @@ class DetrAttention(nn.Module):
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len)
attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len)
else:
attn_weights_reshaped = None
......@@ -589,15 +590,15 @@ class DetrAttention(nn.Module):
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = attn_output.reshape(batch_size, target_len, embed_dim)
attn_output = self.out_proj(attn_output)
......@@ -632,7 +633,8 @@ class DetrEncoderLayer(nn.Module):
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
position_embeddings (`torch.FloatTensor`, *optional*): position embeddings, to be added to hidden_states.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
......@@ -714,7 +716,8 @@ class DetrDecoderLayer(nn.Module):
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
position_embeddings (`torch.FloatTensor`, *optional*):
position embeddings that are added to the queries and keys
in the cross-attention layer.
......@@ -724,7 +727,8 @@ class DetrDecoderLayer(nn.Module):
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
......@@ -957,7 +961,7 @@ class DetrEncoder(DetrPreTrainedModel):
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
# [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
......@@ -1081,15 +1085,17 @@ class DetrDecoder(DetrPreTrainedModel):
combined_attention_mask = None
if attention_mask is not None and combined_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
# [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
combined_attention_mask = combined_attention_mask + _expand_mask(
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
attention_mask, inputs_embeds.dtype, target_len=input_shape[-1]
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
# [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
encoder_attention_mask = _expand_mask(
encoder_attention_mask, inputs_embeds.dtype, target_len=input_shape[-1]
)
# optional intermediate hidden states
intermediate = () if self.config.auxiliary_loss else None
......@@ -1889,21 +1895,22 @@ def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: f
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs (0 for the negative class and 1 for the positive
class).
alpha: (optional) Weighting factor in range (0,1) to balance
positive vs negative examples. Default = -1 (no weighting).
gamma: Exponent of the modulating factor (1 - p_t) to
balance easy vs hard examples.
inputs (`torch.FloatTensor` of arbitrary shape):
The predictions for each example.
targets (`torch.FloatTensor` with the same shape as `inputs`)
A tensor storing the binary classification label for each element in the `inputs` (0 for the negative class
and 1 for the positive class).
alpha (`float`, *optional*, defaults to `0.25`):
Optional weighting factor in the range (0,1) to balance positive vs. negative examples.
gamma (`int`, *optional*, defaults to `2`):
Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples.
Returns:
Loss tensor
"""
prob = inputs.sigmoid()
ce_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
# add modulating factor
p_t = prob * targets + (1 - prob) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
......@@ -1981,10 +1988,10 @@ class DetrLoss(nn.Module):
"""
logits = outputs["logits"]
device = logits.device
tgt_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device)
target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device)
# Count the number of predictions that are NOT "no-object" (which is the last class)
card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1)
card_err = nn.functional.l1_loss(card_pred.float(), tgt_lengths.float())
card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float())
losses = {"cardinality_error": card_err}
return losses
......@@ -2191,19 +2198,19 @@ class DetrHungarianMatcher(nn.Module):
out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
# Also concat the target labels and boxes
tgt_ids = torch.cat([v["class_labels"] for v in targets])
tgt_bbox = torch.cat([v["boxes"] for v in targets])
target_ids = torch.cat([v["class_labels"] for v in targets])
target_bbox = torch.cat([v["boxes"] for v in targets])
# Compute the classification cost. Contrary to the loss, we don't use the NLL,
# but approximate it in 1 - proba[target class].
# The 1 is a constant that doesn't change the matching, it can be ommitted.
class_cost = -out_prob[:, tgt_ids]
class_cost = -out_prob[:, target_ids]
# Compute the L1 cost between boxes
bbox_cost = torch.cdist(out_bbox, tgt_bbox, p=1)
bbox_cost = torch.cdist(out_bbox, target_bbox, p=1)
# Compute the giou cost between boxes
giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(tgt_bbox))
giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox))
# Final cost matrix
cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost
......@@ -2267,15 +2274,17 @@ def generalized_box_iou(boxes1, boxes2):
"""
# degenerate boxes gives inf / nan results
# so do an early check
assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
if not (boxes1[:, 2:] >= boxes1[:, :2]).all():
raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}")
if not (boxes2[:, 2:] >= boxes2[:, :2]).all():
raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}")
iou, union = box_iou(boxes1, boxes2)
lt = torch.min(boxes1[:, None, :2], boxes2[:, :2])
rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2])
bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
wh = (rb - lt).clamp(min=0) # [N,M,2]
area = wh[:, :, 0] * wh[:, :, 1]
width_height = (bottom_right - top_left).clamp(min=0) # [N,M,2]
area = width_height[:, :, 0] * width_height[:, :, 1]
return iou - (area - union) / area
......@@ -2317,11 +2326,11 @@ def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
if tensor_list[0].ndim == 3:
max_size = _max_by_axis([list(img.shape) for img in tensor_list])
batch_shape = [len(tensor_list)] + max_size
b, c, h, w = batch_shape
batch_size, num_channels, height, width = batch_shape
dtype = tensor_list[0].dtype
device = tensor_list[0].device
tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
mask = torch.ones((batch_size, height, width), dtype=torch.bool, device=device)
for img, pad_img, m in zip(tensor_list, tensor, mask):
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
m[: img.shape[1], : img.shape[2]] = False
......
......@@ -1211,8 +1211,8 @@ class DetrAttention(nn.Module):
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
return tensor if position_embeddings is None else tensor + position_embeddings
......@@ -1231,7 +1231,7 @@ class DetrAttention(nn.Module):
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = hidden_states.size()
batch_size, target_len, embed_dim = hidden_states.size()
# add position embeddings to the hidden states before projecting to queries and keys
if position_embeddings is not None:
......@@ -1248,35 +1248,36 @@ class DetrAttention(nn.Module):
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states_original), -1, bsz)
key_states = self._shape(self.k_proj(key_value_states), -1, batch_size)
value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states_original), -1, bsz)
key_states = self._shape(self.k_proj(hidden_states), -1, batch_size)
value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
proj_shape = (batch_size * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
source_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
if attention_mask.size() != (batch_size, 1, target_len, source_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is"
f" {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask
attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
......@@ -1285,8 +1286,8 @@ class DetrAttention(nn.Module):
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len)
attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len)
else:
attn_weights_reshaped = None
......@@ -1294,15 +1295,15 @@ class DetrAttention(nn.Module):
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = attn_output.reshape(batch_size, target_len, embed_dim)
attn_output = self.out_proj(attn_output)
......@@ -1351,7 +1352,8 @@ class DetrDecoderLayer(nn.Module):
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
position_embeddings (`torch.FloatTensor`, *optional*):
position embeddings that are added to the queries and keys
in the cross-attention layer.
......@@ -1361,7 +1363,8 @@ class DetrDecoderLayer(nn.Module):
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
......@@ -1416,14 +1419,14 @@ class DetrDecoderLayer(nn.Module):
# Copied from transformers.models.detr.modeling_detr._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, target_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
Expands attention_mask from `[batch_size, seq_len]` to `[batch_size, 1, target_seq_len, source_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
batch_size, source_len = mask.size()
target_len = target_len if target_len is not None else source_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
expanded_mask = mask[:, None, None, :].expand(batch_size, 1, target_len, source_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
......
......@@ -874,21 +874,22 @@ def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: f
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs (0 for the negative class and 1 for the positive
class).
alpha: (optional) Weighting factor in range (0,1) to balance
positive vs negative examples. Default = -1 (no weighting).
gamma: Exponent of the modulating factor (1 - p_t) to
balance easy vs hard examples.
inputs (`torch.FloatTensor` of arbitrary shape):
The predictions for each example.
targets (`torch.FloatTensor` with the same shape as `inputs`)
A tensor storing the binary classification label for each element in the `inputs` (0 for the negative class
and 1 for the positive class).
alpha (`float`, *optional*, defaults to `0.25`):
Optional weighting factor in the range (0,1) to balance positive vs. negative examples.
gamma (`int`, *optional*, defaults to `2`):
Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples.
Returns:
Loss tensor
"""
prob = inputs.sigmoid()
ce_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
# add modulating factor
p_t = prob * targets + (1 - prob) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
......@@ -966,10 +967,10 @@ class YolosLoss(nn.Module):
"""
logits = outputs["logits"]
device = logits.device
tgt_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device)
target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device)
# Count the number of predictions that are NOT "no-object" (which is the last class)
card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1)
card_err = nn.functional.l1_loss(card_pred.float(), tgt_lengths.float())
card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float())
losses = {"cardinality_error": card_err}
return losses
......@@ -1176,19 +1177,19 @@ class YolosHungarianMatcher(nn.Module):
out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
# Also concat the target labels and boxes
tgt_ids = torch.cat([v["class_labels"] for v in targets])
tgt_bbox = torch.cat([v["boxes"] for v in targets])
target_ids = torch.cat([v["class_labels"] for v in targets])
target_bbox = torch.cat([v["boxes"] for v in targets])
# Compute the classification cost. Contrary to the loss, we don't use the NLL,
# but approximate it in 1 - proba[target class].
# The 1 is a constant that doesn't change the matching, it can be ommitted.
class_cost = -out_prob[:, tgt_ids]
class_cost = -out_prob[:, target_ids]
# Compute the L1 cost between boxes
bbox_cost = torch.cdist(out_bbox, tgt_bbox, p=1)
bbox_cost = torch.cdist(out_bbox, target_bbox, p=1)
# Compute the giou cost between boxes
giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(tgt_bbox))
giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox))
# Final cost matrix
cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost
......@@ -1252,15 +1253,17 @@ def generalized_box_iou(boxes1, boxes2):
"""
# degenerate boxes gives inf / nan results
# so do an early check
assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
if not (boxes1[:, 2:] >= boxes1[:, :2]).all():
raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}")
if not (boxes2[:, 2:] >= boxes2[:, :2]).all():
raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}")
iou, union = box_iou(boxes1, boxes2)
lt = torch.min(boxes1[:, None, :2], boxes2[:, :2])
rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2])
bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
wh = (rb - lt).clamp(min=0) # [N,M,2]
area = wh[:, :, 0] * wh[:, :, 1]
width_height = (bottom_right - top_left).clamp(min=0) # [N,M,2]
area = width_height[:, :, 0] * width_height[:, :, 1]
return iou - (area - union) / area
......@@ -1302,11 +1305,11 @@ def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
if tensor_list[0].ndim == 3:
max_size = _max_by_axis([list(img.shape) for img in tensor_list])
batch_shape = [len(tensor_list)] + max_size
b, c, h, w = batch_shape
batch_size, num_channels, height, width = batch_shape
dtype = tensor_list[0].dtype
device = tensor_list[0].device
tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
mask = torch.ones((batch_size, height, width), dtype=torch.bool, device=device)
for img, pad_img, m in zip(tensor_list, tensor, mask):
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
m[: img.shape[1], : img.shape[2]] = False
......
......@@ -3,6 +3,30 @@
from ..utils import DummyObject, requires_backends
DEFORMABLE_DETR_PRETRAINED_MODEL_ARCHIVE_LIST = None
class DeformableDetrForObjectDetection(metaclass=DummyObject):
_backends = ["timm", "vision"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["timm", "vision"])
class DeformableDetrModel(metaclass=DummyObject):
_backends = ["timm", "vision"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["timm", "vision"])
class DeformableDetrPreTrainedModel(metaclass=DummyObject):
_backends = ["timm", "vision"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["timm", "vision"])
DETR_PRETRAINED_MODEL_ARCHIVE_LIST = None
......
# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import requires_backends
DETR_PRETRAINED_MODEL_ARCHIVE_LIST = None
class DetrForObjectDetection:
def __init__(self, *args, **kwargs):
requires_backends(self, ["timm"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["timm"])
class DetrForSegmentation:
def __init__(self, *args, **kwargs):
requires_backends(self, ["timm"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["timm"])
class DetrModel:
def __init__(self, *args, **kwargs):
requires_backends(self, ["timm"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["timm"])
This diff is collapsed.
......@@ -53,6 +53,12 @@ class ObjectDetectionPipelineTests(unittest.TestCase, metaclass=PipelineTestCase
model_mapping = MODEL_FOR_OBJECT_DETECTION_MAPPING
def get_test_pipeline(self, model, tokenizer, feature_extractor):
if model.__class__.__name__ == "DeformableDetrForObjectDetection":
self.skipTest(
"""Deformable DETR requires a custom CUDA kernel.
"""
)
object_detector = ObjectDetectionPipeline(model=model, feature_extractor=feature_extractor)
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
......
......@@ -46,6 +46,8 @@ PRIVATE_MODELS = [
# Being in this list is an exception and should **not** be the rule.
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
# models to ignore for not tested
"DeformableDetrEncoder", # Building part of bigger (tested) model.
"DeformableDetrDecoder", # Building part of bigger (tested) model.
"OPTDecoder", # Building part of bigger (tested) model.
"DecisionTransformerGPT2Model", # Building part of bigger (tested) model.
"SegformerDecodeHead", # Building part of bigger (tested) model.
......
......@@ -28,6 +28,7 @@ src/transformers/models/data2vec/modeling_data2vec_audio.py
src/transformers/models/data2vec/modeling_data2vec_vision.py
src/transformers/models/deberta/modeling_deberta.py
src/transformers/models/deberta_v2/modeling_deberta_v2.py
src/transformers/models/deformable_detr/modeling_deformable_detr.py
src/transformers/models/deit/modeling_deit.py
src/transformers/models/deit/modeling_tf_deit.py
src/transformers/models/detr/modeling_detr.py
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment