Unverified Commit 57420b10 authored by Alex Hedges's avatar Alex Hedges Committed by GitHub
Browse files

Add missing whitespace to multiline strings (#13916)

parent 319beb64
...@@ -69,7 +69,7 @@ class PyTorchBenchmarkArguments(BenchmarkArguments): ...@@ -69,7 +69,7 @@ class PyTorchBenchmarkArguments(BenchmarkArguments):
default="O1", default="O1",
metadata={ metadata={
"help": ( "help": (
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. "
"See details at https://nvidia.github.io/apex/amp.html" "See details at https://nvidia.github.io/apex/amp.html"
) )
}, },
......
...@@ -231,10 +231,10 @@ class TensorFlowBenchmark(Benchmark): ...@@ -231,10 +231,10 @@ class TensorFlowBenchmark(Benchmark):
def _measure_memory(self, func: Callable[[], None]) -> [Memory, MemorySummary]: def _measure_memory(self, func: Callable[[], None]) -> [Memory, MemorySummary]:
logger.info( logger.info(
"Note that TensorFlow allocates more memory than" "Note that TensorFlow allocates more memory than "
"it might need to speed up computation." "it might need to speed up computation. "
"The memory reported here corresponds to the memory" "The memory reported here corresponds to the memory "
"reported by `nvidia-smi`, which can vary depending" "reported by `nvidia-smi`, which can vary depending "
"on total available memory on the GPU that is used." "on total available memory on the GPU that is used."
) )
with self.args.strategy.scope(): with self.args.strategy.scope():
......
...@@ -801,7 +801,7 @@ class Benchmark(ABC): ...@@ -801,7 +801,7 @@ class Benchmark(ABC):
info["cpu_ram_mb"] = bytes_to_mega_bytes(psutil.virtual_memory().total) info["cpu_ram_mb"] = bytes_to_mega_bytes(psutil.virtual_memory().total)
else: else:
logger.warning( logger.warning(
"Psutil not installed, we won't log available CPU memory." "Psutil not installed, we won't log available CPU memory. "
"Install psutil (pip install psutil) to log available CPU memory." "Install psutil (pip install psutil) to log available CPU memory."
) )
info["cpu_ram_mb"] = "N/A" info["cpu_ram_mb"] = "N/A"
......
...@@ -314,7 +314,7 @@ class PretrainedConfig(PushToHubMixin): ...@@ -314,7 +314,7 @@ class PretrainedConfig(PushToHubMixin):
allowed_problem_types = ("regression", "single_label_classification", "multi_label_classification") allowed_problem_types = ("regression", "single_label_classification", "multi_label_classification")
if self.problem_type is not None and self.problem_type not in allowed_problem_types: if self.problem_type is not None and self.problem_type not in allowed_problem_types:
raise ValueError( raise ValueError(
f"The config parameter `problem_type` was not understood: received {self.problem_type}" f"The config parameter `problem_type` was not understood: received {self.problem_type} "
"but only 'regression', 'single_label_classification' and 'multi_label_classification' are valid." "but only 'regression', 'single_label_classification' and 'multi_label_classification' are valid."
) )
......
...@@ -444,7 +444,7 @@ if __name__ == "__main__": ...@@ -444,7 +444,7 @@ if __name__ == "__main__":
type=str, type=str,
help="The config json file corresponding to the pre-trained model. \n" help="The config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture. If not given and " "This specifies the model architecture. If not given and "
"--pytorch_checkpoint_path is not given or is a shortcut name" "--pytorch_checkpoint_path is not given or is a shortcut name "
"use the configuration associated to the shortcut name on the AWS", "use the configuration associated to the shortcut name on the AWS",
) )
parser.add_argument( parser.add_argument(
......
...@@ -905,7 +905,7 @@ class DataCollatorForWholeWordMask(DataCollatorForLanguageModeling): ...@@ -905,7 +905,7 @@ class DataCollatorForWholeWordMask(DataCollatorForLanguageModeling):
""" """
if not isinstance(self.tokenizer, (BertTokenizer, BertTokenizerFast)): if not isinstance(self.tokenizer, (BertTokenizer, BertTokenizerFast)):
warnings.warn( warnings.warn(
"DataCollatorForWholeWordMask is only suitable for BertTokenizer-like tokenizers." "DataCollatorForWholeWordMask is only suitable for BertTokenizer-like tokenizers. "
"Please refer to the documentation for more information." "Please refer to the documentation for more information."
) )
......
...@@ -137,7 +137,7 @@ class SequenceFeatureExtractor(FeatureExtractionMixin): ...@@ -137,7 +137,7 @@ class SequenceFeatureExtractor(FeatureExtractionMixin):
# The model's main input name, usually `input_values`, has be passed for padding # The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features: if self.model_input_names[0] not in processed_features:
raise ValueError( raise ValueError(
"You should supply an instance of :class:`~transformers.BatchFeature` or list of :class:`~transformers.BatchFeature` to this method" "You should supply an instance of :class:`~transformers.BatchFeature` or list of :class:`~transformers.BatchFeature` to this method "
f"that includes {self.model_input_names[0]}, but you provided {list(processed_features.keys())}" f"that includes {self.model_input_names[0]}, but you provided {list(processed_features.keys())}"
) )
......
...@@ -194,9 +194,9 @@ class BeamSearchScorer(BeamScorer): ...@@ -194,9 +194,9 @@ class BeamSearchScorer(BeamScorer):
if "max_length" in kwargs: if "max_length" in kwargs:
warnings.warn( warnings.warn(
"Passing `max_length` to BeamSearchScorer is deprecated and has no effect." "Passing `max_length` to BeamSearchScorer is deprecated and has no effect. "
"`max_length` should be passed directly to `beam_search(...)`, `beam_sample(...)`" "`max_length` should be passed directly to `beam_search(...)`, `beam_sample(...)`"
",or `group_beam_search(...)`." ", or `group_beam_search(...)`."
) )
@property @property
......
...@@ -438,7 +438,7 @@ class NoBadWordsLogitsProcessor(LogitsProcessor): ...@@ -438,7 +438,7 @@ class NoBadWordsLogitsProcessor(LogitsProcessor):
banned_mask_list.append([idx, token]) banned_mask_list.append([idx, token])
else: else:
logger.error( logger.error(
f"An invalid bad word ID is defined: {token}. This ID is not contained in the" f"An invalid bad word ID is defined: {token}. This ID is not contained in the "
f"vocabulary, and is therefore ignored." f"vocabulary, and is therefore ignored."
) )
if not banned_mask_list and self.static_bad_words_mask is None: if not banned_mask_list and self.static_bad_words_mask is None:
......
...@@ -533,7 +533,7 @@ class TFGenerationMixin: ...@@ -533,7 +533,7 @@ class TFGenerationMixin:
# We cannot generate if the model does not have a LM head # We cannot generate if the model does not have a LM head
if self.get_output_embeddings() is None: if self.get_output_embeddings() is None:
raise AttributeError( raise AttributeError(
"You tried to generate sequences with a model that does not have a LM Head." "You tried to generate sequences with a model that does not have a LM Head. "
"Please use another model class (e.g. `TFOpenAIGPTLMHeadModel`, `TFXLNetLMHeadModel`, `TFGPT2LMHeadModel`, `TFCTRLLMHeadModel`, `TFT5ForConditionalGeneration`, `TFTransfoXLLMHeadModel`)" "Please use another model class (e.g. `TFOpenAIGPTLMHeadModel`, `TFXLNetLMHeadModel`, `TFGPT2LMHeadModel`, `TFCTRLLMHeadModel`, `TFT5ForConditionalGeneration`, `TFTransfoXLLMHeadModel`)"
) )
......
...@@ -935,7 +935,7 @@ class GenerationMixin: ...@@ -935,7 +935,7 @@ class GenerationMixin:
if input_ids.shape[-1] >= max_length: if input_ids.shape[-1] >= max_length:
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids" input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
logger.warning( logger.warning(
f"Input length of {input_ids_string} is {input_ids.shape[-1]}, but ``max_length`` is set to {max_length}." f"Input length of {input_ids_string} is {input_ids.shape[-1]}, but ``max_length`` is set to {max_length}. "
"This can lead to unexpected behavior. You should consider increasing ``config.max_length`` or ``max_length``." "This can lead to unexpected behavior. You should consider increasing ``config.max_length`` or ``max_length``."
) )
......
...@@ -84,8 +84,8 @@ class HfArgumentParser(ArgumentParser): ...@@ -84,8 +84,8 @@ class HfArgumentParser(ArgumentParser):
# it is provided as a third-party extension mechanism. # it is provided as a third-party extension mechanism.
if isinstance(field.type, str): if isinstance(field.type, str):
raise ImportError( raise ImportError(
"This implementation is not compatible with Postponed Evaluation of Annotations (PEP 563)," "This implementation is not compatible with Postponed Evaluation of Annotations (PEP 563), "
"which can be opted in from Python 3.7 with `from __future__ import annotations`." "which can be opted in from Python 3.7 with `from __future__ import annotations`. "
"We will add compatibility when Python 3.9 is released." "We will add compatibility when Python 3.9 is released."
) )
typestring = str(field.type) typestring = str(field.type)
......
...@@ -230,7 +230,7 @@ def load_flax_weights_in_pytorch_model(pt_model, flax_state): ...@@ -230,7 +230,7 @@ def load_flax_weights_in_pytorch_model(pt_model, flax_state):
if flax_key in pt_model_dict: if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape: if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError( raise ValueError(
f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected" f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected "
f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}."
) )
else: else:
......
...@@ -304,7 +304,7 @@ def booleans_processing(config, **kwargs): ...@@ -304,7 +304,7 @@ def booleans_processing(config, **kwargs):
or ("use_cache" in kwargs and kwargs["use_cache"] not in (None, config.use_cache)) or ("use_cache" in kwargs and kwargs["use_cache"] not in (None, config.use_cache))
): ):
tf_logger.warning( tf_logger.warning(
"The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model." "The parameters `output_attentions`, `output_hidden_states` and `use_cache` cannot be updated when calling a model. "
"They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`)." "They have to be set to True/False in the config object (i.e.: `config=XConfig.from_pretrained('name', output_attentions=True)`)."
) )
......
...@@ -777,7 +777,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix ...@@ -777,7 +777,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
if not isinstance(old_embeddings, nn.Embedding): if not isinstance(old_embeddings, nn.Embedding):
raise TypeError( raise TypeError(
f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}." f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}. "
f"You should either use a different resize function or make sure that `old_embeddings` are an instance of {nn.Embedding}." f"You should either use a different resize function or make sure that `old_embeddings` are an instance of {nn.Embedding}."
) )
...@@ -848,7 +848,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix ...@@ -848,7 +848,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
if not isinstance(old_lm_head, nn.Linear): if not isinstance(old_lm_head, nn.Linear):
raise TypeError( raise TypeError(
f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}." f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}. "
f"You should either use a different resize function or make sure that `old_lm_head` are an instance of {nn.Linear}." f"You should either use a different resize function or make sure that `old_lm_head` are an instance of {nn.Linear}."
) )
...@@ -1344,8 +1344,8 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix ...@@ -1344,8 +1344,8 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
except (UnicodeDecodeError, ValueError): except (UnicodeDecodeError, ValueError):
raise OSError( raise OSError(
f"Unable to load weights from pytorch checkpoint file for '{pretrained_model_name_or_path}' " f"Unable to load weights from pytorch checkpoint file for '{pretrained_model_name_or_path}' "
f"at '{resolved_archive_file}'" f"at '{resolved_archive_file}'. "
"If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. " "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
) )
# set dtype to instantiate the model under: # set dtype to instantiate the model under:
......
...@@ -175,7 +175,7 @@ class BartConfig(PretrainedConfig): ...@@ -175,7 +175,7 @@ class BartConfig(PretrainedConfig):
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False): if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
self.forced_bos_token_id = self.bos_token_id self.forced_bos_token_id = self.bos_token_id
warnings.warn( warnings.warn(
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions." f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
"The config can simply be saved and uploaded again to be fixed." "The config can simply be saved and uploaded again to be fixed."
) )
......
...@@ -132,7 +132,7 @@ class BeitFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin): ...@@ -132,7 +132,7 @@ class BeitFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin):
if not valid_images: if not valid_images:
raise ValueError( raise ValueError(
"Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example)," "Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example), "
"`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[torch.Tensor]` (batch of examples)." "`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[torch.Tensor]` (batch of examples)."
) )
......
...@@ -272,7 +272,7 @@ class MecabTokenizer: ...@@ -272,7 +272,7 @@ class MecabTokenizer:
dic_dir = unidic.DICDIR dic_dir = unidic.DICDIR
if not os.path.isdir(dic_dir): if not os.path.isdir(dic_dir):
raise RuntimeError( raise RuntimeError(
"The unidic dictionary itself is not found." "The unidic dictionary itself is not found. "
"See https://github.com/polm/unidic-py for installation." "See https://github.com/polm/unidic-py for installation."
) )
......
...@@ -2066,7 +2066,7 @@ class BigBirdModel(BigBirdPreTrainedModel): ...@@ -2066,7 +2066,7 @@ class BigBirdModel(BigBirdPreTrainedModel):
"+ additional buffer: config.num_random_blocks * config.block_size " "+ additional buffer: config.num_random_blocks * config.block_size "
f"= {max_tokens_to_attend} with config.block_size " f"= {max_tokens_to_attend} with config.block_size "
f"= {self.config.block_size}, config.num_random_blocks " f"= {self.config.block_size}, config.num_random_blocks "
f"= {self.config.num_random_blocks}." f"= {self.config.num_random_blocks}. "
"Changing attention type to 'original_full'..." "Changing attention type to 'original_full'..."
) )
self.set_attention_type("original_full") self.set_attention_type("original_full")
......
...@@ -1858,7 +1858,7 @@ class BigBirdPegasusEncoder(BigBirdPegasusPreTrainedModel): ...@@ -1858,7 +1858,7 @@ class BigBirdPegasusEncoder(BigBirdPegasusPreTrainedModel):
"+ additional buffer: config.num_random_blocks * config.block_size " "+ additional buffer: config.num_random_blocks * config.block_size "
f"= {max_tokens_to_attend} with config.block_size " f"= {max_tokens_to_attend} with config.block_size "
f"= {self.config.block_size}, config.num_random_blocks " f"= {self.config.block_size}, config.num_random_blocks "
f"= {self.config.num_random_blocks}." f"= {self.config.num_random_blocks}. "
"Changing attention type to 'original_full'..." "Changing attention type to 'original_full'..."
) )
self.set_attention_type("original_full") self.set_attention_type("original_full")
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment