Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
57420b10
Unverified
Commit
57420b10
authored
Oct 07, 2021
by
Alex Hedges
Committed by
GitHub
Oct 07, 2021
Browse files
Add missing whitespace to multiline strings (#13916)
parent
319beb64
Changes
56
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
39 additions
and
39 deletions
+39
-39
src/transformers/models/canine/modeling_canine.py
src/transformers/models/canine/modeling_canine.py
+1
-1
src/transformers/models/clip/feature_extraction_clip.py
src/transformers/models/clip/feature_extraction_clip.py
+1
-1
src/transformers/models/cpm/tokenization_cpm.py
src/transformers/models/cpm/tokenization_cpm.py
+1
-1
src/transformers/models/cpm/tokenization_cpm_fast.py
src/transformers/models/cpm/tokenization_cpm_fast.py
+1
-1
src/transformers/models/deit/feature_extraction_deit.py
src/transformers/models/deit/feature_extraction_deit.py
+1
-1
src/transformers/models/detr/feature_extraction_detr.py
src/transformers/models/detr/feature_extraction_detr.py
+1
-1
src/transformers/models/electra/modeling_electra.py
src/transformers/models/electra/modeling_electra.py
+1
-1
src/transformers/models/electra/modeling_tf_electra.py
src/transformers/models/electra/modeling_tf_electra.py
+1
-1
src/transformers/models/encoder_decoder/modeling_encoder_decoder.py
...ormers/models/encoder_decoder/modeling_encoder_decoder.py
+1
-1
src/transformers/models/gpt_neo/configuration_gpt_neo.py
src/transformers/models/gpt_neo/configuration_gpt_neo.py
+5
-5
src/transformers/models/hubert/configuration_hubert.py
src/transformers/models/hubert/configuration_hubert.py
+3
-3
src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py
...ormers/models/layoutlmv2/feature_extraction_layoutlmv2.py
+1
-1
src/transformers/models/layoutlmv2/tokenization_layoutlmv2.py
...transformers/models/layoutlmv2/tokenization_layoutlmv2.py
+6
-6
src/transformers/models/layoutlmv2/tokenization_layoutlmv2_fast.py
...formers/models/layoutlmv2/tokenization_layoutlmv2_fast.py
+1
-1
src/transformers/models/luke/tokenization_luke.py
src/transformers/models/luke/tokenization_luke.py
+4
-4
src/transformers/models/rag/retrieval_rag.py
src/transformers/models/rag/retrieval_rag.py
+1
-1
src/transformers/models/roformer/tokenization_roformer.py
src/transformers/models/roformer/tokenization_roformer.py
+1
-1
src/transformers/models/roformer/tokenization_utils.py
src/transformers/models/roformer/tokenization_utils.py
+1
-1
src/transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py
...speech_encoder_decoder/modeling_speech_encoder_decoder.py
+4
-4
src/transformers/models/speech_to_text/configuration_speech_to_text.py
...ers/models/speech_to_text/configuration_speech_to_text.py
+3
-3
No files found.
src/transformers/models/canine/modeling_canine.py
View file @
57420b10
...
...
@@ -549,7 +549,7 @@ class CanineAttention(nn.Module):
self
.
local
=
local
if
attend_from_chunk_width
<
attend_from_chunk_stride
:
raise
ValueError
(
"`attend_from_chunk_width` < `attend_from_chunk_stride`"
"`attend_from_chunk_width` < `attend_from_chunk_stride`
"
"would cause sequence positions to get skipped."
)
if
attend_to_chunk_width
<
attend_to_chunk_stride
:
...
...
src/transformers/models/clip/feature_extraction_clip.py
View file @
57420b10
...
...
@@ -129,7 +129,7 @@ class CLIPFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin):
if
not
valid_images
:
raise
ValueError
(
"Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example),"
"Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example),
"
"`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[torch.Tensor]` (batch of examples)."
)
...
...
src/transformers/models/cpm/tokenization_cpm.py
View file @
57420b10
...
...
@@ -92,7 +92,7 @@ class CpmTokenizer(XLNetTokenizer):
import
jieba
except
ModuleNotFoundError
as
error
:
raise
error
.
__class__
(
"You need to install jieba to use CpmTokenizer or CpmTokenizerFast."
"You need to install jieba to use CpmTokenizer or CpmTokenizerFast.
"
"See https://pypi.org/project/jieba/ for installation."
)
self
.
jieba
=
jieba
...
...
src/transformers/models/cpm/tokenization_cpm_fast.py
View file @
57420b10
...
...
@@ -95,7 +95,7 @@ class CpmTokenizerFast(XLNetTokenizerFast):
import
jieba
except
ModuleNotFoundError
as
error
:
raise
error
.
__class__
(
"You need to install jieba to use CpmTokenizer or CpmTokenizerFast."
"You need to install jieba to use CpmTokenizer or CpmTokenizerFast.
"
"See https://pypi.org/project/jieba/ for installation."
)
self
.
jieba
=
jieba
...
...
src/transformers/models/deit/feature_extraction_deit.py
View file @
57420b10
...
...
@@ -132,7 +132,7 @@ class DeiTFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin):
if
not
valid_images
:
raise
ValueError
(
"Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example),"
"Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example),
"
"`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[torch.Tensor]` (batch of examples)."
)
...
...
src/transformers/models/detr/feature_extraction_detr.py
View file @
57420b10
...
...
@@ -483,7 +483,7 @@ class DetrFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin):
if
not
valid_images
:
raise
ValueError
(
"Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example),"
"Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example),
"
"`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[torch.Tensor]` (batch of examples)."
)
...
...
src/transformers/models/electra/modeling_electra.py
View file @
57420b10
...
...
@@ -799,7 +799,7 @@ ELECTRA_INPUTS_DOCSTRING = r"""
@
add_start_docstrings
(
"The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to "
"the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the "
"hidden size and embedding size are different."
"hidden size and embedding size are different.
"
""
"Both the generator and discriminator checkpoints may be loaded into this model."
,
ELECTRA_START_DOCSTRING
,
...
...
src/transformers/models/electra/modeling_tf_electra.py
View file @
57420b10
...
...
@@ -719,7 +719,7 @@ ELECTRA_INPUTS_DOCSTRING = r"""
@
add_start_docstrings
(
"The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to "
"the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the "
"hidden size and embedding size are different."
"hidden size and embedding size are different.
"
""
"Both the generator and discriminator checkpoints may be loaded into this model."
,
ELECTRA_START_DOCSTRING
,
...
...
src/transformers/models/encoder_decoder/modeling_encoder_decoder.py
View file @
57420b10
...
...
@@ -482,7 +482,7 @@ class EncoderDecoderModel(PreTrainedModel):
def
resize_token_embeddings
(
self
,
*
args
,
**
kwargs
):
raise
NotImplementedError
(
"Resizing the embedding layers via the EncoderDecoderModel directly is not supported."
"Resizing the embedding layers via the EncoderDecoderModel directly is not supported.
"
"Please use the respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or model.decoder.resize_token_embeddings(...))"
)
...
...
src/transformers/models/gpt_neo/configuration_gpt_neo.py
View file @
57420b10
...
...
@@ -151,11 +151,11 @@ class GPTNeoConfig(PretrainedConfig):
if
len
(
self
.
attention_layers
)
!=
self
.
num_layers
:
raise
ValueError
(
"Configuration for convolutional module is incorrect."
"It is required that `len(config.attention_layers)` == `config.num_layers`"
f
"but is `len(config.attention_layers) =
{
len
(
self
.
attention_layers
)
}
`,"
f
"`config.num_layers =
{
self
.
num_layers
}
`."
"`config.attention_layers` is prepared using `config.attention_types`."
"Configuration for convolutional module is incorrect.
"
"It is required that `len(config.attention_layers)` == `config.num_layers`
"
f
"but is `len(config.attention_layers) =
{
len
(
self
.
attention_layers
)
}
`,
"
f
"`config.num_layers =
{
self
.
num_layers
}
`.
"
"`config.attention_layers` is prepared using `config.attention_types`.
"
"Please verify the value of `config.attention_types` argument."
)
...
...
src/transformers/models/hubert/configuration_hubert.py
View file @
57420b10
...
...
@@ -211,9 +211,9 @@ class HubertConfig(PretrainedConfig):
or
(
len
(
self
.
conv_dim
)
!=
self
.
num_feat_extract_layers
)
):
raise
ValueError
(
"Configuration for convolutional layers is incorrect."
"It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"
f
"but is `len(config.conv_dim) =
{
len
(
self
.
conv_dim
)
}
`, `len(config.conv_stride)"
"Configuration for convolutional layers is incorrect.
"
"It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,
"
f
"but is `len(config.conv_dim) =
{
len
(
self
.
conv_dim
)
}
`, `len(config.conv_stride)
"
f
"=
{
len
(
self
.
conv_stride
)
}
`, `len(config.conv_kernel) =
{
len
(
self
.
conv_kernel
)
}
`."
)
...
...
src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py
View file @
57420b10
...
...
@@ -181,7 +181,7 @@ class LayoutLMv2FeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionM
if
not
valid_images
:
raise
ValueError
(
"Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example),"
"Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example),
"
"`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[torch.Tensor]` (batch of examples), "
f
"but is of type
{
type
(
images
)
}
."
)
...
...
src/transformers/models/layoutlmv2/tokenization_layoutlmv2.py
View file @
57420b10
...
...
@@ -431,7 +431,7 @@ class LayoutLMv2Tokenizer(PreTrainedTokenizer):
raise
ValueError
(
"text input must of type `str` (single example) or `List[str]` (batch of examples). "
)
if
not
isinstance
(
text_pair
,
(
list
,
tuple
)):
raise
ValueError
(
"words must of type `List[str]` (single pretokenized example),"
"words must of type `List[str]` (single pretokenized example),
"
"or `List[List[str]]` (batch of pretokenized examples)."
)
else
:
...
...
@@ -599,7 +599,7 @@ class LayoutLMv2Tokenizer(PreTrainedTokenizer):
if
return_offsets_mapping
:
raise
NotImplementedError
(
"return_offset_mapping is not available when using Python tokenizers."
"return_offset_mapping is not available when using Python tokenizers.
"
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
)
...
...
@@ -838,9 +838,9 @@ class LayoutLMv2Tokenizer(PreTrainedTokenizer):
)
->
BatchEncoding
:
if
return_offsets_mapping
:
raise
NotImplementedError
(
"return_offset_mapping is not available when using Python tokenizers."
"return_offset_mapping is not available when using Python tokenizers.
"
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
"transformers.PreTrainedTokenizerFast.
"
"More information on available tokenizers at "
"https://github.com/huggingface/transformers/pull/2674"
)
...
...
@@ -1158,7 +1158,7 @@ class LayoutLMv2Tokenizer(PreTrainedTokenizer):
labels
=
labels
[:
-
num_tokens_to_remove
]
else
:
logger
.
error
(
f
"We need to remove
{
num_tokens_to_remove
}
to truncate the input"
f
"We need to remove
{
num_tokens_to_remove
}
to truncate the input
"
f
"but the first sequence has a length
{
len
(
ids
)
}
. "
f
"Please select another truncation strategy than
{
truncation_strategy
}
, "
f
"for instance 'longest_first' or 'only_second'."
...
...
@@ -1172,7 +1172,7 @@ class LayoutLMv2Tokenizer(PreTrainedTokenizer):
pair_token_boxes
=
pair_token_boxes
[:
-
num_tokens_to_remove
]
else
:
logger
.
error
(
f
"We need to remove
{
num_tokens_to_remove
}
to truncate the input"
f
"We need to remove
{
num_tokens_to_remove
}
to truncate the input
"
f
"but the second sequence has a length
{
len
(
pair_ids
)
}
. "
f
"Please select another truncation strategy than
{
truncation_strategy
}
, "
f
"for instance 'longest_first' or 'only_first'."
...
...
src/transformers/models/layoutlmv2/tokenization_layoutlmv2_fast.py
View file @
57420b10
...
...
@@ -235,7 +235,7 @@ class LayoutLMv2TokenizerFast(PreTrainedTokenizerFast):
raise
ValueError
(
"text input must of type `str` (single example) or `List[str]` (batch of examples). "
)
if
not
isinstance
(
text_pair
,
(
list
,
tuple
)):
raise
ValueError
(
"words must of type `List[str]` (single pretokenized example),"
"words must of type `List[str]` (single pretokenized example),
"
"or `List[List[str]]` (batch of pretokenized examples)."
)
else
:
...
...
src/transformers/models/luke/tokenization_luke.py
View file @
57420b10
...
...
@@ -519,9 +519,9 @@ class LukeTokenizer(RobertaTokenizer):
if
return_offsets_mapping
:
raise
NotImplementedError
(
"return_offset_mapping is not available when using Python tokenizers."
"return_offset_mapping is not available when using Python tokenizers.
"
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
"transformers.PreTrainedTokenizerFast.
"
"More information on available tokenizers at "
"https://github.com/huggingface/transformers/pull/2674"
)
...
...
@@ -683,7 +683,7 @@ class LukeTokenizer(RobertaTokenizer):
)
->
BatchEncoding
:
if
return_offsets_mapping
:
raise
NotImplementedError
(
"return_offset_mapping is not available when using Python tokenizers."
"return_offset_mapping is not available when using Python tokenizers.
"
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
)
...
...
@@ -1308,7 +1308,7 @@ class LukeTokenizer(RobertaTokenizer):
# The model's main input name, usually `input_ids`, has be passed for padding
if
self
.
model_input_names
[
0
]
not
in
encoded_inputs
:
raise
ValueError
(
"You should supply an encoding or a list of encodings to this method"
"You should supply an encoding or a list of encodings to this method
"
f
"that includes
{
self
.
model_input_names
[
0
]
}
, but you provided
{
list
(
encoded_inputs
.
keys
())
}
"
)
...
...
src/transformers/models/rag/retrieval_rag.py
View file @
57420b10
...
...
@@ -122,7 +122,7 @@ class LegacyIndex(Index):
except
EnvironmentError
:
msg
=
(
f
"Can't load '
{
archive_file
}
'. Make sure that:
\n\n
"
f
"- '
{
index_path
}
' is a correct remote path to a directory containing a file named
{
filename
}
"
f
"- '
{
index_path
}
' is a correct remote path to a directory containing a file named
{
filename
}
\n\n
"
f
"- or '
{
index_path
}
' is the correct path to a directory containing a file named
{
filename
}
.
\n\n
"
)
raise
EnvironmentError
(
msg
)
...
...
src/transformers/models/roformer/tokenization_roformer.py
View file @
57420b10
...
...
@@ -161,7 +161,7 @@ class RoFormerTokenizer(PreTrainedTokenizer):
import
rjieba
except
ImportError
:
raise
ImportError
(
"You need to install rjieba to use RoFormerTokenizer."
"You need to install rjieba to use RoFormerTokenizer.
"
"See https://pypi.org/project/rjieba/ for installation."
)
self
.
jieba
=
rjieba
...
...
src/transformers/models/roformer/tokenization_utils.py
View file @
57420b10
...
...
@@ -32,7 +32,7 @@ class JiebaPreTokenizer:
import
rjieba
except
ImportError
:
raise
ImportError
(
"You need to install rjieba to use RoFormerTokenizer."
"You need to install rjieba to use RoFormerTokenizer.
"
"See https://pypi.org/project/rjieba/ for installation."
)
self
.
jieba
=
rjieba
...
...
src/transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py
View file @
57420b10
...
...
@@ -352,7 +352,7 @@ class SpeechEncoderDecoderModel(PreTrainedModel):
decoder_config
=
AutoConfig
.
from_pretrained
(
decoder_pretrained_model_name_or_path
)
if
decoder_config
.
is_decoder
is
False
or
decoder_config
.
add_cross_attention
is
False
:
logger
.
info
(
f
"Initializing
{
decoder_pretrained_model_name_or_path
}
as a decoder model."
f
"Initializing
{
decoder_pretrained_model_name_or_path
}
as a decoder model.
"
"Cross attention layers are added to {decoder_pretrained_model_name_or_path} "
"and randomly initialized if {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
)
...
...
@@ -363,9 +363,9 @@ class SpeechEncoderDecoderModel(PreTrainedModel):
if
kwargs_decoder
[
"config"
].
is_decoder
is
False
or
kwargs_decoder
[
"config"
].
add_cross_attention
is
False
:
logger
.
warning
(
f
"Decoder model
{
decoder_pretrained_model_name_or_path
}
is not initialized as a decoder."
f
"Decoder model
{
decoder_pretrained_model_name_or_path
}
is not initialized as a decoder.
"
f
"In order to initialize
{
decoder_pretrained_model_name_or_path
}
as a decoder, "
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config`"
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config`
"
"passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a `decoder_config` to `.from_encoder_decoder_pretrained(...)`"
)
...
...
@@ -513,7 +513,7 @@ class SpeechEncoderDecoderModel(PreTrainedModel):
def
resize_token_embeddings
(
self
,
*
args
,
**
kwargs
):
raise
NotImplementedError
(
"Resizing the embedding layers via the SpeechEncoderDecoderModel directly is not supported."
"Resizing the embedding layers via the SpeechEncoderDecoderModel directly is not supported.
"
"Please use the respective methods of the wrapped decoder object (model.decoder.resize_token_embeddings(...))"
)
...
...
src/transformers/models/speech_to_text/configuration_speech_to_text.py
View file @
57420b10
...
...
@@ -175,9 +175,9 @@ class Speech2TextConfig(PretrainedConfig):
if
len
(
self
.
conv_kernel_sizes
)
!=
self
.
num_conv_layers
:
raise
ValueError
(
"Configuration for convolutional module is incorrect."
"It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers`"
f
"but is `len(config.conv_kernel_sizes) =
{
len
(
self
.
conv_kernel_sizes
)
}
`,"
"Configuration for convolutional module is incorrect.
"
"It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers`
"
f
"but is `len(config.conv_kernel_sizes) =
{
len
(
self
.
conv_kernel_sizes
)
}
`,
"
f
"`config.num_conv_layers =
{
self
.
num_conv_layers
}
`."
)
...
...
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment