Unverified Commit 567d9c06 authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Disk offload fix (#17428)

* Fix offload to disk for big models

* Add test

* Fix test for other models
parent 975dd2bb
......@@ -597,11 +597,12 @@ def _load_state_dict_into_meta_model(
raise ValueError(f"{param_name} doesn't have any device set.")
param_device = device_map[module_name]
set_module_tensor_to_device(model, param_name, param_device, value=param)
if param_device == "disk":
offload_index = offload_weight(param, param_name, offload_folder, offload_index)
elif param_device == "cpu" and state_dict_index is not None:
state_dict_index = offload_weight(param, param_name, state_dict_folder, state_dict_index)
else:
set_module_tensor_to_device(model, param_name, param_device, value=param)
return error_msgs, offload_index, state_dict_index
......@@ -2216,6 +2217,11 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
offload_state_dict=False,
dtype=None,
):
if device_map is not None and "disk" in device_map.values() and offload_folder is None:
raise ValueError(
"The current `device_map` had weights offloaded to the disk. Please provide an `offload_folder` for"
" them."
)
# Retrieve missing & unexpected_keys
model_state_dict = model.state_dict()
expected_keys = list(model_state_dict.keys())
......
......@@ -2214,6 +2214,42 @@ class ModelTesterMixin:
else:
self.assertEqual(param.device, torch.device(param_device))
@require_accelerate
@require_torch_gpu
def test_disk_offload(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if isinstance(getattr(config, "num_hidden_layers", None), int) and config.num_hidden_layers < 5:
config.num_hidden_layers = 5
for model_class in self.all_model_classes:
if model_class._no_split_modules is None:
continue
inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config).eval()
model = model.to(torch_device)
base_output = model(**inputs_dict)
model_size = compute_module_sizes(model)[""]
# We test several splits of sizes to make sure it works.
max_size = int(0.4 * model_size)
with tempfile.TemporaryDirectory() as tmp_dir:
model.cpu().save_pretrained(tmp_dir)
max_memory = {0: max_size, "cpu": max_size}
with self.assertRaises(ValueError):
# This errors out cause it's missing an offload folder
new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
new_model = model_class.from_pretrained(
tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
)
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
new_output = new_model(**inputs_dict)
self.assertTrue(torch.allclose(base_output[0], new_output[0]))
@require_accelerate
@require_torch_gpu
def test_cpu_offload(self):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment