Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
562f8640
Unverified
Commit
562f8640
authored
Dec 21, 2019
by
Thomas Wolf
Committed by
GitHub
Dec 21, 2019
Browse files
Merge branch 'master' into fix-xlnet-squad2.0
parents
ca99a2d5
8618bf15
Changes
199
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
967 additions
and
415 deletions
+967
-415
transformers/tests/modeling_common_test.py
transformers/tests/modeling_common_test.py
+139
-76
transformers/tests/modeling_ctrl_test.py
transformers/tests/modeling_ctrl_test.py
+7
-9
transformers/tests/modeling_distilbert_test.py
transformers/tests/modeling_distilbert_test.py
+10
-8
transformers/tests/modeling_encoder_decoder_test.py
transformers/tests/modeling_encoder_decoder_test.py
+3
-4
transformers/tests/modeling_gpt2_test.py
transformers/tests/modeling_gpt2_test.py
+8
-9
transformers/tests/modeling_openai_test.py
transformers/tests/modeling_openai_test.py
+8
-9
transformers/tests/modeling_roberta_test.py
transformers/tests/modeling_roberta_test.py
+66
-15
transformers/tests/modeling_t5_test.py
transformers/tests/modeling_t5_test.py
+182
-0
transformers/tests/modeling_tf_albert_test.py
transformers/tests/modeling_tf_albert_test.py
+225
-0
transformers/tests/modeling_tf_auto_test.py
transformers/tests/modeling_tf_auto_test.py
+20
-11
transformers/tests/modeling_tf_bert_test.py
transformers/tests/modeling_tf_bert_test.py
+5
-9
transformers/tests/modeling_tf_common_test.py
transformers/tests/modeling_tf_common_test.py
+83
-196
transformers/tests/modeling_tf_ctrl_test.py
transformers/tests/modeling_tf_ctrl_test.py
+5
-9
transformers/tests/modeling_tf_distilbert_test.py
transformers/tests/modeling_tf_distilbert_test.py
+5
-8
transformers/tests/modeling_tf_gpt2_test.py
transformers/tests/modeling_tf_gpt2_test.py
+5
-9
transformers/tests/modeling_tf_openai_gpt_test.py
transformers/tests/modeling_tf_openai_gpt_test.py
+5
-9
transformers/tests/modeling_tf_roberta_test.py
transformers/tests/modeling_tf_roberta_test.py
+11
-15
transformers/tests/modeling_tf_t5_test.py
transformers/tests/modeling_tf_t5_test.py
+169
-0
transformers/tests/modeling_tf_transfo_xl_test.py
transformers/tests/modeling_tf_transfo_xl_test.py
+6
-10
transformers/tests/modeling_tf_xlm_test.py
transformers/tests/modeling_tf_xlm_test.py
+5
-9
No files found.
transformers/tests/modeling_common_test.py
View file @
562f8640
...
@@ -18,7 +18,7 @@ from __future__ import print_function
...
@@ -18,7 +18,7 @@ from __future__ import print_function
import
copy
import
copy
import
sys
import
sys
import
os
import
os
.path
import
shutil
import
shutil
import
tempfile
import
tempfile
import
json
import
json
...
@@ -27,10 +27,11 @@ import uuid
...
@@ -27,10 +27,11 @@ import uuid
import
unittest
import
unittest
import
logging
import
logging
import
pytest
from
transformers
import
is_torch_available
from
transformers
import
is_torch_available
from
.utils
import
CACHE_DIR
,
require_torch
,
slow
,
torch_device
if
is_torch_available
():
if
is_torch_available
():
import
torch
import
torch
import
numpy
as
np
import
numpy
as
np
...
@@ -38,8 +39,6 @@ if is_torch_available():
...
@@ -38,8 +39,6 @@ if is_torch_available():
from
transformers
import
(
AdaptiveEmbedding
,
PretrainedConfig
,
PreTrainedModel
,
from
transformers
import
(
AdaptiveEmbedding
,
PretrainedConfig
,
PreTrainedModel
,
BertModel
,
BertConfig
,
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
,
BertModel
,
BertConfig
,
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
,
GPT2LMHeadModel
,
GPT2Config
,
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
)
GPT2LMHeadModel
,
GPT2Config
,
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
if
sys
.
version_info
[
0
]
==
2
:
if
sys
.
version_info
[
0
]
==
2
:
import
cPickle
as
pickle
import
cPickle
as
pickle
...
@@ -59,12 +58,13 @@ else:
...
@@ -59,12 +58,13 @@ else:
def
_config_zero_init
(
config
):
def
_config_zero_init
(
config
):
configs_no_init
=
copy
.
deepcopy
(
config
)
configs_no_init
=
copy
.
deepcopy
(
config
)
for
key
in
configs_no_init
.
__dict__
.
keys
():
for
key
in
configs_no_init
.
__dict__
.
keys
():
if
'_range'
in
key
or
'_std'
in
key
:
if
'_range'
in
key
or
'_std'
in
key
or
'initializer_factor'
in
key
:
setattr
(
configs_no_init
,
key
,
0.0
)
setattr
(
configs_no_init
,
key
,
0.0
)
return
configs_no_init
return
configs_no_init
class
CommonTestCases
:
class
CommonTestCases
:
@
require_torch
class
CommonModelTester
(
unittest
.
TestCase
):
class
CommonModelTester
(
unittest
.
TestCase
):
model_tester
=
None
model_tester
=
None
...
@@ -73,27 +73,30 @@ class CommonTestCases:
...
@@ -73,27 +73,30 @@ class CommonTestCases:
test_pruning
=
True
test_pruning
=
True
test_resize_embeddings
=
True
test_resize_embeddings
=
True
test_head_masking
=
True
test_head_masking
=
True
is_encoder_decoder
=
False
def
test_save_load
(
self
):
def
test_save_load
(
self
):
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
for
model_class
in
self
.
all_model_classes
:
for
model_class
in
self
.
all_model_classes
:
model
=
model_class
(
config
)
model
=
model_class
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
with
torch
.
no_grad
():
with
torch
.
no_grad
():
outputs
=
model
(
**
inputs_dict
)
outputs
=
model
(
**
inputs_dict
)
out_2
=
outputs
[
0
].
numpy
()
out_2
[
np
.
isnan
(
out_2
)]
=
0
with
TemporaryDirectory
()
as
tmpdirname
:
with
TemporaryDirectory
()
as
tmpdirname
:
model
.
save_pretrained
(
tmpdirname
)
model
.
save_pretrained
(
tmpdirname
)
model
=
model_class
.
from_pretrained
(
tmpdirname
)
model
=
model_class
.
from_pretrained
(
tmpdirname
)
model
.
to
(
torch_device
)
with
torch
.
no_grad
():
with
torch
.
no_grad
():
after_outputs
=
model
(
**
inputs_dict
)
after_outputs
=
model
(
**
inputs_dict
)
# Make sure we don't have nans
# Make sure we don't have nans
out_1
=
after_outputs
[
0
].
numpy
()
out_1
=
after_outputs
[
0
].
cpu
().
numpy
()
out_2
=
outputs
[
0
].
numpy
()
out_1
[
np
.
isnan
(
out_1
)]
=
0
out_1
=
out_1
[
~
np
.
isnan
(
out_1
)]
out_2
=
out_2
[
~
np
.
isnan
(
out_2
)]
max_diff
=
np
.
amax
(
np
.
abs
(
out_1
-
out_2
))
max_diff
=
np
.
amax
(
np
.
abs
(
out_1
-
out_2
))
self
.
assertLessEqual
(
max_diff
,
1e-5
)
self
.
assertLessEqual
(
max_diff
,
1e-5
)
...
@@ -113,20 +116,34 @@ class CommonTestCases:
...
@@ -113,20 +116,34 @@ class CommonTestCases:
for
model_class
in
self
.
all_model_classes
:
for
model_class
in
self
.
all_model_classes
:
model
=
model_class
(
config
)
model
=
model_class
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
first
,
second
=
model
(
inputs_dict
[
"input_ids"
])[
0
],
model
(
inputs_dict
[
"input_ids"
])[
0
]
with
torch
.
no_grad
():
self
.
assertEqual
(
first
.
ne
(
second
).
sum
().
item
(),
0
)
first
=
model
(
**
inputs_dict
)[
0
]
second
=
model
(
**
inputs_dict
)[
0
]
out_1
=
first
.
cpu
().
numpy
()
out_2
=
second
.
cpu
().
numpy
()
out_1
=
out_1
[
~
np
.
isnan
(
out_1
)]
out_2
=
out_2
[
~
np
.
isnan
(
out_2
)]
max_diff
=
np
.
amax
(
np
.
abs
(
out_1
-
out_2
))
self
.
assertLessEqual
(
max_diff
,
1e-5
)
def
test_attention_outputs
(
self
):
def
test_attention_outputs
(
self
):
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
decoder_seq_length
=
self
.
model_tester
.
decoder_seq_length
if
hasattr
(
self
.
model_tester
,
'decoder_seq_length'
)
else
self
.
model_tester
.
seq_length
encoder_seq_length
=
self
.
model_tester
.
encoder_seq_length
if
hasattr
(
self
.
model_tester
,
'encoder_seq_length'
)
else
self
.
model_tester
.
seq_length
decoder_key_length
=
self
.
model_tester
.
key_length
if
hasattr
(
self
.
model_tester
,
'key_length'
)
else
decoder_seq_length
encoder_key_length
=
self
.
model_tester
.
key_length
if
hasattr
(
self
.
model_tester
,
'key_length'
)
else
encoder_seq_length
for
model_class
in
self
.
all_model_classes
:
for
model_class
in
self
.
all_model_classes
:
config
.
output_attentions
=
True
config
.
output_attentions
=
True
config
.
output_hidden_states
=
False
config
.
output_hidden_states
=
False
model
=
model_class
(
config
)
model
=
model_class
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
outputs
=
model
(
**
inputs_dict
)
with
torch
.
no_grad
():
outputs
=
model
(
**
inputs_dict
)
attentions
=
outputs
[
-
1
]
attentions
=
outputs
[
-
1
]
self
.
assertEqual
(
model
.
config
.
output_attentions
,
True
)
self
.
assertEqual
(
model
.
config
.
output_attentions
,
True
)
self
.
assertEqual
(
model
.
config
.
output_hidden_states
,
False
)
self
.
assertEqual
(
model
.
config
.
output_hidden_states
,
False
)
...
@@ -134,27 +151,42 @@ class CommonTestCases:
...
@@ -134,27 +151,42 @@ class CommonTestCases:
self
.
assertListEqual
(
self
.
assertListEqual
(
list
(
attentions
[
0
].
shape
[
-
3
:]),
list
(
attentions
[
0
].
shape
[
-
3
:]),
[
self
.
model_tester
.
num_attention_heads
,
[
self
.
model_tester
.
num_attention_heads
,
self
.
model_tester
.
seq_length
,
encoder_
seq_length
,
self
.
model_tester
.
key_len
if
hasattr
(
self
.
model_tester
,
'key_len'
)
else
self
.
model_tester
.
seq
_length
])
encoder_key
_length
])
out_len
=
len
(
outputs
)
out_len
=
len
(
outputs
)
if
self
.
is_encoder_decoder
:
self
.
assertEqual
(
out_len
%
2
,
0
)
decoder_attentions
=
outputs
[(
out_len
//
2
)
-
1
]
self
.
assertEqual
(
model
.
config
.
output_attentions
,
True
)
self
.
assertEqual
(
model
.
config
.
output_hidden_states
,
False
)
self
.
assertEqual
(
len
(
decoder_attentions
),
self
.
model_tester
.
num_hidden_layers
)
self
.
assertListEqual
(
list
(
decoder_attentions
[
0
].
shape
[
-
3
:]),
[
self
.
model_tester
.
num_attention_heads
,
decoder_seq_length
,
decoder_key_length
])
# Check attention is always last and order is fine
# Check attention is always last and order is fine
config
.
output_attentions
=
True
config
.
output_attentions
=
True
config
.
output_hidden_states
=
True
config
.
output_hidden_states
=
True
model
=
model_class
(
config
)
model
=
model_class
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
outputs
=
model
(
**
inputs_dict
)
with
torch
.
no_grad
():
self
.
assertEqual
(
out_len
+
1
,
len
(
outputs
))
outputs
=
model
(
**
inputs_dict
)
self
.
assertEqual
(
out_len
+
(
2
if
self
.
is_encoder_decoder
else
1
),
len
(
outputs
))
self
.
assertEqual
(
model
.
config
.
output_attentions
,
True
)
self
.
assertEqual
(
model
.
config
.
output_attentions
,
True
)
self
.
assertEqual
(
model
.
config
.
output_hidden_states
,
True
)
self
.
assertEqual
(
model
.
config
.
output_hidden_states
,
True
)
attentions
=
outputs
[
-
1
]
self_
attentions
=
outputs
[
-
1
]
self
.
assertEqual
(
len
(
attentions
),
self
.
model_tester
.
num_hidden_layers
)
self
.
assertEqual
(
len
(
self_
attentions
),
self
.
model_tester
.
num_hidden_layers
)
self
.
assertListEqual
(
self
.
assertListEqual
(
list
(
attentions
[
0
].
shape
[
-
3
:]),
list
(
self_
attentions
[
0
].
shape
[
-
3
:]),
[
self
.
model_tester
.
num_attention_heads
,
[
self
.
model_tester
.
num_attention_heads
,
self
.
model_tester
.
seq_length
,
encoder_
seq_length
,
self
.
model_tester
.
key_len
if
hasattr
(
self
.
model_tester
,
'key_len'
)
else
self
.
model_tester
.
seq
_length
])
encoder_key
_length
])
def
test_torchscript
(
self
):
def
test_torchscript
(
self
):
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
...
@@ -181,27 +213,32 @@ class CommonTestCases:
...
@@ -181,27 +213,32 @@ class CommonTestCases:
configs_no_init
.
torchscript
=
True
configs_no_init
.
torchscript
=
True
for
model_class
in
self
.
all_model_classes
:
for
model_class
in
self
.
all_model_classes
:
model
=
model_class
(
config
=
configs_no_init
)
model
=
model_class
(
config
=
configs_no_init
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
inputs
=
inputs_dict
[
'input_ids'
]
# Let's keep only input_ids
inputs
=
inputs_dict
[
'input_ids'
]
# Let's keep only input_ids
try
:
try
:
torch
.
jit
.
trace
(
model
,
inputs
)
traced_gpt2
=
torch
.
jit
.
trace
(
model
,
inputs
)
except
RuntimeError
:
except
RuntimeError
:
self
.
fail
(
"Couldn't trace module."
)
self
.
fail
(
"Couldn't trace module."
)
try
:
with
TemporaryDirectory
()
as
tmp_dir_name
:
traced_gpt2
=
torch
.
jit
.
trace
(
model
,
inputs
)
pt_file_name
=
os
.
path
.
join
(
tmp_dir_name
,
"traced_model.pt"
)
torch
.
jit
.
save
(
traced_gpt2
,
"traced_model.pt"
)
except
RuntimeError
:
self
.
fail
(
"Couldn't save module."
)
try
:
try
:
loaded_model
=
torch
.
jit
.
load
(
"traced_model.pt"
)
torch
.
jit
.
save
(
traced_gpt2
,
pt_file_name
)
os
.
remove
(
"traced_model.pt"
)
except
Exception
:
except
ValueError
:
self
.
fail
(
"Couldn't save module."
)
self
.
fail
(
"Couldn't load module."
)
try
:
loaded_model
=
torch
.
jit
.
load
(
pt_file_name
)
except
Exception
:
self
.
fail
(
"Couldn't load module."
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
loaded_model
.
to
(
torch_device
)
loaded_model
.
eval
()
loaded_model
.
eval
()
model_params
=
model
.
parameters
()
model_params
=
model
.
parameters
()
...
@@ -214,7 +251,6 @@ class CommonTestCases:
...
@@ -214,7 +251,6 @@ class CommonTestCases:
self
.
assertTrue
(
models_equal
)
self
.
assertTrue
(
models_equal
)
def
test_headmasking
(
self
):
def
test_headmasking
(
self
):
if
not
self
.
test_head_masking
:
if
not
self
.
test_head_masking
:
return
return
...
@@ -228,11 +264,12 @@ class CommonTestCases:
...
@@ -228,11 +264,12 @@ class CommonTestCases:
configs_no_init
=
_config_zero_init
(
config
)
# To be sure we have no Nan
configs_no_init
=
_config_zero_init
(
config
)
# To be sure we have no Nan
for
model_class
in
self
.
all_model_classes
:
for
model_class
in
self
.
all_model_classes
:
model
=
model_class
(
config
=
configs_no_init
)
model
=
model_class
(
config
=
configs_no_init
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
# Prepare head_mask
# Prepare head_mask
# Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
# Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
head_mask
=
torch
.
ones
(
self
.
model_tester
.
num_hidden_layers
,
self
.
model_tester
.
num_attention_heads
)
head_mask
=
torch
.
ones
(
self
.
model_tester
.
num_hidden_layers
,
self
.
model_tester
.
num_attention_heads
,
device
=
torch_device
)
head_mask
[
0
,
0
]
=
0
head_mask
[
0
,
0
]
=
0
head_mask
[
-
1
,
:
-
1
]
=
0
head_mask
[
-
1
,
:
-
1
]
=
0
head_mask
.
requires_grad_
(
requires_grad
=
True
)
head_mask
.
requires_grad_
(
requires_grad
=
True
)
...
@@ -268,7 +305,6 @@ class CommonTestCases:
...
@@ -268,7 +305,6 @@ class CommonTestCases:
self
.
assertNotEqual
(
self
.
assertNotEqual
(
attentions
[
-
1
][...,
-
1
,
:,
:].
flatten
().
sum
().
item
(),
0.0
)
attentions
[
-
1
][...,
-
1
,
:,
:].
flatten
().
sum
().
item
(),
0.0
)
def
test_head_pruning
(
self
):
def
test_head_pruning
(
self
):
if
not
self
.
test_pruning
:
if
not
self
.
test_pruning
:
return
return
...
@@ -282,11 +318,13 @@ class CommonTestCases:
...
@@ -282,11 +318,13 @@ class CommonTestCases:
config
.
output_attentions
=
True
config
.
output_attentions
=
True
config
.
output_hidden_states
=
False
config
.
output_hidden_states
=
False
model
=
model_class
(
config
=
config
)
model
=
model_class
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
heads_to_prune
=
{
0
:
list
(
range
(
1
,
self
.
model_tester
.
num_attention_heads
)),
heads_to_prune
=
{
0
:
list
(
range
(
1
,
self
.
model_tester
.
num_attention_heads
)),
-
1
:
[
0
]}
-
1
:
[
0
]}
model
.
prune_heads
(
heads_to_prune
)
model
.
prune_heads
(
heads_to_prune
)
outputs
=
model
(
**
inputs_dict
)
with
torch
.
no_grad
():
outputs
=
model
(
**
inputs_dict
)
attentions
=
outputs
[
-
1
]
attentions
=
outputs
[
-
1
]
...
@@ -310,23 +348,24 @@ class CommonTestCases:
...
@@ -310,23 +348,24 @@ class CommonTestCases:
config
.
output_attentions
=
True
config
.
output_attentions
=
True
config
.
output_hidden_states
=
False
config
.
output_hidden_states
=
False
model
=
model_class
(
config
=
config
)
model
=
model_class
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
heads_to_prune
=
{
0
:
list
(
range
(
1
,
self
.
model_tester
.
num_attention_heads
)),
heads_to_prune
=
{
0
:
list
(
range
(
1
,
self
.
model_tester
.
num_attention_heads
)),
-
1
:
[
0
]}
-
1
:
[
0
]}
model
.
prune_heads
(
heads_to_prune
)
model
.
prune_heads
(
heads_to_prune
)
directory
=
"pruned_model"
if
not
os
.
path
.
exists
(
directory
):
os
.
makedirs
(
directory
)
model
.
save_pretrained
(
directory
)
model
=
model_class
.
from_pretrained
(
directory
)
outputs
=
model
(
**
inputs_dict
)
with
TemporaryDirectory
()
as
temp_dir_name
:
model
.
save_pretrained
(
temp_dir_name
)
model
=
model_class
.
from_pretrained
(
temp_dir_name
)
model
.
to
(
torch_device
)
with
torch
.
no_grad
():
outputs
=
model
(
**
inputs_dict
)
attentions
=
outputs
[
-
1
]
attentions
=
outputs
[
-
1
]
self
.
assertEqual
(
attentions
[
0
].
shape
[
-
3
],
1
)
self
.
assertEqual
(
attentions
[
0
].
shape
[
-
3
],
1
)
self
.
assertEqual
(
attentions
[
1
].
shape
[
-
3
],
self
.
model_tester
.
num_attention_heads
)
self
.
assertEqual
(
attentions
[
1
].
shape
[
-
3
],
self
.
model_tester
.
num_attention_heads
)
self
.
assertEqual
(
attentions
[
-
1
].
shape
[
-
3
],
self
.
model_tester
.
num_attention_heads
-
1
)
self
.
assertEqual
(
attentions
[
-
1
].
shape
[
-
3
],
self
.
model_tester
.
num_attention_heads
-
1
)
shutil
.
rmtree
(
directory
)
def
test_head_pruning_save_load_from_config_init
(
self
):
def
test_head_pruning_save_load_from_config_init
(
self
):
if
not
self
.
test_pruning
:
if
not
self
.
test_pruning
:
...
@@ -346,9 +385,11 @@ class CommonTestCases:
...
@@ -346,9 +385,11 @@ class CommonTestCases:
config
.
pruned_heads
=
heads_to_prune
config
.
pruned_heads
=
heads_to_prune
model
=
model_class
(
config
=
config
)
model
=
model_class
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
outputs
=
model
(
**
inputs_dict
)
with
torch
.
no_grad
():
outputs
=
model
(
**
inputs_dict
)
attentions
=
outputs
[
-
1
]
attentions
=
outputs
[
-
1
]
self
.
assertEqual
(
attentions
[
0
].
shape
[
-
3
],
1
)
self
.
assertEqual
(
attentions
[
0
].
shape
[
-
3
],
1
)
...
@@ -372,9 +413,11 @@ class CommonTestCases:
...
@@ -372,9 +413,11 @@ class CommonTestCases:
config
.
pruned_heads
=
heads_to_prune
config
.
pruned_heads
=
heads_to_prune
model
=
model_class
(
config
=
config
)
model
=
model_class
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
outputs
=
model
(
**
inputs_dict
)
with
torch
.
no_grad
():
outputs
=
model
(
**
inputs_dict
)
attentions
=
outputs
[
-
1
]
attentions
=
outputs
[
-
1
]
self
.
assertEqual
(
attentions
[
0
].
shape
[
-
3
],
self
.
model_tester
.
num_attention_heads
-
1
)
self
.
assertEqual
(
attentions
[
0
].
shape
[
-
3
],
self
.
model_tester
.
num_attention_heads
-
1
)
...
@@ -382,15 +425,13 @@ class CommonTestCases:
...
@@ -382,15 +425,13 @@ class CommonTestCases:
self
.
assertEqual
(
attentions
[
2
].
shape
[
-
3
],
self
.
model_tester
.
num_attention_heads
)
self
.
assertEqual
(
attentions
[
2
].
shape
[
-
3
],
self
.
model_tester
.
num_attention_heads
)
self
.
assertEqual
(
attentions
[
3
].
shape
[
-
3
],
self
.
model_tester
.
num_attention_heads
)
self
.
assertEqual
(
attentions
[
3
].
shape
[
-
3
],
self
.
model_tester
.
num_attention_heads
)
directory
=
"pruned_model"
with
TemporaryDirectory
()
as
temp_dir_name
:
model
.
save_pretrained
(
temp_dir_name
)
model
=
model_class
.
from_pretrained
(
temp_dir_name
)
model
.
to
(
torch_device
)
if
not
os
.
path
.
exists
(
directory
):
with
torch
.
no_grad
():
os
.
makedirs
(
directory
)
outputs
=
model
(
**
inputs_dict
)
model
.
save_pretrained
(
directory
)
model
=
model_class
.
from_pretrained
(
directory
)
shutil
.
rmtree
(
directory
)
outputs
=
model
(
**
inputs_dict
)
attentions
=
outputs
[
-
1
]
attentions
=
outputs
[
-
1
]
self
.
assertEqual
(
attentions
[
0
].
shape
[
-
3
],
self
.
model_tester
.
num_attention_heads
-
1
)
self
.
assertEqual
(
attentions
[
0
].
shape
[
-
3
],
self
.
model_tester
.
num_attention_heads
-
1
)
...
@@ -401,7 +442,8 @@ class CommonTestCases:
...
@@ -401,7 +442,8 @@ class CommonTestCases:
heads_to_prune
=
{
0
:
[
0
],
2
:
[
1
,
2
]}
heads_to_prune
=
{
0
:
[
0
],
2
:
[
1
,
2
]}
model
.
prune_heads
(
heads_to_prune
)
model
.
prune_heads
(
heads_to_prune
)
outputs
=
model
(
**
inputs_dict
)
with
torch
.
no_grad
():
outputs
=
model
(
**
inputs_dict
)
attentions
=
outputs
[
-
1
]
attentions
=
outputs
[
-
1
]
self
.
assertEqual
(
attentions
[
0
].
shape
[
-
3
],
self
.
model_tester
.
num_attention_heads
-
1
)
self
.
assertEqual
(
attentions
[
0
].
shape
[
-
3
],
self
.
model_tester
.
num_attention_heads
-
1
)
...
@@ -411,7 +453,6 @@ class CommonTestCases:
...
@@ -411,7 +453,6 @@ class CommonTestCases:
self
.
assertDictEqual
(
model
.
config
.
pruned_heads
,
{
0
:
[
0
],
1
:
[
1
,
2
],
2
:
[
1
,
2
]})
self
.
assertDictEqual
(
model
.
config
.
pruned_heads
,
{
0
:
[
0
],
1
:
[
1
,
2
],
2
:
[
1
,
2
]})
def
test_hidden_states_output
(
self
):
def
test_hidden_states_output
(
self
):
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
...
@@ -419,15 +460,18 @@ class CommonTestCases:
...
@@ -419,15 +460,18 @@ class CommonTestCases:
config
.
output_hidden_states
=
True
config
.
output_hidden_states
=
True
config
.
output_attentions
=
False
config
.
output_attentions
=
False
model
=
model_class
(
config
)
model
=
model_class
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
outputs
=
model
(
**
inputs_dict
)
with
torch
.
no_grad
():
outputs
=
model
(
**
inputs_dict
)
hidden_states
=
outputs
[
-
1
]
hidden_states
=
outputs
[
-
1
]
self
.
assertEqual
(
model
.
config
.
output_attentions
,
False
)
self
.
assertEqual
(
model
.
config
.
output_attentions
,
False
)
self
.
assertEqual
(
model
.
config
.
output_hidden_states
,
True
)
self
.
assertEqual
(
model
.
config
.
output_hidden_states
,
True
)
self
.
assertEqual
(
len
(
hidden_states
),
self
.
model_tester
.
num_hidden_layers
+
1
)
self
.
assertEqual
(
len
(
hidden_states
),
self
.
model_tester
.
num_hidden_layers
+
1
)
self
.
assertListEqual
(
self
.
assertListEqual
(
list
(
hidden_states
[
0
].
shape
[
-
2
:]),
list
(
hidden_states
[
0
].
shape
[
-
2
:]),
[
self
.
model_tester
.
seq_length
,
self
.
model_tester
.
hidden_size
])
[
self
.
model_tester
.
encoder_seq_length
if
hasattr
(
self
.
model_tester
,
'encoder_seq_length'
)
else
self
.
model_tester
.
seq_length
,
self
.
model_tester
.
hidden_size
])
def
test_resize_tokens_embeddings
(
self
):
def
test_resize_tokens_embeddings
(
self
):
original_config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
original_config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
...
@@ -533,17 +577,29 @@ class CommonTestCases:
...
@@ -533,17 +577,29 @@ class CommonTestCases:
def
test_inputs_embeds
(
self
):
def
test_inputs_embeds
(
self
):
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
input_ids
=
inputs_dict
[
"input_ids"
]
if
not
self
.
is_encoder_decoder
:
del
inputs_dict
[
"input_ids"
]
input_ids
=
inputs_dict
[
"input_ids"
]
del
inputs_dict
[
"input_ids"
]
else
:
encoder_input_ids
=
inputs_dict
[
"encoder_input_ids"
]
decoder_input_ids
=
inputs_dict
[
"decoder_input_ids"
]
del
inputs_dict
[
"encoder_input_ids"
]
del
inputs_dict
[
"decoder_input_ids"
]
for
model_class
in
self
.
all_model_classes
:
for
model_class
in
self
.
all_model_classes
:
model
=
model_class
(
config
)
model
=
model_class
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
wte
=
model
.
get_input_embeddings
()
wte
=
model
.
get_input_embeddings
()
inputs_dict
[
"inputs_embeds"
]
=
wte
(
input_ids
)
if
not
self
.
is_encoder_decoder
:
outputs
=
model
(
**
inputs_dict
)
inputs_dict
[
"inputs_embeds"
]
=
wte
(
input_ids
)
else
:
inputs_dict
[
"encoder_inputs_embeds"
]
=
wte
(
encoder_input_ids
)
inputs_dict
[
"decoder_inputs_embeds"
]
=
wte
(
decoder_input_ids
)
with
torch
.
no_grad
():
outputs
=
model
(
**
inputs_dict
)
class
GPTModelTester
(
CommonModelTester
):
class
GPTModelTester
(
CommonModelTester
):
...
@@ -615,7 +671,7 @@ class CommonTestCases:
...
@@ -615,7 +671,7 @@ class CommonTestCases:
mc_token_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
n_choices
],
self
.
seq_length
)
mc_token_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
n_choices
],
self
.
seq_length
)
config
=
self
.
config_class
(
config
=
self
.
config_class
(
vocab_size
_or_config_json_file
=
self
.
vocab_size
,
vocab_size
=
self
.
vocab_size
,
n_positions
=
self
.
n_positions
,
n_positions
=
self
.
n_positions
,
n_embd
=
self
.
hidden_size
,
n_embd
=
self
.
hidden_size
,
n_layer
=
self
.
num_hidden_layers
,
n_layer
=
self
.
num_hidden_layers
,
...
@@ -628,11 +684,13 @@ class CommonTestCases:
...
@@ -628,11 +684,13 @@ class CommonTestCases:
def
create_and_check_base_model
(
self
,
config
,
input_ids
,
token_type_ids
,
position_ids
,
def
create_and_check_base_model
(
self
,
config
,
input_ids
,
token_type_ids
,
position_ids
,
mc_labels
,
lm_labels
,
mc_token_ids
):
mc_labels
,
lm_labels
,
mc_token_ids
):
model
=
self
.
base_model_class
(
config
)
model
=
self
.
base_model_class
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
outputs
=
model
(
input_ids
,
position_ids
,
token_type_ids
)
with
torch
.
no_grad
():
outputs
=
model
(
input_ids
,
position_ids
)
outputs
=
model
(
input_ids
,
position_ids
,
token_type_ids
)
outputs
=
model
(
input_ids
)
outputs
=
model
(
input_ids
,
position_ids
)
outputs
=
model
(
input_ids
)
hidden_state
=
outputs
[
0
]
hidden_state
=
outputs
[
0
]
self
.
parent
.
assertListEqual
(
self
.
parent
.
assertListEqual
(
...
@@ -643,8 +701,10 @@ class CommonTestCases:
...
@@ -643,8 +701,10 @@ class CommonTestCases:
def
create_and_check_lm_head
(
self
,
config
,
input_ids
,
token_type_ids
,
position_ids
,
def
create_and_check_lm_head
(
self
,
config
,
input_ids
,
token_type_ids
,
position_ids
,
mc_labels
,
lm_labels
,
mc_token_ids
):
mc_labels
,
lm_labels
,
mc_token_ids
):
model
=
self
.
lm_head_model_class
(
config
)
model
=
self
.
lm_head_model_class
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
outputs
=
model
(
input_ids
,
position_ids
,
token_type_ids
,
lm_labels
)
with
torch
.
no_grad
():
outputs
=
model
(
input_ids
,
position_ids
,
token_type_ids
,
lm_labels
)
loss
,
lm_logits
=
outputs
[:
2
]
loss
,
lm_logits
=
outputs
[:
2
]
total_voc
=
self
.
vocab_size
total_voc
=
self
.
vocab_size
...
@@ -659,8 +719,10 @@ class CommonTestCases:
...
@@ -659,8 +719,10 @@ class CommonTestCases:
mc_labels
,
lm_labels
,
mc_token_ids
):
mc_labels
,
lm_labels
,
mc_token_ids
):
for
model_class
in
self
.
all_model_classes
:
for
model_class
in
self
.
all_model_classes
:
model
=
model_class
(
config
)
model
=
model_class
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
outputs
=
model
(
input_ids
)
with
torch
.
no_grad
():
outputs
=
model
(
input_ids
)
presents
=
outputs
[
-
1
]
presents
=
outputs
[
-
1
]
self
.
parent
.
assertEqual
(
self
.
num_hidden_layers
,
len
(
presents
))
self
.
parent
.
assertEqual
(
self
.
num_hidden_layers
,
len
(
presents
))
self
.
parent
.
assertListEqual
(
self
.
parent
.
assertListEqual
(
...
@@ -671,8 +733,10 @@ class CommonTestCases:
...
@@ -671,8 +733,10 @@ class CommonTestCases:
def
create_and_check_double_heads
(
self
,
config
,
input_ids
,
token_type_ids
,
position_ids
,
def
create_and_check_double_heads
(
self
,
config
,
input_ids
,
token_type_ids
,
position_ids
,
mc_labels
,
lm_labels
,
mc_token_ids
):
mc_labels
,
lm_labels
,
mc_token_ids
):
model
=
self
.
double_head_model_class
(
config
)
model
=
self
.
double_head_model_class
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
outputs
=
model
(
input_ids
,
mc_token_ids
,
lm_labels
=
lm_labels
,
mc_labels
=
mc_labels
,
with
torch
.
no_grad
():
outputs
=
model
(
input_ids
,
mc_token_ids
,
lm_labels
=
lm_labels
,
mc_labels
=
mc_labels
,
token_type_ids
=
token_type_ids
,
position_ids
=
position_ids
)
token_type_ids
=
token_type_ids
,
position_ids
=
position_ids
)
lm_loss
,
mc_loss
,
lm_logits
,
mc_logits
=
outputs
[:
4
]
lm_loss
,
mc_loss
,
lm_logits
,
mc_logits
=
outputs
[:
4
]
loss
=
[
lm_loss
,
mc_loss
]
loss
=
[
lm_loss
,
mc_loss
]
...
@@ -689,10 +753,8 @@ class CommonTestCases:
...
@@ -689,10 +753,8 @@ class CommonTestCases:
[[],
[]])
[[],
[]])
def
create_and_check_model_from_pretrained
(
self
):
def
create_and_check_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
self
.
base_model_class
.
pretrained_model_archive_map
.
keys
())[:
1
]:
for
model_name
in
list
(
self
.
base_model_class
.
pretrained_model_archive_map
.
keys
())[:
1
]:
model
=
self
.
base_model_class
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
model
=
self
.
base_model_class
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
shutil
.
rmtree
(
cache_dir
)
self
.
parent
.
assertIsNotNone
(
model
)
self
.
parent
.
assertIsNotNone
(
model
)
def
prepare_config_and_inputs_for_common
(
self
):
def
prepare_config_and_inputs_for_common
(
self
):
...
@@ -716,7 +778,7 @@ class CommonTestCases:
...
@@ -716,7 +778,7 @@ class CommonTestCases:
config_and_inputs
=
self
.
prepare_config_and_inputs
()
config_and_inputs
=
self
.
prepare_config_and_inputs
()
self
.
create_and_check_presents
(
*
config_and_inputs
)
self
.
create_and_check_presents
(
*
config_and_inputs
)
@
pytest
.
mark
.
slow
@
slow
def
run_slow_tests
(
self
):
def
run_slow_tests
(
self
):
self
.
create_and_check_model_from_pretrained
()
self
.
create_and_check_model_from_pretrained
()
...
@@ -770,7 +832,7 @@ def ids_tensor(shape, vocab_size, rng=None, name=None):
...
@@ -770,7 +832,7 @@ def ids_tensor(shape, vocab_size, rng=None, name=None):
for
_
in
range
(
total_dims
):
for
_
in
range
(
total_dims
):
values
.
append
(
rng
.
randint
(
0
,
vocab_size
-
1
))
values
.
append
(
rng
.
randint
(
0
,
vocab_size
-
1
))
return
torch
.
tensor
(
data
=
values
,
dtype
=
torch
.
long
).
view
(
shape
).
contiguous
()
return
torch
.
tensor
(
data
=
values
,
dtype
=
torch
.
long
,
device
=
torch_device
).
view
(
shape
).
contiguous
()
def
floats_tensor
(
shape
,
scale
=
1.0
,
rng
=
None
,
name
=
None
):
def
floats_tensor
(
shape
,
scale
=
1.0
,
rng
=
None
,
name
=
None
):
...
@@ -786,11 +848,12 @@ def floats_tensor(shape, scale=1.0, rng=None, name=None):
...
@@ -786,11 +848,12 @@ def floats_tensor(shape, scale=1.0, rng=None, name=None):
for
_
in
range
(
total_dims
):
for
_
in
range
(
total_dims
):
values
.
append
(
rng
.
random
()
*
scale
)
values
.
append
(
rng
.
random
()
*
scale
)
return
torch
.
tensor
(
data
=
values
,
dtype
=
torch
.
float
).
view
(
shape
).
contiguous
()
return
torch
.
tensor
(
data
=
values
,
dtype
=
torch
.
float
,
device
=
torch_device
).
view
(
shape
).
contiguous
()
@
require_torch
class
ModelUtilsTest
(
unittest
.
TestCase
):
class
ModelUtilsTest
(
unittest
.
TestCase
):
@
pytest
.
mark
.
slow
@
slow
def
test_model_from_pretrained
(
self
):
def
test_model_from_pretrained
(
self
):
logging
.
basicConfig
(
level
=
logging
.
INFO
)
logging
.
basicConfig
(
level
=
logging
.
INFO
)
for
model_name
in
list
(
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
for
model_name
in
list
(
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
...
...
transformers/tests/modeling_ctrl_test.py
View file @
562f8640
...
@@ -16,8 +16,6 @@ from __future__ import division
...
@@ -16,8 +16,6 @@ from __future__ import division
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
unittest
import
pytest
import
shutil
import
pdb
import
pdb
from
transformers
import
is_torch_available
from
transformers
import
is_torch_available
...
@@ -25,13 +23,13 @@ from transformers import is_torch_available
...
@@ -25,13 +23,13 @@ from transformers import is_torch_available
if
is_torch_available
():
if
is_torch_available
():
from
transformers
import
(
CTRLConfig
,
CTRLModel
,
CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
,
from
transformers
import
(
CTRLConfig
,
CTRLModel
,
CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
,
CTRLLMHeadModel
)
CTRLLMHeadModel
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.configuration_common_test
import
ConfigTester
from
.utils
import
CACHE_DIR
,
require_torch
,
slow
,
torch_device
@
require_torch
class
CTRLModelTest
(
CommonTestCases
.
CommonModelTester
):
class
CTRLModelTest
(
CommonTestCases
.
CommonModelTester
):
all_model_classes
=
(
CTRLModel
,
CTRLLMHeadModel
)
if
is_torch_available
()
else
()
all_model_classes
=
(
CTRLModel
,
CTRLLMHeadModel
)
if
is_torch_available
()
else
()
...
@@ -115,7 +113,7 @@ class CTRLModelTest(CommonTestCases.CommonModelTester):
...
@@ -115,7 +113,7 @@ class CTRLModelTest(CommonTestCases.CommonModelTester):
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
CTRLConfig
(
config
=
CTRLConfig
(
vocab_size
_or_config_json_file
=
self
.
vocab_size
,
vocab_size
=
self
.
vocab_size
,
n_embd
=
self
.
hidden_size
,
n_embd
=
self
.
hidden_size
,
n_layer
=
self
.
num_hidden_layers
,
n_layer
=
self
.
num_hidden_layers
,
n_head
=
self
.
num_attention_heads
,
n_head
=
self
.
num_attention_heads
,
...
@@ -140,6 +138,7 @@ class CTRLModelTest(CommonTestCases.CommonModelTester):
...
@@ -140,6 +138,7 @@ class CTRLModelTest(CommonTestCases.CommonModelTester):
def
create_and_check_ctrl_model
(
self
,
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
*
args
):
def
create_and_check_ctrl_model
(
self
,
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
*
args
):
model
=
CTRLModel
(
config
=
config
)
model
=
CTRLModel
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
model
(
input_ids
,
token_type_ids
=
token_type_ids
,
head_mask
=
head_mask
)
model
(
input_ids
,
token_type_ids
=
token_type_ids
,
head_mask
=
head_mask
)
...
@@ -157,6 +156,7 @@ class CTRLModelTest(CommonTestCases.CommonModelTester):
...
@@ -157,6 +156,7 @@ class CTRLModelTest(CommonTestCases.CommonModelTester):
def
create_and_check_lm_head_model
(
self
,
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
*
args
):
def
create_and_check_lm_head_model
(
self
,
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
*
args
):
model
=
CTRLLMHeadModel
(
config
)
model
=
CTRLLMHeadModel
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
loss
,
lm_logits
,
_
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
,
labels
=
input_ids
)
loss
,
lm_logits
,
_
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
,
labels
=
input_ids
)
...
@@ -202,12 +202,10 @@ class CTRLModelTest(CommonTestCases.CommonModelTester):
...
@@ -202,12 +202,10 @@ class CTRLModelTest(CommonTestCases.CommonModelTester):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_lm_head_model
(
*
config_and_inputs
)
self
.
model_tester
.
create_and_check_lm_head_model
(
*
config_and_inputs
)
@
pytest
.
mark
.
slow
@
slow
def
test_model_from_pretrained
(
self
):
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
for
model_name
in
list
(
CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
CTRLModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
model
=
CTRLModel
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
shutil
.
rmtree
(
cache_dir
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsNotNone
(
model
)
...
...
transformers/tests/modeling_distilbert_test.py
View file @
562f8640
...
@@ -17,7 +17,6 @@ from __future__ import division
...
@@ -17,7 +17,6 @@ from __future__ import division
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
unittest
import
pytest
from
transformers
import
is_torch_available
from
transformers
import
is_torch_available
...
@@ -25,13 +24,13 @@ if is_torch_available():
...
@@ -25,13 +24,13 @@ if is_torch_available():
from
transformers
import
(
DistilBertConfig
,
DistilBertModel
,
DistilBertForMaskedLM
,
from
transformers
import
(
DistilBertConfig
,
DistilBertModel
,
DistilBertForMaskedLM
,
DistilBertForTokenClassification
,
DistilBertForTokenClassification
,
DistilBertForQuestionAnswering
,
DistilBertForSequenceClassification
)
DistilBertForQuestionAnswering
,
DistilBertForSequenceClassification
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.configuration_common_test
import
ConfigTester
from
.utils
import
CACHE_DIR
,
require_torch
,
slow
,
torch_device
@
require_torch
class
DistilBertModelTest
(
CommonTestCases
.
CommonModelTester
):
class
DistilBertModelTest
(
CommonTestCases
.
CommonModelTester
):
all_model_classes
=
(
DistilBertModel
,
DistilBertForMaskedLM
,
DistilBertForQuestionAnswering
,
all_model_classes
=
(
DistilBertModel
,
DistilBertForMaskedLM
,
DistilBertForQuestionAnswering
,
...
@@ -106,7 +105,7 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
...
@@ -106,7 +105,7 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
DistilBertConfig
(
config
=
DistilBertConfig
(
vocab_size
_or_config_json_file
=
self
.
vocab_size
,
vocab_size
=
self
.
vocab_size
,
dim
=
self
.
hidden_size
,
dim
=
self
.
hidden_size
,
n_layers
=
self
.
num_hidden_layers
,
n_layers
=
self
.
num_hidden_layers
,
n_heads
=
self
.
num_attention_heads
,
n_heads
=
self
.
num_attention_heads
,
...
@@ -126,6 +125,7 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
...
@@ -126,6 +125,7 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
def
create_and_check_distilbert_model
(
self
,
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
def
create_and_check_distilbert_model
(
self
,
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
DistilBertModel
(
config
=
config
)
model
=
DistilBertModel
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
(
sequence_output
,)
=
model
(
input_ids
,
input_mask
)
(
sequence_output
,)
=
model
(
input_ids
,
input_mask
)
(
sequence_output
,)
=
model
(
input_ids
)
(
sequence_output
,)
=
model
(
input_ids
)
...
@@ -139,6 +139,7 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
...
@@ -139,6 +139,7 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
def
create_and_check_distilbert_for_masked_lm
(
self
,
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
def
create_and_check_distilbert_for_masked_lm
(
self
,
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
DistilBertForMaskedLM
(
config
=
config
)
model
=
DistilBertForMaskedLM
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
loss
,
prediction_scores
=
model
(
input_ids
,
attention_mask
=
input_mask
,
masked_lm_labels
=
token_labels
)
loss
,
prediction_scores
=
model
(
input_ids
,
attention_mask
=
input_mask
,
masked_lm_labels
=
token_labels
)
result
=
{
result
=
{
...
@@ -152,6 +153,7 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
...
@@ -152,6 +153,7 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
def
create_and_check_distilbert_for_question_answering
(
self
,
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
def
create_and_check_distilbert_for_question_answering
(
self
,
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
DistilBertForQuestionAnswering
(
config
=
config
)
model
=
DistilBertForQuestionAnswering
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
loss
,
start_logits
,
end_logits
=
model
(
input_ids
,
attention_mask
=
input_mask
,
start_positions
=
sequence_labels
,
end_positions
=
sequence_labels
)
loss
,
start_logits
,
end_logits
=
model
(
input_ids
,
attention_mask
=
input_mask
,
start_positions
=
sequence_labels
,
end_positions
=
sequence_labels
)
result
=
{
result
=
{
...
@@ -170,6 +172,7 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
...
@@ -170,6 +172,7 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
def
create_and_check_distilbert_for_sequence_classification
(
self
,
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
def
create_and_check_distilbert_for_sequence_classification
(
self
,
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
config
.
num_labels
=
self
.
num_labels
config
.
num_labels
=
self
.
num_labels
model
=
DistilBertForSequenceClassification
(
config
)
model
=
DistilBertForSequenceClassification
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
loss
,
logits
=
model
(
input_ids
,
attention_mask
=
input_mask
,
labels
=
sequence_labels
)
loss
,
logits
=
model
(
input_ids
,
attention_mask
=
input_mask
,
labels
=
sequence_labels
)
result
=
{
result
=
{
...
@@ -184,6 +187,7 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
...
@@ -184,6 +187,7 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
def
create_and_check_distilbert_for_token_classification
(
self
,
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
def
create_and_check_distilbert_for_token_classification
(
self
,
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
config
.
num_labels
=
self
.
num_labels
config
.
num_labels
=
self
.
num_labels
model
=
DistilBertForTokenClassification
(
config
=
config
)
model
=
DistilBertForTokenClassification
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
loss
,
logits
=
model
(
input_ids
,
attention_mask
=
input_mask
,
labels
=
token_labels
)
loss
,
logits
=
model
(
input_ids
,
attention_mask
=
input_mask
,
labels
=
token_labels
)
...
@@ -229,12 +233,10 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
...
@@ -229,12 +233,10 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_distilbert_for_token_classification
(
*
config_and_inputs
)
self
.
model_tester
.
create_and_check_distilbert_for_token_classification
(
*
config_and_inputs
)
# @
pytest.mark.
slow
# @slow
# def test_model_from_pretrained(self):
# def test_model_from_pretrained(self):
# cache_dir = "/tmp/transformers_test/"
# for model_name in list(DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
# for model_name in list(DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
# model = DistilBertModel.from_pretrained(model_name, cache_dir=cache_dir)
# model = DistilBertModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
# shutil.rmtree(cache_dir)
# self.assertIsNotNone(model)
# self.assertIsNotNone(model)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
transformers/tests/modeling_encoder_decoder_test.py
View file @
562f8640
...
@@ -15,19 +15,18 @@
...
@@ -15,19 +15,18 @@
import
logging
import
logging
import
unittest
import
unittest
import
pytest
from
transformers
import
is_torch_available
from
transformers
import
is_torch_available
from
.utils
import
require_torch
,
slow
if
is_torch_available
():
if
is_torch_available
():
from
transformers
import
BertModel
,
BertForMaskedLM
,
Model2Model
from
transformers
import
BertModel
,
BertForMaskedLM
,
Model2Model
from
transformers.modeling_bert
import
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
from
transformers.modeling_bert
import
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
@
require_torch
class
EncoderDecoderModelTest
(
unittest
.
TestCase
):
class
EncoderDecoderModelTest
(
unittest
.
TestCase
):
@
pytest
.
mark
.
slow
@
slow
def
test_model2model_from_pretrained
(
self
):
def
test_model2model_from_pretrained
(
self
):
logging
.
basicConfig
(
level
=
logging
.
INFO
)
logging
.
basicConfig
(
level
=
logging
.
INFO
)
for
model_name
in
list
(
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
for
model_name
in
list
(
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
...
...
transformers/tests/modeling_gpt2_test.py
View file @
562f8640
...
@@ -17,21 +17,19 @@ from __future__ import division
...
@@ -17,21 +17,19 @@ from __future__ import division
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
unittest
import
pytest
import
shutil
from
transformers
import
is_torch_available
from
transformers
import
is_torch_available
if
is_torch_available
():
if
is_torch_available
():
from
transformers
import
(
GPT2Config
,
GPT2Model
,
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
,
from
transformers
import
(
GPT2Config
,
GPT2Model
,
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
,
GPT2LMHeadModel
,
GPT2DoubleHeadsModel
)
GPT2LMHeadModel
,
GPT2DoubleHeadsModel
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.configuration_common_test
import
ConfigTester
from
.utils
import
CACHE_DIR
,
require_torch
,
slow
,
torch_device
@
require_torch
class
GPT2ModelTest
(
CommonTestCases
.
CommonModelTester
):
class
GPT2ModelTest
(
CommonTestCases
.
CommonModelTester
):
all_model_classes
=
(
GPT2Model
,
GPT2LMHeadModel
,
GPT2DoubleHeadsModel
)
if
is_torch_available
()
else
()
all_model_classes
=
(
GPT2Model
,
GPT2LMHeadModel
,
GPT2DoubleHeadsModel
)
if
is_torch_available
()
else
()
...
@@ -111,7 +109,7 @@ class GPT2ModelTest(CommonTestCases.CommonModelTester):
...
@@ -111,7 +109,7 @@ class GPT2ModelTest(CommonTestCases.CommonModelTester):
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
GPT2Config
(
config
=
GPT2Config
(
vocab_size
_or_config_json_file
=
self
.
vocab_size
,
vocab_size
=
self
.
vocab_size
,
n_embd
=
self
.
hidden_size
,
n_embd
=
self
.
hidden_size
,
n_layer
=
self
.
num_hidden_layers
,
n_layer
=
self
.
num_hidden_layers
,
n_head
=
self
.
num_attention_heads
,
n_head
=
self
.
num_attention_heads
,
...
@@ -136,6 +134,7 @@ class GPT2ModelTest(CommonTestCases.CommonModelTester):
...
@@ -136,6 +134,7 @@ class GPT2ModelTest(CommonTestCases.CommonModelTester):
def
create_and_check_gpt2_model
(
self
,
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
*
args
):
def
create_and_check_gpt2_model
(
self
,
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
*
args
):
model
=
GPT2Model
(
config
=
config
)
model
=
GPT2Model
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
model
(
input_ids
,
token_type_ids
=
token_type_ids
,
head_mask
=
head_mask
)
model
(
input_ids
,
token_type_ids
=
token_type_ids
,
head_mask
=
head_mask
)
...
@@ -153,6 +152,7 @@ class GPT2ModelTest(CommonTestCases.CommonModelTester):
...
@@ -153,6 +152,7 @@ class GPT2ModelTest(CommonTestCases.CommonModelTester):
def
create_and_check_lm_head_model
(
self
,
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
*
args
):
def
create_and_check_lm_head_model
(
self
,
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
*
args
):
model
=
GPT2LMHeadModel
(
config
)
model
=
GPT2LMHeadModel
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
loss
,
lm_logits
,
_
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
,
labels
=
input_ids
)
loss
,
lm_logits
,
_
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
,
labels
=
input_ids
)
...
@@ -171,6 +171,7 @@ class GPT2ModelTest(CommonTestCases.CommonModelTester):
...
@@ -171,6 +171,7 @@ class GPT2ModelTest(CommonTestCases.CommonModelTester):
def
create_and_check_double_lm_head_model
(
self
,
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
mc_token_ids
,
*
args
):
def
create_and_check_double_lm_head_model
(
self
,
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
mc_token_ids
,
*
args
):
model
=
GPT2DoubleHeadsModel
(
config
)
model
=
GPT2DoubleHeadsModel
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
...
@@ -235,12 +236,10 @@ class GPT2ModelTest(CommonTestCases.CommonModelTester):
...
@@ -235,12 +236,10 @@ class GPT2ModelTest(CommonTestCases.CommonModelTester):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_double_lm_head_model
(
*
config_and_inputs
)
self
.
model_tester
.
create_and_check_double_lm_head_model
(
*
config_and_inputs
)
@
pytest
.
mark
.
slow
@
slow
def
test_model_from_pretrained
(
self
):
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
for
model_name
in
list
(
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
GPT2Model
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
model
=
GPT2Model
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
shutil
.
rmtree
(
cache_dir
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsNotNone
(
model
)
...
...
transformers/tests/modeling_openai_test.py
View file @
562f8640
...
@@ -17,21 +17,19 @@ from __future__ import division
...
@@ -17,21 +17,19 @@ from __future__ import division
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
unittest
import
pytest
import
shutil
from
transformers
import
is_torch_available
from
transformers
import
is_torch_available
if
is_torch_available
():
if
is_torch_available
():
from
transformers
import
(
OpenAIGPTConfig
,
OpenAIGPTModel
,
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
,
from
transformers
import
(
OpenAIGPTConfig
,
OpenAIGPTModel
,
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
,
OpenAIGPTLMHeadModel
,
OpenAIGPTDoubleHeadsModel
)
OpenAIGPTLMHeadModel
,
OpenAIGPTDoubleHeadsModel
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.configuration_common_test
import
ConfigTester
from
.utils
import
CACHE_DIR
,
require_torch
,
slow
,
torch_device
@
require_torch
class
OpenAIGPTModelTest
(
CommonTestCases
.
CommonModelTester
):
class
OpenAIGPTModelTest
(
CommonTestCases
.
CommonModelTester
):
all_model_classes
=
(
OpenAIGPTModel
,
OpenAIGPTLMHeadModel
,
OpenAIGPTDoubleHeadsModel
)
if
is_torch_available
()
else
()
all_model_classes
=
(
OpenAIGPTModel
,
OpenAIGPTLMHeadModel
,
OpenAIGPTDoubleHeadsModel
)
if
is_torch_available
()
else
()
...
@@ -99,7 +97,7 @@ class OpenAIGPTModelTest(CommonTestCases.CommonModelTester):
...
@@ -99,7 +97,7 @@ class OpenAIGPTModelTest(CommonTestCases.CommonModelTester):
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
OpenAIGPTConfig
(
config
=
OpenAIGPTConfig
(
vocab_size
_or_config_json_file
=
self
.
vocab_size
,
vocab_size
=
self
.
vocab_size
,
n_embd
=
self
.
hidden_size
,
n_embd
=
self
.
hidden_size
,
n_layer
=
self
.
num_hidden_layers
,
n_layer
=
self
.
num_hidden_layers
,
n_head
=
self
.
num_attention_heads
,
n_head
=
self
.
num_attention_heads
,
...
@@ -124,6 +122,7 @@ class OpenAIGPTModelTest(CommonTestCases.CommonModelTester):
...
@@ -124,6 +122,7 @@ class OpenAIGPTModelTest(CommonTestCases.CommonModelTester):
def
create_and_check_openai_gpt_model
(
self
,
config
,
input_ids
,
head_mask
,
token_type_ids
,
*
args
):
def
create_and_check_openai_gpt_model
(
self
,
config
,
input_ids
,
head_mask
,
token_type_ids
,
*
args
):
model
=
OpenAIGPTModel
(
config
=
config
)
model
=
OpenAIGPTModel
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
model
(
input_ids
,
token_type_ids
=
token_type_ids
,
head_mask
=
head_mask
)
model
(
input_ids
,
token_type_ids
=
token_type_ids
,
head_mask
=
head_mask
)
...
@@ -139,6 +138,7 @@ class OpenAIGPTModelTest(CommonTestCases.CommonModelTester):
...
@@ -139,6 +138,7 @@ class OpenAIGPTModelTest(CommonTestCases.CommonModelTester):
def
create_and_check_lm_head_model
(
self
,
config
,
input_ids
,
head_mask
,
token_type_ids
,
*
args
):
def
create_and_check_lm_head_model
(
self
,
config
,
input_ids
,
head_mask
,
token_type_ids
,
*
args
):
model
=
OpenAIGPTLMHeadModel
(
config
)
model
=
OpenAIGPTLMHeadModel
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
loss
,
lm_logits
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
,
labels
=
input_ids
)
loss
,
lm_logits
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
,
labels
=
input_ids
)
...
@@ -157,6 +157,7 @@ class OpenAIGPTModelTest(CommonTestCases.CommonModelTester):
...
@@ -157,6 +157,7 @@ class OpenAIGPTModelTest(CommonTestCases.CommonModelTester):
def
create_and_check_double_lm_head_model
(
self
,
config
,
input_ids
,
head_mask
,
token_type_ids
,
*
args
):
def
create_and_check_double_lm_head_model
(
self
,
config
,
input_ids
,
head_mask
,
token_type_ids
,
*
args
):
model
=
OpenAIGPTDoubleHeadsModel
(
config
)
model
=
OpenAIGPTDoubleHeadsModel
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
loss
,
lm_logits
,
mc_logits
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
,
lm_labels
=
input_ids
)
loss
,
lm_logits
,
mc_logits
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
,
lm_labels
=
input_ids
)
...
@@ -203,12 +204,10 @@ class OpenAIGPTModelTest(CommonTestCases.CommonModelTester):
...
@@ -203,12 +204,10 @@ class OpenAIGPTModelTest(CommonTestCases.CommonModelTester):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_double_lm_head_model
(
*
config_and_inputs
)
self
.
model_tester
.
create_and_check_double_lm_head_model
(
*
config_and_inputs
)
@
pytest
.
mark
.
slow
@
slow
def
test_model_from_pretrained
(
self
):
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
for
model_name
in
list
(
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
OpenAIGPTModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
model
=
OpenAIGPTModel
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
shutil
.
rmtree
(
cache_dir
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsNotNone
(
model
)
...
...
transformers/tests/modeling_roberta_test.py
View file @
562f8640
...
@@ -17,8 +17,6 @@ from __future__ import division
...
@@ -17,8 +17,6 @@ from __future__ import division
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
unittest
import
shutil
import
pytest
from
transformers
import
is_torch_available
from
transformers
import
is_torch_available
...
@@ -26,14 +24,15 @@ if is_torch_available():
...
@@ -26,14 +24,15 @@ if is_torch_available():
import
torch
import
torch
from
transformers
import
(
RobertaConfig
,
RobertaModel
,
RobertaForMaskedLM
,
from
transformers
import
(
RobertaConfig
,
RobertaModel
,
RobertaForMaskedLM
,
RobertaForSequenceClassification
,
RobertaForTokenClassification
)
RobertaForSequenceClassification
,
RobertaForTokenClassification
)
from
transformers.modeling_roberta
import
RobertaEmbeddings
from
transformers.modeling_roberta
import
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
from
transformers.modeling_roberta
import
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.configuration_common_test
import
ConfigTester
from
.utils
import
CACHE_DIR
,
require_torch
,
slow
,
torch_device
@
require_torch
class
RobertaModelTest
(
CommonTestCases
.
CommonModelTester
):
class
RobertaModelTest
(
CommonTestCases
.
CommonModelTester
):
all_model_classes
=
(
RobertaForMaskedLM
,
RobertaModel
)
if
is_torch_available
()
else
()
all_model_classes
=
(
RobertaForMaskedLM
,
RobertaModel
)
if
is_torch_available
()
else
()
...
@@ -107,7 +106,7 @@ class RobertaModelTest(CommonTestCases.CommonModelTester):
...
@@ -107,7 +106,7 @@ class RobertaModelTest(CommonTestCases.CommonModelTester):
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
RobertaConfig
(
config
=
RobertaConfig
(
vocab_size
_or_config_json_file
=
self
.
vocab_size
,
vocab_size
=
self
.
vocab_size
,
hidden_size
=
self
.
hidden_size
,
hidden_size
=
self
.
hidden_size
,
num_hidden_layers
=
self
.
num_hidden_layers
,
num_hidden_layers
=
self
.
num_hidden_layers
,
num_attention_heads
=
self
.
num_attention_heads
,
num_attention_heads
=
self
.
num_attention_heads
,
...
@@ -129,6 +128,7 @@ class RobertaModelTest(CommonTestCases.CommonModelTester):
...
@@ -129,6 +128,7 @@ class RobertaModelTest(CommonTestCases.CommonModelTester):
def
create_and_check_roberta_model
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
def
create_and_check_roberta_model
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
token_labels
,
choice_labels
):
model
=
RobertaModel
(
config
=
config
)
model
=
RobertaModel
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
sequence_output
,
pooled_output
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
)
sequence_output
,
pooled_output
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
)
sequence_output
,
pooled_output
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
)
sequence_output
,
pooled_output
=
model
(
input_ids
,
token_type_ids
=
token_type_ids
)
...
@@ -146,6 +146,7 @@ class RobertaModelTest(CommonTestCases.CommonModelTester):
...
@@ -146,6 +146,7 @@ class RobertaModelTest(CommonTestCases.CommonModelTester):
def
create_and_check_roberta_for_masked_lm
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
def
create_and_check_roberta_for_masked_lm
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
token_labels
,
choice_labels
):
model
=
RobertaForMaskedLM
(
config
=
config
)
model
=
RobertaForMaskedLM
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
loss
,
prediction_scores
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
masked_lm_labels
=
token_labels
)
loss
,
prediction_scores
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
masked_lm_labels
=
token_labels
)
result
=
{
result
=
{
...
@@ -161,6 +162,7 @@ class RobertaModelTest(CommonTestCases.CommonModelTester):
...
@@ -161,6 +162,7 @@ class RobertaModelTest(CommonTestCases.CommonModelTester):
sequence_labels
,
token_labels
,
choice_labels
):
sequence_labels
,
token_labels
,
choice_labels
):
config
.
num_labels
=
self
.
num_labels
config
.
num_labels
=
self
.
num_labels
model
=
RobertaForTokenClassification
(
config
=
config
)
model
=
RobertaForTokenClassification
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
model
.
eval
()
loss
,
logits
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
loss
,
logits
=
model
(
input_ids
,
attention_mask
=
input_mask
,
token_type_ids
=
token_type_ids
,
labels
=
token_labels
)
labels
=
token_labels
)
...
@@ -195,22 +197,71 @@ class RobertaModelTest(CommonTestCases.CommonModelTester):
...
@@ -195,22 +197,71 @@ class RobertaModelTest(CommonTestCases.CommonModelTester):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_roberta_for_masked_lm
(
*
config_and_inputs
)
self
.
model_tester
.
create_and_check_roberta_for_masked_lm
(
*
config_and_inputs
)
@
pytest
.
mark
.
slow
@
slow
def
test_model_from_pretrained
(
self
):
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
for
model_name
in
list
(
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
RobertaModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
model
=
RobertaModel
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
shutil
.
rmtree
(
cache_dir
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsNotNone
(
model
)
def
test_create_position_ids_respects_padding_index
(
self
):
""" Ensure that the default position ids only assign a sequential . This is a regression
test for https://github.com/huggingface/transformers/issues/1761
The position ids should be masked with the embedding object's padding index. Therefore, the
first available non-padding position index is RobertaEmbeddings.padding_idx + 1
"""
config
=
self
.
model_tester
.
prepare_config_and_inputs
()[
0
]
model
=
RobertaEmbeddings
(
config
=
config
)
input_ids
=
torch
.
as_tensor
([[
12
,
31
,
13
,
model
.
padding_idx
]])
expected_positions
=
torch
.
as_tensor
([[
0
+
model
.
padding_idx
+
1
,
1
+
model
.
padding_idx
+
1
,
2
+
model
.
padding_idx
+
1
,
model
.
padding_idx
]])
position_ids
=
model
.
create_position_ids_from_input_ids
(
input_ids
)
self
.
assertEqual
(
position_ids
.
shape
,
expected_positions
.
shape
)
self
.
assertTrue
(
torch
.
all
(
torch
.
eq
(
position_ids
,
expected_positions
)))
def
test_create_position_ids_from_inputs_embeds
(
self
):
""" Ensure that the default position ids only assign a sequential . This is a regression
test for https://github.com/huggingface/transformers/issues/1761
The position ids should be masked with the embedding object's padding index. Therefore, the
first available non-padding position index is RobertaEmbeddings.padding_idx + 1
"""
config
=
self
.
model_tester
.
prepare_config_and_inputs
()[
0
]
embeddings
=
RobertaEmbeddings
(
config
=
config
)
inputs_embeds
=
torch
.
Tensor
(
2
,
4
,
30
)
expected_single_positions
=
[
0
+
embeddings
.
padding_idx
+
1
,
1
+
embeddings
.
padding_idx
+
1
,
2
+
embeddings
.
padding_idx
+
1
,
3
+
embeddings
.
padding_idx
+
1
,
]
expected_positions
=
torch
.
as_tensor
([
expected_single_positions
,
expected_single_positions
])
position_ids
=
embeddings
.
create_position_ids_from_inputs_embeds
(
inputs_embeds
)
self
.
assertEqual
(
position_ids
.
shape
,
expected_positions
.
shape
)
self
.
assertTrue
(
torch
.
all
(
torch
.
eq
(
position_ids
,
expected_positions
))
)
class
RobertaModelIntegrationTest
(
unittest
.
TestCase
):
class
RobertaModelIntegrationTest
(
unittest
.
TestCase
):
@
pytest
.
mark
.
slow
@
slow
def
test_inference_masked_lm
(
self
):
def
test_inference_masked_lm
(
self
):
model
=
RobertaForMaskedLM
.
from_pretrained
(
'roberta-base'
)
model
=
RobertaForMaskedLM
.
from_pretrained
(
'roberta-base'
)
input_ids
=
torch
.
tensor
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
input_ids
=
torch
.
tensor
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
output
=
model
(
input_ids
)[
0
]
output
=
model
(
input_ids
)[
0
]
expected_shape
=
torch
.
Size
((
1
,
11
,
50265
))
expected_shape
=
torch
.
Size
((
1
,
11
,
50265
))
...
@@ -228,10 +279,10 @@ class RobertaModelIntegrationTest(unittest.TestCase):
...
@@ -228,10 +279,10 @@ class RobertaModelIntegrationTest(unittest.TestCase):
torch
.
allclose
(
output
[:,
:
3
,
:
3
],
expected_slice
,
atol
=
1e-3
)
torch
.
allclose
(
output
[:,
:
3
,
:
3
],
expected_slice
,
atol
=
1e-3
)
)
)
@
pytest
.
mark
.
slow
@
slow
def
test_inference_no_head
(
self
):
def
test_inference_no_head
(
self
):
model
=
RobertaModel
.
from_pretrained
(
'roberta-base'
)
model
=
RobertaModel
.
from_pretrained
(
'roberta-base'
)
input_ids
=
torch
.
tensor
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
input_ids
=
torch
.
tensor
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
output
=
model
(
input_ids
)[
0
]
output
=
model
(
input_ids
)[
0
]
# compare the actual values for a slice.
# compare the actual values for a slice.
...
@@ -244,10 +295,10 @@ class RobertaModelIntegrationTest(unittest.TestCase):
...
@@ -244,10 +295,10 @@ class RobertaModelIntegrationTest(unittest.TestCase):
torch
.
allclose
(
output
[:,
:
3
,
:
3
],
expected_slice
,
atol
=
1e-3
)
torch
.
allclose
(
output
[:,
:
3
,
:
3
],
expected_slice
,
atol
=
1e-3
)
)
)
@
pytest
.
mark
.
slow
@
slow
def
test_inference_classification_head
(
self
):
def
test_inference_classification_head
(
self
):
model
=
RobertaForSequenceClassification
.
from_pretrained
(
'roberta-large-mnli'
)
model
=
RobertaForSequenceClassification
.
from_pretrained
(
'roberta-large-mnli'
)
input_ids
=
torch
.
tensor
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
input_ids
=
torch
.
tensor
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
output
=
model
(
input_ids
)[
0
]
output
=
model
(
input_ids
)[
0
]
expected_shape
=
torch
.
Size
((
1
,
3
))
expected_shape
=
torch
.
Size
((
1
,
3
))
...
...
transformers/tests/modeling_t5_test.py
0 → 100644
View file @
562f8640
# coding=utf-8
# Copyright 2018 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
unittest
from
transformers
import
is_torch_available
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
,
floats_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.utils
import
CACHE_DIR
,
require_torch
,
slow
,
torch_device
if
is_torch_available
():
from
transformers
import
(
T5Config
,
T5Model
,
T5WithLMHeadModel
)
from
transformers.modeling_t5
import
T5_PRETRAINED_MODEL_ARCHIVE_MAP
@
require_torch
class
T5ModelTest
(
CommonTestCases
.
CommonModelTester
):
all_model_classes
=
(
T5Model
,
T5WithLMHeadModel
)
if
is_torch_available
()
else
()
test_pruning
=
False
test_torchscript
=
False
test_resize_embeddings
=
False
is_encoder_decoder
=
True
class
T5ModelTester
(
object
):
def
__init__
(
self
,
parent
,
batch_size
=
13
,
encoder_seq_length
=
7
,
decoder_seq_length
=
9
,
is_training
=
True
,
use_attention_mask
=
True
,
use_labels
=
True
,
vocab_size
=
99
,
n_positions
=
14
,
hidden_size
=
32
,
num_hidden_layers
=
5
,
num_attention_heads
=
4
,
d_ff
=
37
,
relative_attention_num_buckets
=
8
,
dropout_rate
=
0.1
,
initializer_factor
=
0.002
,
scope
=
None
,
):
self
.
parent
=
parent
self
.
batch_size
=
batch_size
self
.
encoder_seq_length
=
encoder_seq_length
self
.
decoder_seq_length
=
decoder_seq_length
self
.
is_training
=
is_training
self
.
use_attention_mask
=
use_attention_mask
self
.
use_labels
=
use_labels
self
.
vocab_size
=
vocab_size
self
.
n_positions
=
n_positions
self
.
hidden_size
=
hidden_size
self
.
num_hidden_layers
=
num_hidden_layers
self
.
num_attention_heads
=
num_attention_heads
self
.
d_ff
=
d_ff
self
.
relative_attention_num_buckets
=
relative_attention_num_buckets
self
.
dropout_rate
=
dropout_rate
self
.
initializer_factor
=
initializer_factor
self
.
scope
=
scope
def
prepare_config_and_inputs
(
self
):
encoder_input_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
encoder_seq_length
],
self
.
vocab_size
)
decoder_input_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
decoder_seq_length
],
self
.
vocab_size
)
encoder_attention_mask
=
None
decoder_attention_mask
=
None
if
self
.
use_attention_mask
:
encoder_attention_mask
=
ids_tensor
([
self
.
batch_size
,
self
.
encoder_seq_length
],
vocab_size
=
2
)
decoder_attention_mask
=
ids_tensor
([
self
.
batch_size
,
self
.
decoder_seq_length
],
vocab_size
=
2
)
decoder_lm_labels
=
None
if
self
.
use_labels
:
decoder_lm_labels
=
ids_tensor
([
self
.
batch_size
,
self
.
decoder_seq_length
],
self
.
vocab_size
)
config
=
T5Config
(
vocab_size
=
self
.
vocab_size
,
n_positions
=
self
.
n_positions
,
d_model
=
self
.
hidden_size
,
d_ff
=
self
.
d_ff
,
d_kv
=
self
.
hidden_size
//
self
.
num_attention_heads
,
num_layers
=
self
.
num_hidden_layers
,
num_heads
=
self
.
num_attention_heads
,
relative_attention_num_buckets
=
self
.
relative_attention_num_buckets
,
dropout_rate
=
self
.
dropout_rate
,
initializer_factor
=
self
.
initializer_factor
)
return
(
config
,
encoder_input_ids
,
decoder_input_ids
,
encoder_attention_mask
,
decoder_attention_mask
,
decoder_lm_labels
)
def
check_loss_output
(
self
,
result
):
self
.
parent
.
assertListEqual
(
list
(
result
[
"loss"
].
size
()),
[])
def
create_and_check_t5_model
(
self
,
config
,
encoder_input_ids
,
decoder_input_ids
,
encoder_attention_mask
,
decoder_attention_mask
,
decoder_lm_labels
):
model
=
T5Model
(
config
=
config
)
model
.
eval
()
decoder_output
,
encoder_output
=
model
(
encoder_input_ids
=
encoder_input_ids
,
decoder_input_ids
=
decoder_input_ids
,
encoder_attention_mask
=
encoder_attention_mask
,
decoder_attention_mask
=
decoder_attention_mask
)
decoder_output
,
encoder_output
=
model
(
encoder_input_ids
=
encoder_input_ids
,
decoder_input_ids
=
decoder_input_ids
)
result
=
{
"encoder_output"
:
encoder_output
,
"decoder_output"
:
decoder_output
,
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"encoder_output"
].
size
()),
[
self
.
batch_size
,
self
.
encoder_seq_length
,
self
.
hidden_size
])
self
.
parent
.
assertListEqual
(
list
(
result
[
"decoder_output"
].
size
()),
[
self
.
batch_size
,
self
.
decoder_seq_length
,
self
.
hidden_size
])
def
create_and_check_t5_with_lm_head
(
self
,
config
,
encoder_input_ids
,
decoder_input_ids
,
encoder_attention_mask
,
decoder_attention_mask
,
decoder_lm_labels
):
model
=
T5WithLMHeadModel
(
config
=
config
)
model
.
eval
()
outputs
=
model
(
encoder_input_ids
=
encoder_input_ids
,
decoder_input_ids
=
decoder_input_ids
,
decoder_attention_mask
=
decoder_attention_mask
,
decoder_lm_labels
=
decoder_lm_labels
)
loss
,
prediction_scores
=
outputs
[
0
],
outputs
[
1
]
result
=
{
"loss"
:
loss
,
"prediction_scores"
:
prediction_scores
,
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"prediction_scores"
].
size
()),
[
self
.
batch_size
,
self
.
decoder_seq_length
,
self
.
vocab_size
])
self
.
check_loss_output
(
result
)
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
(
config
,
encoder_input_ids
,
decoder_input_ids
,
encoder_attention_mask
,
decoder_attention_mask
,
decoder_lm_labels
)
=
config_and_inputs
inputs_dict
=
{
'encoder_input_ids'
:
encoder_input_ids
,
'decoder_input_ids'
:
decoder_input_ids
,
'decoder_attention_mask'
:
decoder_attention_mask
,
'encoder_attention_mask'
:
encoder_attention_mask
}
return
config
,
inputs_dict
def
setUp
(
self
):
self
.
model_tester
=
T5ModelTest
.
T5ModelTester
(
self
)
self
.
config_tester
=
ConfigTester
(
self
,
config_class
=
T5Config
,
d_model
=
37
)
def
test_config
(
self
):
self
.
config_tester
.
run_common_tests
()
def
test_t5_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_t5_model
(
*
config_and_inputs
)
def
test_with_lm_head
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_t5_with_lm_head
(
*
config_and_inputs
)
@
slow
def
test_model_from_pretrained
(
self
):
for
model_name
in
list
(
T5_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
T5Model
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
self
.
assertIsNotNone
(
model
)
if
__name__
==
"__main__"
:
unittest
.
main
()
transformers/tests/modeling_tf_albert_test.py
0 → 100644
View file @
562f8640
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
unittest
import
sys
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.utils
import
CACHE_DIR
,
require_tf
,
slow
from
transformers
import
AlbertConfig
,
is_tf_available
if
is_tf_available
():
import
tensorflow
as
tf
from
transformers.modeling_tf_albert
import
(
TFAlbertModel
,
TFAlbertForMaskedLM
,
TFAlbertForSequenceClassification
,
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP
)
@
require_tf
class
TFAlbertModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
all_model_classes
=
(
TFAlbertModel
,
TFAlbertForMaskedLM
,
TFAlbertForSequenceClassification
)
if
is_tf_available
()
else
()
class
TFAlbertModelTester
(
object
):
def
__init__
(
self
,
parent
,
batch_size
=
13
,
seq_length
=
7
,
is_training
=
True
,
use_input_mask
=
True
,
use_token_type_ids
=
True
,
use_labels
=
True
,
vocab_size
=
99
,
embedding_size
=
16
,
hidden_size
=
32
,
num_hidden_layers
=
5
,
num_attention_heads
=
4
,
intermediate_size
=
37
,
hidden_act
=
"gelu"
,
hidden_dropout_prob
=
0.1
,
attention_probs_dropout_prob
=
0.1
,
max_position_embeddings
=
512
,
type_vocab_size
=
16
,
type_sequence_label_size
=
2
,
initializer_range
=
0.02
,
num_labels
=
3
,
num_choices
=
4
,
scope
=
None
,
):
self
.
parent
=
parent
self
.
batch_size
=
batch_size
self
.
seq_length
=
seq_length
self
.
is_training
=
is_training
self
.
use_input_mask
=
use_input_mask
self
.
use_token_type_ids
=
use_token_type_ids
self
.
use_labels
=
use_labels
self
.
vocab_size
=
vocab_size
self
.
embedding_size
=
embedding_size
self
.
hidden_size
=
hidden_size
self
.
num_hidden_layers
=
num_hidden_layers
self
.
num_attention_heads
=
num_attention_heads
self
.
intermediate_size
=
intermediate_size
self
.
hidden_act
=
hidden_act
self
.
hidden_dropout_prob
=
hidden_dropout_prob
self
.
attention_probs_dropout_prob
=
attention_probs_dropout_prob
self
.
max_position_embeddings
=
max_position_embeddings
self
.
type_vocab_size
=
type_vocab_size
self
.
type_sequence_label_size
=
type_sequence_label_size
self
.
initializer_range
=
initializer_range
self
.
num_labels
=
num_labels
self
.
num_choices
=
num_choices
self
.
scope
=
scope
def
prepare_config_and_inputs
(
self
):
input_ids
=
ids_tensor
(
[
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
input_mask
=
None
if
self
.
use_input_mask
:
input_mask
=
ids_tensor
(
[
self
.
batch_size
,
self
.
seq_length
],
vocab_size
=
2
)
token_type_ids
=
None
if
self
.
use_token_type_ids
:
token_type_ids
=
ids_tensor
(
[
self
.
batch_size
,
self
.
seq_length
],
self
.
type_vocab_size
)
sequence_labels
=
None
token_labels
=
None
choice_labels
=
None
if
self
.
use_labels
:
sequence_labels
=
ids_tensor
(
[
self
.
batch_size
],
self
.
type_sequence_label_size
)
token_labels
=
ids_tensor
(
[
self
.
batch_size
,
self
.
seq_length
],
self
.
num_labels
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
AlbertConfig
(
vocab_size
=
self
.
vocab_size
,
hidden_size
=
self
.
hidden_size
,
num_hidden_layers
=
self
.
num_hidden_layers
,
num_attention_heads
=
self
.
num_attention_heads
,
intermediate_size
=
self
.
intermediate_size
,
hidden_act
=
self
.
hidden_act
,
hidden_dropout_prob
=
self
.
hidden_dropout_prob
,
attention_probs_dropout_prob
=
self
.
attention_probs_dropout_prob
,
max_position_embeddings
=
self
.
max_position_embeddings
,
type_vocab_size
=
self
.
type_vocab_size
,
initializer_range
=
self
.
initializer_range
)
return
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
def
create_and_check_albert_model
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
TFAlbertModel
(
config
=
config
)
# inputs = {'input_ids': input_ids,
# 'attention_mask': input_mask,
# 'token_type_ids': token_type_ids}
# sequence_output, pooled_output = model(**inputs)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
,
'token_type_ids'
:
token_type_ids
}
sequence_output
,
pooled_output
=
model
(
inputs
)
inputs
=
[
input_ids
,
input_mask
]
sequence_output
,
pooled_output
=
model
(
inputs
)
sequence_output
,
pooled_output
=
model
(
input_ids
)
result
=
{
"sequence_output"
:
sequence_output
.
numpy
(),
"pooled_output"
:
pooled_output
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"sequence_output"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
])
self
.
parent
.
assertListEqual
(
list
(
result
[
"pooled_output"
].
shape
),
[
self
.
batch_size
,
self
.
hidden_size
])
def
create_and_check_albert_for_masked_lm
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
TFAlbertForMaskedLM
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
,
'token_type_ids'
:
token_type_ids
}
prediction_scores
,
=
model
(
inputs
)
result
=
{
"prediction_scores"
:
prediction_scores
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"prediction_scores"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
])
def
create_and_check_albert_for_sequence_classification
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
config
.
num_labels
=
self
.
num_labels
model
=
TFAlbertForSequenceClassification
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
,
'token_type_ids'
:
token_type_ids
}
logits
,
=
model
(
inputs
)
result
=
{
"logits"
:
logits
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"logits"
].
shape
),
[
self
.
batch_size
,
self
.
num_labels
])
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
(
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
)
=
config_and_inputs
inputs_dict
=
{
'input_ids'
:
input_ids
,
'token_type_ids'
:
token_type_ids
,
'attention_mask'
:
input_mask
}
return
config
,
inputs_dict
def
setUp
(
self
):
self
.
model_tester
=
TFAlbertModelTest
.
TFAlbertModelTester
(
self
)
self
.
config_tester
=
ConfigTester
(
self
,
config_class
=
AlbertConfig
,
hidden_size
=
37
)
def
test_config
(
self
):
self
.
config_tester
.
run_common_tests
()
def
test_albert_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_albert_model
(
*
config_and_inputs
)
def
test_for_masked_lm
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_albert_for_masked_lm
(
*
config_and_inputs
)
def
test_for_sequence_classification
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_albert_for_sequence_classification
(
*
config_and_inputs
)
@
slow
def
test_model_from_pretrained
(
self
):
for
model_name
in
list
(
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
TFAlbertModel
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
self
.
assertIsNotNone
(
model
)
if
__name__
==
"__main__"
:
unittest
.
main
()
transformers/tests/modeling_tf_auto_test.py
View file @
562f8640
...
@@ -18,11 +18,12 @@ from __future__ import print_function
...
@@ -18,11 +18,12 @@ from __future__ import print_function
import
unittest
import
unittest
import
shutil
import
shutil
import
pytest
import
logging
import
logging
from
transformers
import
is_tf_available
from
transformers
import
is_tf_available
from
.utils
import
require_tf
,
slow
,
SMALL_MODEL_IDENTIFIER
if
is_tf_available
():
if
is_tf_available
():
from
transformers
import
(
AutoConfig
,
BertConfig
,
from
transformers
import
(
AutoConfig
,
BertConfig
,
TFAutoModel
,
TFBertModel
,
TFAutoModel
,
TFBertModel
,
...
@@ -33,11 +34,11 @@ if is_tf_available():
...
@@ -33,11 +34,11 @@ if is_tf_available():
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.configuration_common_test
import
ConfigTester
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
@
require_tf
class
TFAutoModelTest
(
unittest
.
TestCase
):
class
TFAutoModelTest
(
unittest
.
TestCase
):
@
slow
def
test_model_from_pretrained
(
self
):
def
test_model_from_pretrained
(
self
):
import
h5py
import
h5py
self
.
assertTrue
(
h5py
.
version
.
hdf5_version
.
startswith
(
"1.10"
))
self
.
assertTrue
(
h5py
.
version
.
hdf5_version
.
startswith
(
"1.10"
))
...
@@ -45,50 +46,58 @@ class TFAutoModelTest(unittest.TestCase):
...
@@ -45,50 +46,58 @@ class TFAutoModelTest(unittest.TestCase):
logging
.
basicConfig
(
level
=
logging
.
INFO
)
logging
.
basicConfig
(
level
=
logging
.
INFO
)
# for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
# for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
for
model_name
in
[
'bert-base-uncased'
]:
for
model_name
in
[
'bert-base-uncased'
]:
config
=
AutoConfig
.
from_pretrained
(
model_name
,
force_download
=
True
)
config
=
AutoConfig
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
config
)
self
.
assertIsNotNone
(
config
)
self
.
assertIsInstance
(
config
,
BertConfig
)
self
.
assertIsInstance
(
config
,
BertConfig
)
model
=
TFAutoModel
.
from_pretrained
(
model_name
,
force_download
=
True
)
model
=
TFAutoModel
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsInstance
(
model
,
TFBertModel
)
self
.
assertIsInstance
(
model
,
TFBertModel
)
@
slow
def
test_lmhead_model_from_pretrained
(
self
):
def
test_lmhead_model_from_pretrained
(
self
):
logging
.
basicConfig
(
level
=
logging
.
INFO
)
logging
.
basicConfig
(
level
=
logging
.
INFO
)
# for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
# for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
for
model_name
in
[
'bert-base-uncased'
]:
for
model_name
in
[
'bert-base-uncased'
]:
config
=
AutoConfig
.
from_pretrained
(
model_name
,
force_download
=
True
)
config
=
AutoConfig
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
config
)
self
.
assertIsNotNone
(
config
)
self
.
assertIsInstance
(
config
,
BertConfig
)
self
.
assertIsInstance
(
config
,
BertConfig
)
model
=
TFAutoModelWithLMHead
.
from_pretrained
(
model_name
,
force_download
=
True
)
model
=
TFAutoModelWithLMHead
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsInstance
(
model
,
TFBertForMaskedLM
)
self
.
assertIsInstance
(
model
,
TFBertForMaskedLM
)
@
slow
def
test_sequence_classification_model_from_pretrained
(
self
):
def
test_sequence_classification_model_from_pretrained
(
self
):
logging
.
basicConfig
(
level
=
logging
.
INFO
)
logging
.
basicConfig
(
level
=
logging
.
INFO
)
# for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
# for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
for
model_name
in
[
'bert-base-uncased'
]:
for
model_name
in
[
'bert-base-uncased'
]:
config
=
AutoConfig
.
from_pretrained
(
model_name
,
force_download
=
True
)
config
=
AutoConfig
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
config
)
self
.
assertIsNotNone
(
config
)
self
.
assertIsInstance
(
config
,
BertConfig
)
self
.
assertIsInstance
(
config
,
BertConfig
)
model
=
TFAutoModelForSequenceClassification
.
from_pretrained
(
model_name
,
force_download
=
True
)
model
=
TFAutoModelForSequenceClassification
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsInstance
(
model
,
TFBertForSequenceClassification
)
self
.
assertIsInstance
(
model
,
TFBertForSequenceClassification
)
@
slow
def
test_question_answering_model_from_pretrained
(
self
):
def
test_question_answering_model_from_pretrained
(
self
):
logging
.
basicConfig
(
level
=
logging
.
INFO
)
logging
.
basicConfig
(
level
=
logging
.
INFO
)
# for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
# for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
for
model_name
in
[
'bert-base-uncased'
]:
for
model_name
in
[
'bert-base-uncased'
]:
config
=
AutoConfig
.
from_pretrained
(
model_name
,
force_download
=
True
)
config
=
AutoConfig
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
config
)
self
.
assertIsNotNone
(
config
)
self
.
assertIsInstance
(
config
,
BertConfig
)
self
.
assertIsInstance
(
config
,
BertConfig
)
model
=
TFAutoModelForQuestionAnswering
.
from_pretrained
(
model_name
,
force_download
=
True
)
model
=
TFAutoModelForQuestionAnswering
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsInstance
(
model
,
TFBertForQuestionAnswering
)
self
.
assertIsInstance
(
model
,
TFBertForQuestionAnswering
)
def
test_from_pretrained_identifier
(
self
):
logging
.
basicConfig
(
level
=
logging
.
INFO
)
model
=
TFAutoModelWithLMHead
.
from_pretrained
(
SMALL_MODEL_IDENTIFIER
)
self
.
assertIsInstance
(
model
,
TFBertForMaskedLM
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
transformers/tests/modeling_tf_bert_test.py
View file @
562f8640
...
@@ -17,12 +17,11 @@ from __future__ import division
...
@@ -17,12 +17,11 @@ from __future__ import division
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
unittest
import
shutil
import
pytest
import
sys
import
sys
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.configuration_common_test
import
ConfigTester
from
.utils
import
CACHE_DIR
,
require_tf
,
slow
from
transformers
import
BertConfig
,
is_tf_available
from
transformers
import
BertConfig
,
is_tf_available
...
@@ -36,10 +35,9 @@ if is_tf_available():
...
@@ -36,10 +35,9 @@ if is_tf_available():
TFBertForTokenClassification
,
TFBertForTokenClassification
,
TFBertForQuestionAnswering
,
TFBertForQuestionAnswering
,
TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP
)
TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
@
require_tf
class
TFBertModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
class
TFBertModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
all_model_classes
=
(
TFBertModel
,
TFBertForMaskedLM
,
TFBertForNextSentencePrediction
,
all_model_classes
=
(
TFBertModel
,
TFBertForMaskedLM
,
TFBertForNextSentencePrediction
,
...
@@ -115,7 +113,7 @@ class TFBertModelTest(TFCommonTestCases.TFCommonModelTester):
...
@@ -115,7 +113,7 @@ class TFBertModelTest(TFCommonTestCases.TFCommonModelTester):
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
BertConfig
(
config
=
BertConfig
(
vocab_size
_or_config_json_file
=
self
.
vocab_size
,
vocab_size
=
self
.
vocab_size
,
hidden_size
=
self
.
hidden_size
,
hidden_size
=
self
.
hidden_size
,
num_hidden_layers
=
self
.
num_hidden_layers
,
num_hidden_layers
=
self
.
num_hidden_layers
,
num_attention_heads
=
self
.
num_attention_heads
,
num_attention_heads
=
self
.
num_attention_heads
,
...
@@ -309,13 +307,11 @@ class TFBertModelTest(TFCommonTestCases.TFCommonModelTester):
...
@@ -309,13 +307,11 @@ class TFBertModelTest(TFCommonTestCases.TFCommonModelTester):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_bert_for_token_classification
(
*
config_and_inputs
)
self
.
model_tester
.
create_and_check_bert_for_token_classification
(
*
config_and_inputs
)
@
pytest
.
mark
.
slow
@
slow
def
test_model_from_pretrained
(
self
):
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
# for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
# for model_name in list(TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
for
model_name
in
[
'bert-base-uncased'
]:
for
model_name
in
[
'bert-base-uncased'
]:
model
=
TFBertModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
model
=
TFBertModel
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
shutil
.
rmtree
(
cache_dir
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsNotNone
(
model
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
transformers/tests/modeling_tf_common_test.py
View file @
562f8640
...
@@ -25,18 +25,17 @@ import unittest
...
@@ -25,18 +25,17 @@ import unittest
import
uuid
import
uuid
import
tempfile
import
tempfile
import
pytest
import
sys
import
sys
from
transformers
import
is_tf_available
,
is_torch_available
from
transformers
import
is_tf_available
,
is_torch_available
from
.utils
import
require_tf
,
slow
if
is_tf_available
():
if
is_tf_available
():
import
tensorflow
as
tf
import
tensorflow
as
tf
import
numpy
as
np
import
numpy
as
np
from
transformers
import
TFPreTrainedModel
from
transformers
import
TFPreTrainedModel
# from transformers.modeling_bert import BertModel, BertConfig, BERT_PRETRAINED_MODEL_ARCHIVE_MAP
# from transformers.modeling_bert import BertModel, BertConfig, BERT_PRETRAINED_MODEL_ARCHIVE_MAP
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
if
sys
.
version_info
[
0
]
==
2
:
if
sys
.
version_info
[
0
]
==
2
:
import
cPickle
as
pickle
import
cPickle
as
pickle
...
@@ -62,6 +61,7 @@ def _config_zero_init(config):
...
@@ -62,6 +61,7 @@ def _config_zero_init(config):
class
TFCommonTestCases
:
class
TFCommonTestCases
:
@
require_tf
class
TFCommonModelTester
(
unittest
.
TestCase
):
class
TFCommonModelTester
(
unittest
.
TestCase
):
model_tester
=
None
model_tester
=
None
...
@@ -69,6 +69,7 @@ class TFCommonTestCases:
...
@@ -69,6 +69,7 @@ class TFCommonTestCases:
test_torchscript
=
True
test_torchscript
=
True
test_pruning
=
True
test_pruning
=
True
test_resize_embeddings
=
True
test_resize_embeddings
=
True
is_encoder_decoder
=
False
def
test_initialization
(
self
):
def
test_initialization
(
self
):
pass
pass
...
@@ -129,8 +130,12 @@ class TFCommonTestCases:
...
@@ -129,8 +130,12 @@ class TFCommonTestCases:
for
name
,
key
in
inputs_dict
.
items
())
for
name
,
key
in
inputs_dict
.
items
())
with
torch
.
no_grad
():
with
torch
.
no_grad
():
pto
=
pt_model
(
**
pt_inputs_dict
)
pto
=
pt_model
(
**
pt_inputs_dict
)
tfo
=
tf_model
(
inputs_dict
)
tfo
=
tf_model
(
inputs_dict
,
training
=
False
)
max_diff
=
np
.
amax
(
np
.
abs
(
tfo
[
0
].
numpy
()
-
pto
[
0
].
numpy
()))
tf_hidden_states
=
tfo
[
0
].
numpy
()
pt_hidden_states
=
pto
[
0
].
numpy
()
tf_hidden_states
[
np
.
isnan
(
tf_hidden_states
)]
=
0
pt_hidden_states
[
np
.
isnan
(
pt_hidden_states
)]
=
0
max_diff
=
np
.
amax
(
np
.
abs
(
tf_hidden_states
-
pt_hidden_states
))
self
.
assertLessEqual
(
max_diff
,
2e-2
)
self
.
assertLessEqual
(
max_diff
,
2e-2
)
# Check we can load pt model in tf and vice-versa with checkpoint => model functions
# Check we can load pt model in tf and vice-versa with checkpoint => model functions
...
@@ -150,13 +155,21 @@ class TFCommonTestCases:
...
@@ -150,13 +155,21 @@ class TFCommonTestCases:
with
torch
.
no_grad
():
with
torch
.
no_grad
():
pto
=
pt_model
(
**
pt_inputs_dict
)
pto
=
pt_model
(
**
pt_inputs_dict
)
tfo
=
tf_model
(
inputs_dict
)
tfo
=
tf_model
(
inputs_dict
)
max_diff
=
np
.
amax
(
np
.
abs
(
tfo
[
0
].
numpy
()
-
pto
[
0
].
numpy
()))
tfo
=
tfo
[
0
].
numpy
()
pto
=
pto
[
0
].
numpy
()
tfo
[
np
.
isnan
(
tfo
)]
=
0
pto
[
np
.
isnan
(
pto
)]
=
0
max_diff
=
np
.
amax
(
np
.
abs
(
tfo
-
pto
))
self
.
assertLessEqual
(
max_diff
,
2e-2
)
self
.
assertLessEqual
(
max_diff
,
2e-2
)
def
test_compile_tf_model
(
self
):
def
test_compile_tf_model
(
self
):
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
input_ids
=
tf
.
keras
.
Input
(
batch_shape
=
(
2
,
2000
),
name
=
'input_ids'
,
dtype
=
'int32'
)
if
self
.
is_encoder_decoder
:
input_ids
=
{
'decoder_input_ids'
:
tf
.
keras
.
Input
(
batch_shape
=
(
2
,
2000
),
name
=
'decoder_input_ids'
,
dtype
=
'int32'
),
'encoder_input_ids'
:
tf
.
keras
.
Input
(
batch_shape
=
(
2
,
2000
),
name
=
'encoder_input_ids'
,
dtype
=
'int32'
)}
else
:
input_ids
=
tf
.
keras
.
Input
(
batch_shape
=
(
2
,
2000
),
name
=
'input_ids'
,
dtype
=
'int32'
)
optimizer
=
tf
.
keras
.
optimizers
.
Adam
(
learning_rate
=
3e-5
,
epsilon
=
1e-08
,
clipnorm
=
1.0
)
optimizer
=
tf
.
keras
.
optimizers
.
Adam
(
learning_rate
=
3e-5
,
epsilon
=
1e-08
,
clipnorm
=
1.0
)
loss
=
tf
.
keras
.
losses
.
SparseCategoricalCrossentropy
(
from_logits
=
True
)
loss
=
tf
.
keras
.
losses
.
SparseCategoricalCrossentropy
(
from_logits
=
True
)
metric
=
tf
.
keras
.
metrics
.
SparseCategoricalAccuracy
(
'accuracy'
)
metric
=
tf
.
keras
.
metrics
.
SparseCategoricalAccuracy
(
'accuracy'
)
...
@@ -164,7 +177,7 @@ class TFCommonTestCases:
...
@@ -164,7 +177,7 @@ class TFCommonTestCases:
for
model_class
in
self
.
all_model_classes
:
for
model_class
in
self
.
all_model_classes
:
# Prepare our model
# Prepare our model
model
=
model_class
(
config
)
model
=
model_class
(
config
)
# Let's load it from the disk to be sure we can use pretrained weights
# Let's load it from the disk to be sure we can use pretrained weights
with
TemporaryDirectory
()
as
tmpdirname
:
with
TemporaryDirectory
()
as
tmpdirname
:
outputs
=
model
(
inputs_dict
)
# build the model
outputs
=
model
(
inputs_dict
)
# build the model
...
@@ -189,7 +202,7 @@ class TFCommonTestCases:
...
@@ -189,7 +202,7 @@ class TFCommonTestCases:
outputs_dict
=
model
(
inputs_dict
)
outputs_dict
=
model
(
inputs_dict
)
inputs_keywords
=
copy
.
deepcopy
(
inputs_dict
)
inputs_keywords
=
copy
.
deepcopy
(
inputs_dict
)
input_ids
=
inputs_keywords
.
pop
(
'input_ids'
)
input_ids
=
inputs_keywords
.
pop
(
'input_ids'
if
not
self
.
is_encoder_decoder
else
'decoder_input_ids'
,
None
)
outputs_keywords
=
model
(
input_ids
,
**
inputs_keywords
)
outputs_keywords
=
model
(
input_ids
,
**
inputs_keywords
)
output_dict
=
outputs_dict
[
0
].
numpy
()
output_dict
=
outputs_dict
[
0
].
numpy
()
...
@@ -200,6 +213,11 @@ class TFCommonTestCases:
...
@@ -200,6 +213,11 @@ class TFCommonTestCases:
def
test_attention_outputs
(
self
):
def
test_attention_outputs
(
self
):
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
decoder_seq_length
=
self
.
model_tester
.
decoder_seq_length
if
hasattr
(
self
.
model_tester
,
'decoder_seq_length'
)
else
self
.
model_tester
.
seq_length
encoder_seq_length
=
self
.
model_tester
.
encoder_seq_length
if
hasattr
(
self
.
model_tester
,
'encoder_seq_length'
)
else
self
.
model_tester
.
seq_length
decoder_key_length
=
self
.
model_tester
.
key_length
if
hasattr
(
self
.
model_tester
,
'key_length'
)
else
decoder_seq_length
encoder_key_length
=
self
.
model_tester
.
key_length
if
hasattr
(
self
.
model_tester
,
'key_length'
)
else
encoder_seq_length
for
model_class
in
self
.
all_model_classes
:
for
model_class
in
self
.
all_model_classes
:
config
.
output_attentions
=
True
config
.
output_attentions
=
True
config
.
output_hidden_states
=
False
config
.
output_hidden_states
=
False
...
@@ -212,16 +230,28 @@ class TFCommonTestCases:
...
@@ -212,16 +230,28 @@ class TFCommonTestCases:
self
.
assertListEqual
(
self
.
assertListEqual
(
list
(
attentions
[
0
].
shape
[
-
3
:]),
list
(
attentions
[
0
].
shape
[
-
3
:]),
[
self
.
model_tester
.
num_attention_heads
,
[
self
.
model_tester
.
num_attention_heads
,
self
.
model_tester
.
seq_length
,
encoder_
seq_length
,
self
.
model_tester
.
key_len
if
hasattr
(
self
.
model_tester
,
'key_len'
)
else
self
.
model_tester
.
seq
_length
])
encoder_key
_length
])
out_len
=
len
(
outputs
)
out_len
=
len
(
outputs
)
if
self
.
is_encoder_decoder
:
self
.
assertEqual
(
out_len
%
2
,
0
)
decoder_attentions
=
outputs
[(
out_len
//
2
)
-
1
]
self
.
assertEqual
(
model
.
config
.
output_attentions
,
True
)
self
.
assertEqual
(
model
.
config
.
output_hidden_states
,
False
)
self
.
assertEqual
(
len
(
decoder_attentions
),
self
.
model_tester
.
num_hidden_layers
)
self
.
assertListEqual
(
list
(
decoder_attentions
[
0
].
shape
[
-
3
:]),
[
self
.
model_tester
.
num_attention_heads
,
decoder_seq_length
,
decoder_key_length
])
# Check attention is always last and order is fine
# Check attention is always last and order is fine
config
.
output_attentions
=
True
config
.
output_attentions
=
True
config
.
output_hidden_states
=
True
config
.
output_hidden_states
=
True
model
=
model_class
(
config
)
model
=
model_class
(
config
)
outputs
=
model
(
inputs_dict
)
outputs
=
model
(
inputs_dict
)
self
.
assertEqual
(
out_len
+
1
,
len
(
outputs
))
self
.
assertEqual
(
out_len
+
(
2
if
self
.
is_encoder_decoder
else
1
)
,
len
(
outputs
))
self
.
assertEqual
(
model
.
config
.
output_attentions
,
True
)
self
.
assertEqual
(
model
.
config
.
output_attentions
,
True
)
self
.
assertEqual
(
model
.
config
.
output_hidden_states
,
True
)
self
.
assertEqual
(
model
.
config
.
output_hidden_states
,
True
)
...
@@ -230,82 +260,8 @@ class TFCommonTestCases:
...
@@ -230,82 +260,8 @@ class TFCommonTestCases:
self
.
assertListEqual
(
self
.
assertListEqual
(
list
(
attentions
[
0
].
shape
[
-
3
:]),
list
(
attentions
[
0
].
shape
[
-
3
:]),
[
self
.
model_tester
.
num_attention_heads
,
[
self
.
model_tester
.
num_attention_heads
,
self
.
model_tester
.
seq_length
,
encoder_seq_length
,
self
.
model_tester
.
key_len
if
hasattr
(
self
.
model_tester
,
'key_len'
)
else
self
.
model_tester
.
seq_length
])
encoder_key_length
])
def
test_headmasking
(
self
):
pass
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# config.output_attentions = True
# config.output_hidden_states = True
# configs_no_init = _config_zero_init(config) # To be sure we have no Nan
# for model_class in self.all_model_classes:
# model = model_class(config=configs_no_init)
# model.eval()
# # Prepare head_mask
# # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
# head_mask = torch.ones(self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads)
# head_mask[0, 0] = 0
# head_mask[-1, :-1] = 0
# head_mask.requires_grad_(requires_grad=True)
# inputs = inputs_dict.copy()
# inputs['head_mask'] = head_mask
# outputs = model(**inputs)
# # Test that we can get a gradient back for importance score computation
# output = sum(t.sum() for t in outputs[0])
# output = output.sum()
# output.backward()
# multihead_outputs = head_mask.grad
# attentions = outputs[-1]
# hidden_states = outputs[-2]
# # Remove Nan
# self.assertIsNotNone(multihead_outputs)
# self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
# self.assertAlmostEqual(
# attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
# self.assertNotEqual(
# attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
# self.assertNotEqual(
# attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
# self.assertAlmostEqual(
# attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
# self.assertNotEqual(
# attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)
def
test_head_pruning
(
self
):
pass
# if not self.test_pruning:
# return
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# for model_class in self.all_model_classes:
# config.output_attentions = True
# config.output_hidden_states = False
# model = model_class(config=config)
# model.eval()
# heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)),
# -1: [0]}
# model.prune_heads(heads_to_prune)
# outputs = model(**inputs_dict)
# attentions = outputs[-1]
# self.assertEqual(
# attentions[0].shape[-3], 1)
# self.assertEqual(
# attentions[1].shape[-3], self.model_tester.num_attention_heads)
# self.assertEqual(
# attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
def
test_hidden_states_output
(
self
):
def
test_hidden_states_output
(
self
):
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
...
@@ -323,43 +279,6 @@ class TFCommonTestCases:
...
@@ -323,43 +279,6 @@ class TFCommonTestCases:
list
(
hidden_states
[
0
].
shape
[
-
2
:]),
list
(
hidden_states
[
0
].
shape
[
-
2
:]),
[
self
.
model_tester
.
seq_length
,
self
.
model_tester
.
hidden_size
])
[
self
.
model_tester
.
seq_length
,
self
.
model_tester
.
hidden_size
])
def
test_resize_tokens_embeddings
(
self
):
pass
# original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# if not self.test_resize_embeddings:
# return
# for model_class in self.all_model_classes:
# config = copy.deepcopy(original_config)
# model = model_class(config)
# model_vocab_size = config.vocab_size
# # Retrieve the embeddings and clone theme
# model_embed = model.resize_token_embeddings(model_vocab_size)
# cloned_embeddings = model_embed.weight.clone()
# # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
# model_embed = model.resize_token_embeddings(model_vocab_size + 10)
# self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
# # Check that it actually resizes the embeddings matrix
# self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
# # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
# model_embed = model.resize_token_embeddings(model_vocab_size - 15)
# self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
# # Check that it actually resizes the embeddings matrix
# self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
# # Check that adding and removing tokens has not modified the first part of the embedding matrix.
# models_equal = True
# for p1, p2 in zip(cloned_embeddings, model_embed.weight):
# if p1.data.ne(p2.data).sum() > 0:
# models_equal = False
# self.assertTrue(models_equal)
def
test_model_common_attributes
(
self
):
def
test_model_common_attributes
(
self
):
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
...
@@ -369,67 +288,59 @@ class TFCommonTestCases:
...
@@ -369,67 +288,59 @@ class TFCommonTestCases:
x
=
model
.
get_output_embeddings
()
x
=
model
.
get_output_embeddings
()
assert
x
is
None
or
isinstance
(
x
,
tf
.
keras
.
layers
.
Layer
)
assert
x
is
None
or
isinstance
(
x
,
tf
.
keras
.
layers
.
Layer
)
def
test_tie_model_weights
(
self
):
pass
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# def check_same_values(layer_1, layer_2):
# equal = True
# for p1, p2 in zip(layer_1.weight, layer_2.weight):
# if p1.data.ne(p2.data).sum() > 0:
# equal = False
# return equal
# for model_class in self.all_model_classes:
# if not hasattr(model_class, 'tie_weights'):
# continue
# config.torchscript = True
# model_not_tied = model_class(config)
# params_not_tied = list(model_not_tied.parameters())
# config_tied = copy.deepcopy(config)
# config_tied.torchscript = False
# model_tied = model_class(config_tied)
# params_tied = list(model_tied.parameters())
# # Check that the embedding layer and decoding layer are the same in size and in value
# self.assertGreater(len(params_not_tied), len(params_tied))
# # Check that after resize they remain tied.
# model_tied.resize_token_embeddings(config.vocab_size + 10)
# params_tied_2 = list(model_tied.parameters())
# self.assertGreater(len(params_not_tied), len(params_tied))
# self.assertEqual(len(params_tied_2), len(params_tied))
def
test_determinism
(
self
):
def
test_determinism
(
self
):
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
for
model_class
in
self
.
all_model_classes
:
for
model_class
in
self
.
all_model_classes
:
model
=
model_class
(
config
)
model
=
model_class
(
config
)
first
,
second
=
model
(
inputs_dict
,
training
=
False
)[
0
],
model
(
inputs_dict
,
training
=
False
)[
0
]
first
,
second
=
model
(
inputs_dict
,
training
=
False
)[
0
],
model
(
inputs_dict
,
training
=
False
)[
0
]
self
.
assertTrue
(
tf
.
math
.
equal
(
first
,
second
).
numpy
().
all
())
out_1
=
first
.
numpy
()
out_2
=
second
.
numpy
()
out_1
=
out_1
[
~
np
.
isnan
(
out_1
)]
out_2
=
out_2
[
~
np
.
isnan
(
out_2
)]
max_diff
=
np
.
amax
(
np
.
abs
(
out_1
-
out_2
))
self
.
assertLessEqual
(
max_diff
,
1e-5
)
def
_get_embeds
(
self
,
wte
,
input_ids
):
# ^^ In our TF models, the input_embeddings can take slightly different forms,
# so we try a few of them.
# We used to fall back to just synthetically creating a dummy tensor of ones:
try
:
x
=
wte
(
input_ids
,
mode
=
"embedding"
)
except
:
try
:
x
=
wte
([
input_ids
],
mode
=
"embedding"
)
except
:
try
:
x
=
wte
([
input_ids
,
None
,
None
,
None
],
mode
=
"embedding"
)
except
:
if
hasattr
(
self
.
model_tester
,
"embedding_size"
):
x
=
tf
.
ones
(
input_ids
.
shape
+
[
self
.
model_tester
.
embedding_size
],
dtype
=
tf
.
dtypes
.
float32
)
else
:
x
=
tf
.
ones
(
input_ids
.
shape
+
[
self
.
model_tester
.
hidden_size
],
dtype
=
tf
.
dtypes
.
float32
)
return
x
def
test_inputs_embeds
(
self
):
def
test_inputs_embeds
(
self
):
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
config
,
inputs_dict
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
input_ids
=
inputs_dict
[
"input_ids"
]
if
not
self
.
is_encoder_decoder
:
del
inputs_dict
[
"input_ids"
]
input_ids
=
inputs_dict
[
"input_ids"
]
del
inputs_dict
[
"input_ids"
]
else
:
encoder_input_ids
=
inputs_dict
[
"encoder_input_ids"
]
decoder_input_ids
=
inputs_dict
[
"decoder_input_ids"
]
del
inputs_dict
[
"encoder_input_ids"
]
del
inputs_dict
[
"decoder_input_ids"
]
for
model_class
in
self
.
all_model_classes
:
for
model_class
in
self
.
all_model_classes
:
model
=
model_class
(
config
)
model
=
model_class
(
config
)
wte
=
model
.
get_input_embeddings
()
wte
=
model
.
get_input_embeddings
()
try
:
if
not
self
.
is_encoder_decoder
:
x
=
wte
(
input_ids
,
mode
=
"embedding"
)
inputs_dict
[
"inputs_embeds"
]
=
self
.
_get_embeds
(
wte
,
input_ids
)
except
:
else
:
try
:
inputs_dict
[
"encoder_inputs_embeds"
]
=
self
.
_get_embeds
(
wte
,
encoder_input_ids
)
x
=
wte
([
input_ids
],
mode
=
"embedding"
)
inputs_dict
[
"decoder_inputs_embeds"
]
=
self
.
_get_embeds
(
wte
,
decoder_input_ids
)
except
:
x
=
tf
.
ones
(
input_ids
.
shape
+
[
self
.
model_tester
.
hidden_size
],
dtype
=
tf
.
dtypes
.
float32
)
# ^^ In our TF models, the input_embeddings can take slightly different forms,
# so we try two of them and fall back to just synthetically creating a dummy tensor of ones.
inputs_dict
[
"inputs_embeds"
]
=
x
outputs
=
model
(
inputs_dict
)
outputs
=
model
(
inputs_dict
)
...
@@ -453,29 +364,5 @@ def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
...
@@ -453,29 +364,5 @@ def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
return
output
return
output
class
TFModelUtilsTest
(
unittest
.
TestCase
):
@
pytest
.
mark
.
skipif
(
'tensorflow'
not
in
sys
.
modules
,
reason
=
"requires TensorFlow"
)
def
test_model_from_pretrained
(
self
):
pass
# logging.basicConfig(level=logging.INFO)
# for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
# config = BertConfig.from_pretrained(model_name)
# self.assertIsNotNone(config)
# self.assertIsInstance(config, PretrainedConfig)
# model = BertModel.from_pretrained(model_name)
# model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
# self.assertIsNotNone(model)
# self.assertIsInstance(model, PreTrainedModel)
# for value in loading_info.values():
# self.assertEqual(len(value), 0)
# config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
# model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
# self.assertEqual(model.config.output_attentions, True)
# self.assertEqual(model.config.output_hidden_states, True)
# self.assertEqual(model.config, config)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
transformers/tests/modeling_tf_ctrl_test.py
View file @
562f8640
...
@@ -17,12 +17,11 @@ from __future__ import division
...
@@ -17,12 +17,11 @@ from __future__ import division
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
unittest
import
shutil
import
pytest
import
sys
import
sys
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.configuration_common_test
import
ConfigTester
from
.utils
import
CACHE_DIR
,
require_tf
,
slow
from
transformers
import
CTRLConfig
,
is_tf_available
from
transformers
import
CTRLConfig
,
is_tf_available
...
@@ -30,10 +29,9 @@ if is_tf_available():
...
@@ -30,10 +29,9 @@ if is_tf_available():
import
tensorflow
as
tf
import
tensorflow
as
tf
from
transformers.modeling_tf_ctrl
import
(
TFCTRLModel
,
TFCTRLLMHeadModel
,
from
transformers.modeling_tf_ctrl
import
(
TFCTRLModel
,
TFCTRLLMHeadModel
,
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
)
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
@
require_tf
class
TFCTRLModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
class
TFCTRLModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
all_model_classes
=
(
TFCTRLModel
,
TFCTRLLMHeadModel
)
if
is_tf_available
()
else
()
all_model_classes
=
(
TFCTRLModel
,
TFCTRLLMHeadModel
)
if
is_tf_available
()
else
()
...
@@ -113,7 +111,7 @@ class TFCTRLModelTest(TFCommonTestCases.TFCommonModelTester):
...
@@ -113,7 +111,7 @@ class TFCTRLModelTest(TFCommonTestCases.TFCommonModelTester):
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
CTRLConfig
(
config
=
CTRLConfig
(
vocab_size
_or_config_json_file
=
self
.
vocab_size
,
vocab_size
=
self
.
vocab_size
,
n_embd
=
self
.
hidden_size
,
n_embd
=
self
.
hidden_size
,
n_layer
=
self
.
num_hidden_layers
,
n_layer
=
self
.
num_hidden_layers
,
n_head
=
self
.
num_attention_heads
,
n_head
=
self
.
num_attention_heads
,
...
@@ -188,12 +186,10 @@ class TFCTRLModelTest(TFCommonTestCases.TFCommonModelTester):
...
@@ -188,12 +186,10 @@ class TFCTRLModelTest(TFCommonTestCases.TFCommonModelTester):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_ctrl_lm_head
(
*
config_and_inputs
)
self
.
model_tester
.
create_and_check_ctrl_lm_head
(
*
config_and_inputs
)
@
pytest
.
mark
.
slow
@
slow
def
test_model_from_pretrained
(
self
):
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
for
model_name
in
list
(
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
TFCTRLModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
model
=
TFCTRLModel
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
shutil
.
rmtree
(
cache_dir
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsNotNone
(
model
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
transformers/tests/modeling_tf_distilbert_test.py
View file @
562f8640
...
@@ -17,10 +17,10 @@ from __future__ import division
...
@@ -17,10 +17,10 @@ from __future__ import division
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
unittest
import
pytest
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.configuration_common_test
import
ConfigTester
from
.utils
import
CACHE_DIR
,
require_tf
,
slow
from
transformers
import
DistilBertConfig
,
is_tf_available
from
transformers
import
DistilBertConfig
,
is_tf_available
...
@@ -30,10 +30,9 @@ if is_tf_available():
...
@@ -30,10 +30,9 @@ if is_tf_available():
TFDistilBertForMaskedLM
,
TFDistilBertForMaskedLM
,
TFDistilBertForQuestionAnswering
,
TFDistilBertForQuestionAnswering
,
TFDistilBertForSequenceClassification
)
TFDistilBertForSequenceClassification
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
@
require_tf
class
TFDistilBertModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
class
TFDistilBertModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
all_model_classes
=
(
TFDistilBertModel
,
TFDistilBertForMaskedLM
,
TFDistilBertForQuestionAnswering
,
all_model_classes
=
(
TFDistilBertModel
,
TFDistilBertForMaskedLM
,
TFDistilBertForQuestionAnswering
,
...
@@ -108,7 +107,7 @@ class TFDistilBertModelTest(TFCommonTestCases.TFCommonModelTester):
...
@@ -108,7 +107,7 @@ class TFDistilBertModelTest(TFCommonTestCases.TFCommonModelTester):
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
DistilBertConfig
(
config
=
DistilBertConfig
(
vocab_size
_or_config_json_file
=
self
.
vocab_size
,
vocab_size
=
self
.
vocab_size
,
dim
=
self
.
hidden_size
,
dim
=
self
.
hidden_size
,
n_layers
=
self
.
num_hidden_layers
,
n_layers
=
self
.
num_hidden_layers
,
n_heads
=
self
.
num_attention_heads
,
n_heads
=
self
.
num_attention_heads
,
...
@@ -210,12 +209,10 @@ class TFDistilBertModelTest(TFCommonTestCases.TFCommonModelTester):
...
@@ -210,12 +209,10 @@ class TFDistilBertModelTest(TFCommonTestCases.TFCommonModelTester):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_distilbert_for_sequence_classification
(
*
config_and_inputs
)
self
.
model_tester
.
create_and_check_distilbert_for_sequence_classification
(
*
config_and_inputs
)
# @
pytest.mark.
slow
# @slow
# def test_model_from_pretrained(self):
# def test_model_from_pretrained(self):
# cache_dir = "/tmp/transformers_test/"
# for model_name in list(DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
# for model_name in list(DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
# model = DistilBertModel.from_pretrained(model_name, cache_dir=cache_dir)
# model = DistilBertModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
# shutil.rmtree(cache_dir)
# self.assertIsNotNone(model)
# self.assertIsNotNone(model)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
transformers/tests/modeling_tf_gpt2_test.py
View file @
562f8640
...
@@ -17,12 +17,11 @@ from __future__ import division
...
@@ -17,12 +17,11 @@ from __future__ import division
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
unittest
import
shutil
import
pytest
import
sys
import
sys
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.configuration_common_test
import
ConfigTester
from
.utils
import
CACHE_DIR
,
require_tf
,
slow
from
transformers
import
GPT2Config
,
is_tf_available
from
transformers
import
GPT2Config
,
is_tf_available
...
@@ -31,10 +30,9 @@ if is_tf_available():
...
@@ -31,10 +30,9 @@ if is_tf_available():
from
transformers.modeling_tf_gpt2
import
(
TFGPT2Model
,
TFGPT2LMHeadModel
,
from
transformers.modeling_tf_gpt2
import
(
TFGPT2Model
,
TFGPT2LMHeadModel
,
TFGPT2DoubleHeadsModel
,
TFGPT2DoubleHeadsModel
,
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
)
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
@
require_tf
class
TFGPT2ModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
class
TFGPT2ModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
all_model_classes
=
(
TFGPT2Model
,
TFGPT2LMHeadModel
,
all_model_classes
=
(
TFGPT2Model
,
TFGPT2LMHeadModel
,
...
@@ -116,7 +114,7 @@ class TFGPT2ModelTest(TFCommonTestCases.TFCommonModelTester):
...
@@ -116,7 +114,7 @@ class TFGPT2ModelTest(TFCommonTestCases.TFCommonModelTester):
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
GPT2Config
(
config
=
GPT2Config
(
vocab_size
_or_config_json_file
=
self
.
vocab_size
,
vocab_size
=
self
.
vocab_size
,
n_embd
=
self
.
hidden_size
,
n_embd
=
self
.
hidden_size
,
n_layer
=
self
.
num_hidden_layers
,
n_layer
=
self
.
num_hidden_layers
,
n_head
=
self
.
num_attention_heads
,
n_head
=
self
.
num_attention_heads
,
...
@@ -219,12 +217,10 @@ class TFGPT2ModelTest(TFCommonTestCases.TFCommonModelTester):
...
@@ -219,12 +217,10 @@ class TFGPT2ModelTest(TFCommonTestCases.TFCommonModelTester):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_gpt2_double_head
(
*
config_and_inputs
)
self
.
model_tester
.
create_and_check_gpt2_double_head
(
*
config_and_inputs
)
@
pytest
.
mark
.
slow
@
slow
def
test_model_from_pretrained
(
self
):
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
for
model_name
in
list
(
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
TFGPT2Model
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
model
=
TFGPT2Model
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
shutil
.
rmtree
(
cache_dir
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsNotNone
(
model
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
transformers/tests/modeling_tf_openai_gpt_test.py
View file @
562f8640
...
@@ -17,12 +17,11 @@ from __future__ import division
...
@@ -17,12 +17,11 @@ from __future__ import division
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
unittest
import
shutil
import
pytest
import
sys
import
sys
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.configuration_common_test
import
ConfigTester
from
.utils
import
CACHE_DIR
,
require_tf
,
slow
from
transformers
import
OpenAIGPTConfig
,
is_tf_available
from
transformers
import
OpenAIGPTConfig
,
is_tf_available
...
@@ -31,10 +30,9 @@ if is_tf_available():
...
@@ -31,10 +30,9 @@ if is_tf_available():
from
transformers.modeling_tf_openai
import
(
TFOpenAIGPTModel
,
TFOpenAIGPTLMHeadModel
,
from
transformers.modeling_tf_openai
import
(
TFOpenAIGPTModel
,
TFOpenAIGPTLMHeadModel
,
TFOpenAIGPTDoubleHeadsModel
,
TFOpenAIGPTDoubleHeadsModel
,
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
)
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
@
require_tf
class
TFOpenAIGPTModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
class
TFOpenAIGPTModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
all_model_classes
=
(
TFOpenAIGPTModel
,
TFOpenAIGPTLMHeadModel
,
all_model_classes
=
(
TFOpenAIGPTModel
,
TFOpenAIGPTLMHeadModel
,
...
@@ -115,7 +113,7 @@ class TFOpenAIGPTModelTest(TFCommonTestCases.TFCommonModelTester):
...
@@ -115,7 +113,7 @@ class TFOpenAIGPTModelTest(TFCommonTestCases.TFCommonModelTester):
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
OpenAIGPTConfig
(
config
=
OpenAIGPTConfig
(
vocab_size
_or_config_json_file
=
self
.
vocab_size
,
vocab_size
=
self
.
vocab_size
,
n_embd
=
self
.
hidden_size
,
n_embd
=
self
.
hidden_size
,
n_layer
=
self
.
num_hidden_layers
,
n_layer
=
self
.
num_hidden_layers
,
n_head
=
self
.
num_attention_heads
,
n_head
=
self
.
num_attention_heads
,
...
@@ -218,12 +216,10 @@ class TFOpenAIGPTModelTest(TFCommonTestCases.TFCommonModelTester):
...
@@ -218,12 +216,10 @@ class TFOpenAIGPTModelTest(TFCommonTestCases.TFCommonModelTester):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_openai_gpt_double_head
(
*
config_and_inputs
)
self
.
model_tester
.
create_and_check_openai_gpt_double_head
(
*
config_and_inputs
)
@
pytest
.
mark
.
slow
@
slow
def
test_model_from_pretrained
(
self
):
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
for
model_name
in
list
(
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
TFOpenAIGPTModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
model
=
TFOpenAIGPTModel
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
shutil
.
rmtree
(
cache_dir
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsNotNone
(
model
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
transformers/tests/modeling_tf_roberta_test.py
View file @
562f8640
...
@@ -17,11 +17,10 @@ from __future__ import division
...
@@ -17,11 +17,10 @@ from __future__ import division
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
unittest
import
shutil
import
pytest
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.configuration_common_test
import
ConfigTester
from
.utils
import
CACHE_DIR
,
require_tf
,
slow
from
transformers
import
RobertaConfig
,
is_tf_available
from
transformers
import
RobertaConfig
,
is_tf_available
...
@@ -32,10 +31,9 @@ if is_tf_available():
...
@@ -32,10 +31,9 @@ if is_tf_available():
TFRobertaForSequenceClassification
,
TFRobertaForSequenceClassification
,
TFRobertaForTokenClassification
,
TFRobertaForTokenClassification
,
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
)
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
@
require_tf
class
TFRobertaModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
class
TFRobertaModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
all_model_classes
=
(
TFRobertaModel
,
TFRobertaForMaskedLM
,
all_model_classes
=
(
TFRobertaModel
,
TFRobertaForMaskedLM
,
...
@@ -110,7 +108,7 @@ class TFRobertaModelTest(TFCommonTestCases.TFCommonModelTester):
...
@@ -110,7 +108,7 @@ class TFRobertaModelTest(TFCommonTestCases.TFCommonModelTester):
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
RobertaConfig
(
config
=
RobertaConfig
(
vocab_size
_or_config_json_file
=
self
.
vocab_size
,
vocab_size
=
self
.
vocab_size
,
hidden_size
=
self
.
hidden_size
,
hidden_size
=
self
.
hidden_size
,
num_hidden_layers
=
self
.
num_hidden_layers
,
num_hidden_layers
=
self
.
num_hidden_layers
,
num_attention_heads
=
self
.
num_attention_heads
,
num_attention_heads
=
self
.
num_attention_heads
,
...
@@ -191,22 +189,20 @@ class TFRobertaModelTest(TFCommonTestCases.TFCommonModelTester):
...
@@ -191,22 +189,20 @@ class TFRobertaModelTest(TFCommonTestCases.TFCommonModelTester):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_roberta_for_masked_lm
(
*
config_and_inputs
)
self
.
model_tester
.
create_and_check_roberta_for_masked_lm
(
*
config_and_inputs
)
@
pytest
.
mark
.
slow
@
slow
def
test_model_from_pretrained
(
self
):
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
for
model_name
in
list
(
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
TFRobertaModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
model
=
TFRobertaModel
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
shutil
.
rmtree
(
cache_dir
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsNotNone
(
model
)
class
TFRobertaModelIntegrationTest
(
unittest
.
TestCase
):
class
TFRobertaModelIntegrationTest
(
unittest
.
TestCase
):
@
pytest
.
mark
.
slow
@
slow
def
test_inference_masked_lm
(
self
):
def
test_inference_masked_lm
(
self
):
model
=
TFRobertaForMaskedLM
.
from_pretrained
(
'roberta-base'
)
model
=
TFRobertaForMaskedLM
.
from_pretrained
(
'roberta-base'
)
input_ids
=
tf
.
constant
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
input_ids
=
tf
.
constant
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
output
=
model
(
input_ids
)[
0
]
output
=
model
(
input_ids
)[
0
]
expected_shape
=
[
1
,
11
,
50265
]
expected_shape
=
[
1
,
11
,
50265
]
...
@@ -224,10 +220,10 @@ class TFRobertaModelIntegrationTest(unittest.TestCase):
...
@@ -224,10 +220,10 @@ class TFRobertaModelIntegrationTest(unittest.TestCase):
numpy
.
allclose
(
output
[:,
:
3
,
:
3
].
numpy
(),
expected_slice
.
numpy
(),
atol
=
1e-3
)
numpy
.
allclose
(
output
[:,
:
3
,
:
3
].
numpy
(),
expected_slice
.
numpy
(),
atol
=
1e-3
)
)
)
@
pytest
.
mark
.
slow
@
slow
def
test_inference_no_head
(
self
):
def
test_inference_no_head
(
self
):
model
=
TFRobertaModel
.
from_pretrained
(
'roberta-base'
)
model
=
TFRobertaModel
.
from_pretrained
(
'roberta-base'
)
input_ids
=
tf
.
constant
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
input_ids
=
tf
.
constant
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
output
=
model
(
input_ids
)[
0
]
output
=
model
(
input_ids
)[
0
]
# compare the actual values for a slice.
# compare the actual values for a slice.
...
@@ -240,10 +236,10 @@ class TFRobertaModelIntegrationTest(unittest.TestCase):
...
@@ -240,10 +236,10 @@ class TFRobertaModelIntegrationTest(unittest.TestCase):
numpy
.
allclose
(
output
[:,
:
3
,
:
3
].
numpy
(),
expected_slice
.
numpy
(),
atol
=
1e-3
)
numpy
.
allclose
(
output
[:,
:
3
,
:
3
].
numpy
(),
expected_slice
.
numpy
(),
atol
=
1e-3
)
)
)
@
pytest
.
mark
.
slow
@
slow
def
test_inference_classification_head
(
self
):
def
test_inference_classification_head
(
self
):
model
=
TFRobertaForSequenceClassification
.
from_pretrained
(
'roberta-large-mnli'
)
model
=
TFRobertaForSequenceClassification
.
from_pretrained
(
'roberta-large-mnli'
)
input_ids
=
tf
.
constant
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
input_ids
=
tf
.
constant
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
output
=
model
(
input_ids
)[
0
]
output
=
model
(
input_ids
)[
0
]
expected_shape
=
[
1
,
3
]
expected_shape
=
[
1
,
3
]
...
...
transformers/tests/modeling_tf_t5_test.py
0 → 100644
View file @
562f8640
# coding=utf-8
# Copyright 2018 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
unittest
import
sys
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.utils
import
CACHE_DIR
,
require_tf
,
slow
from
transformers
import
T5Config
,
is_tf_available
if
is_tf_available
():
import
tensorflow
as
tf
from
transformers.modeling_tf_t5
import
(
TFT5Model
,
TFT5WithLMHeadModel
,
TF_T5_PRETRAINED_MODEL_ARCHIVE_MAP
)
@
require_tf
class
TFT5ModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
is_encoder_decoder
=
True
all_model_classes
=
(
TFT5Model
,
TFT5WithLMHeadModel
)
if
is_tf_available
()
else
()
class
TFT5ModelTester
(
object
):
def
__init__
(
self
,
parent
,
batch_size
=
13
,
seq_length
=
7
,
is_training
=
True
,
use_input_mask
=
True
,
use_labels
=
True
,
vocab_size
=
99
,
n_positions
=
14
,
hidden_size
=
32
,
num_hidden_layers
=
5
,
num_attention_heads
=
4
,
d_ff
=
37
,
relative_attention_num_buckets
=
8
,
dropout_rate
=
0.1
,
initializer_factor
=
0.002
,
scope
=
None
,
):
self
.
parent
=
parent
self
.
batch_size
=
batch_size
self
.
seq_length
=
seq_length
self
.
is_training
=
is_training
self
.
use_input_mask
=
use_input_mask
self
.
use_labels
=
use_labels
self
.
vocab_size
=
vocab_size
self
.
n_positions
=
n_positions
self
.
hidden_size
=
hidden_size
self
.
num_hidden_layers
=
num_hidden_layers
self
.
num_attention_heads
=
num_attention_heads
self
.
d_ff
=
d_ff
self
.
relative_attention_num_buckets
=
relative_attention_num_buckets
self
.
dropout_rate
=
dropout_rate
self
.
initializer_factor
=
initializer_factor
self
.
scope
=
scope
def
prepare_config_and_inputs
(
self
):
input_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
input_mask
=
None
if
self
.
use_input_mask
:
input_mask
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
vocab_size
=
2
)
token_labels
=
None
if
self
.
use_labels
:
token_labels
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
config
=
T5Config
(
vocab_size
=
self
.
vocab_size
,
n_positions
=
self
.
n_positions
,
d_model
=
self
.
hidden_size
,
d_ff
=
self
.
d_ff
,
d_kv
=
self
.
hidden_size
//
self
.
num_attention_heads
,
num_layers
=
self
.
num_hidden_layers
,
num_heads
=
self
.
num_attention_heads
,
relative_attention_num_buckets
=
self
.
relative_attention_num_buckets
,
dropout_rate
=
self
.
dropout_rate
,
initializer_factor
=
self
.
initializer_factor
)
return
(
config
,
input_ids
,
input_mask
,
token_labels
)
def
create_and_check_t5_model
(
self
,
config
,
input_ids
,
input_mask
,
token_labels
):
model
=
TFT5Model
(
config
=
config
)
inputs
=
{
'encoder_input_ids'
:
input_ids
,
'decoder_input_ids'
:
input_ids
,
'decoder_attention_mask'
:
input_mask
}
encoder_output
,
decoder_output
=
model
(
inputs
)
encoder_output
,
decoder_output
=
model
(
input_ids
,
decoder_attention_mask
=
input_mask
,
encoder_input_ids
=
input_ids
)
result
=
{
"encoder_output"
:
encoder_output
.
numpy
(),
"decoder_output"
:
decoder_output
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"encoder_output"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
])
self
.
parent
.
assertListEqual
(
list
(
result
[
"decoder_output"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
])
def
create_and_check_t5_with_lm_head
(
self
,
config
,
input_ids
,
input_mask
,
token_labels
):
model
=
TFT5WithLMHeadModel
(
config
=
config
)
inputs
=
{
'encoder_input_ids'
:
input_ids
,
'decoder_input_ids'
:
input_ids
,
'decoder_attention_mask'
:
input_mask
}
prediction_scores
,
decoder_output
=
model
(
inputs
)
result
=
{
"prediction_scores"
:
prediction_scores
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"prediction_scores"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
])
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
(
config
,
input_ids
,
input_mask
,
token_labels
)
=
config_and_inputs
inputs_dict
=
{
'encoder_input_ids'
:
input_ids
,
'decoder_input_ids'
:
input_ids
,
'decoder_attention_mask'
:
input_mask
}
return
config
,
inputs_dict
def
setUp
(
self
):
self
.
model_tester
=
TFT5ModelTest
.
TFT5ModelTester
(
self
)
self
.
config_tester
=
ConfigTester
(
self
,
config_class
=
T5Config
,
d_model
=
37
)
def
test_config
(
self
):
self
.
config_tester
.
run_common_tests
()
def
test_t5_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_t5_model
(
*
config_and_inputs
)
def
test_with_lm_head
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_t5_with_lm_head
(
*
config_and_inputs
)
@
slow
def
test_model_from_pretrained
(
self
):
for
model_name
in
[
't5-small'
]:
model
=
TFT5Model
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
self
.
assertIsNotNone
(
model
)
if
__name__
==
"__main__"
:
unittest
.
main
()
transformers/tests/modeling_tf_transfo_xl_test.py
View file @
562f8640
...
@@ -18,11 +18,10 @@ from __future__ import print_function
...
@@ -18,11 +18,10 @@ from __future__ import print_function
import
unittest
import
unittest
import
random
import
random
import
shutil
import
pytest
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.configuration_common_test
import
ConfigTester
from
.utils
import
CACHE_DIR
,
require_tf
,
slow
from
transformers
import
TransfoXLConfig
,
is_tf_available
from
transformers
import
TransfoXLConfig
,
is_tf_available
...
@@ -31,10 +30,9 @@ if is_tf_available():
...
@@ -31,10 +30,9 @@ if is_tf_available():
from
transformers.modeling_tf_transfo_xl
import
(
TFTransfoXLModel
,
from
transformers.modeling_tf_transfo_xl
import
(
TFTransfoXLModel
,
TFTransfoXLLMHeadModel
,
TFTransfoXLLMHeadModel
,
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
)
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
@
require_tf
class
TFTransfoXLModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
class
TFTransfoXLModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
all_model_classes
=
(
TFTransfoXLModel
,
TFTransfoXLLMHeadModel
)
if
is_tf_available
()
else
()
all_model_classes
=
(
TFTransfoXLModel
,
TFTransfoXLLMHeadModel
)
if
is_tf_available
()
else
()
...
@@ -68,7 +66,7 @@ class TFTransfoXLModelTest(TFCommonTestCases.TFCommonModelTester):
...
@@ -68,7 +66,7 @@ class TFTransfoXLModelTest(TFCommonTestCases.TFCommonModelTester):
self
.
batch_size
=
batch_size
self
.
batch_size
=
batch_size
self
.
seq_length
=
seq_length
self
.
seq_length
=
seq_length
self
.
mem_len
=
mem_len
self
.
mem_len
=
mem_len
self
.
key_len
=
seq_length
+
mem_len
self
.
key_len
gth
=
seq_length
+
mem_len
self
.
clamp_len
=
clamp_len
self
.
clamp_len
=
clamp_len
self
.
is_training
=
is_training
self
.
is_training
=
is_training
self
.
use_labels
=
use_labels
self
.
use_labels
=
use_labels
...
@@ -93,7 +91,7 @@ class TFTransfoXLModelTest(TFCommonTestCases.TFCommonModelTester):
...
@@ -93,7 +91,7 @@ class TFTransfoXLModelTest(TFCommonTestCases.TFCommonModelTester):
lm_labels
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
lm_labels
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
config
=
TransfoXLConfig
(
config
=
TransfoXLConfig
(
vocab_size
_or_config_json_file
=
self
.
vocab_size
,
vocab_size
=
self
.
vocab_size
,
mem_len
=
self
.
mem_len
,
mem_len
=
self
.
mem_len
,
clamp_len
=
self
.
clamp_len
,
clamp_len
=
self
.
clamp_len
,
cutoffs
=
self
.
cutoffs
,
cutoffs
=
self
.
cutoffs
,
...
@@ -204,12 +202,10 @@ class TFTransfoXLModelTest(TFCommonTestCases.TFCommonModelTester):
...
@@ -204,12 +202,10 @@ class TFTransfoXLModelTest(TFCommonTestCases.TFCommonModelTester):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_transfo_xl_lm_head
(
*
config_and_inputs
)
self
.
model_tester
.
create_and_check_transfo_xl_lm_head
(
*
config_and_inputs
)
@
pytest
.
mark
.
slow
@
slow
def
test_model_from_pretrained
(
self
):
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
for
model_name
in
list
(
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
TFTransfoXLModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
model
=
TFTransfoXLModel
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
shutil
.
rmtree
(
cache_dir
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsNotNone
(
model
)
...
...
transformers/tests/modeling_tf_xlm_test.py
View file @
562f8640
...
@@ -17,8 +17,6 @@ from __future__ import division
...
@@ -17,8 +17,6 @@ from __future__ import division
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
unittest
import
shutil
import
pytest
from
transformers
import
is_tf_available
from
transformers
import
is_tf_available
...
@@ -29,13 +27,13 @@ if is_tf_available():
...
@@ -29,13 +27,13 @@ if is_tf_available():
TFXLMForSequenceClassification
,
TFXLMForSequenceClassification
,
TFXLMForQuestionAnsweringSimple
,
TFXLMForQuestionAnsweringSimple
,
TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP
)
TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.configuration_common_test
import
ConfigTester
from
.utils
import
CACHE_DIR
,
require_tf
,
slow
@
require_tf
class
TFXLMModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
class
TFXLMModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
all_model_classes
=
(
TFXLMModel
,
TFXLMWithLMHeadModel
,
all_model_classes
=
(
TFXLMModel
,
TFXLMWithLMHeadModel
,
...
@@ -126,7 +124,7 @@ class TFXLMModelTest(TFCommonTestCases.TFCommonModelTester):
...
@@ -126,7 +124,7 @@ class TFXLMModelTest(TFCommonTestCases.TFCommonModelTester):
is_impossible_labels
=
ids_tensor
([
self
.
batch_size
],
2
,
dtype
=
tf
.
float32
)
is_impossible_labels
=
ids_tensor
([
self
.
batch_size
],
2
,
dtype
=
tf
.
float32
)
config
=
XLMConfig
(
config
=
XLMConfig
(
vocab_size
_or_config_json_file
=
self
.
vocab_size
,
vocab_size
=
self
.
vocab_size
,
n_special
=
self
.
n_special
,
n_special
=
self
.
n_special
,
emb_dim
=
self
.
hidden_size
,
emb_dim
=
self
.
hidden_size
,
n_layers
=
self
.
num_hidden_layers
,
n_layers
=
self
.
num_hidden_layers
,
...
@@ -251,12 +249,10 @@ class TFXLMModelTest(TFCommonTestCases.TFCommonModelTester):
...
@@ -251,12 +249,10 @@ class TFXLMModelTest(TFCommonTestCases.TFCommonModelTester):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_xlm_sequence_classif
(
*
config_and_inputs
)
self
.
model_tester
.
create_and_check_xlm_sequence_classif
(
*
config_and_inputs
)
@
pytest
.
mark
.
slow
@
slow
def
test_model_from_pretrained
(
self
):
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
for
model_name
in
list
(
TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
XLMModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
model
=
TFXLMModel
.
from_pretrained
(
model_name
,
cache_dir
=
CACHE_DIR
)
shutil
.
rmtree
(
cache_dir
)
self
.
assertIsNotNone
(
model
)
self
.
assertIsNotNone
(
model
)
...
...
Prev
1
…
4
5
6
7
8
9
10
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment