Unverified Commit 562f8640 authored by Thomas Wolf's avatar Thomas Wolf Committed by GitHub
Browse files

Merge branch 'master' into fix-xlnet-squad2.0

parents ca99a2d5 8618bf15
......@@ -25,15 +25,15 @@ import tensorflow as tf
from .modeling_tf_utils import shape_list
class TFAdaptiveSoftmaxMask(tf.keras.layers.Layer):
def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1,
def __init__(self, vocab_size, d_embed, d_proj, cutoffs, div_val=1,
keep_order=False, **kwargs):
super(TFAdaptiveSoftmaxMask, self).__init__(**kwargs)
self.n_token = n_token
self.vocab_size = vocab_size
self.d_embed = d_embed
self.d_proj = d_proj
self.cutoffs = cutoffs + [n_token]
self.cutoffs = cutoffs + [vocab_size]
self.cutoff_ends = [0] + self.cutoffs
self.div_val = div_val
......@@ -66,11 +66,11 @@ class TFAdaptiveSoftmaxMask(tf.keras.layers.Layer):
self.out_projs.append(weight)
else:
self.out_projs.append(None)
weight = self.add_weight(shape=(self.n_token, self.d_embed,),
weight = self.add_weight(shape=(self.vocab_size, self.d_embed,),
initializer='zeros',
trainable=True,
name='out_layers_._{}_._weight'.format(i))
bias = self.add_weight(shape=(self.n_token,),
bias = self.add_weight(shape=(self.vocab_size,),
initializer='zeros',
trainable=True,
name='out_layers_._{}_._bias'.format(i))
......@@ -105,7 +105,7 @@ class TFAdaptiveSoftmaxMask(tf.keras.layers.Layer):
@staticmethod
def _gather_logprob(logprob, target):
lp_size = tf.shape(logprob)
lp_size = shape_list(logprob)
r = tf.range(lp_size[0])
idx = tf.stack([r, target], 1)
return tf.gather_nd(logprob, idx)
......@@ -114,7 +114,7 @@ class TFAdaptiveSoftmaxMask(tf.keras.layers.Layer):
hidden, target = inputs
head_logprob = 0
if self.n_clusters == 0:
softmax_b = tf.get_variable('bias', [n_token], initializer=tf.zeros_initializer())
softmax_b = tf.get_variable('bias', [self.config.vocab_size], initializer=tf.zeros_initializer())
output = self._logit(hidden, self.out_layers[0][0], self.out_layers[0][1], self.out_projs[0])
if target is not None:
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output)
......@@ -159,7 +159,7 @@ class TFAdaptiveSoftmaxMask(tf.keras.layers.Layer):
cur_logprob = self._gather_logprob(cur_tail_logprob, cur_target)
cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1]
if target is not None:
loss += tf.scatter_nd(mask_idx, -cur_logprob, tf.cast(tf.shape(loss), dtype=tf.int64))
loss += tf.scatter_nd(mask_idx, -cur_logprob, tf.cast(shape_list(loss), dtype=tf.int64))
out = tf.concat(out, axis=-1)
if target is not None:
......
......@@ -22,15 +22,16 @@ import logging
import os
import tensorflow as tf
from tensorflow.python.keras.saving import hdf5_format
import h5py
from .configuration_utils import PretrainedConfig
from .file_utils import cached_path, WEIGHTS_NAME, TF_WEIGHTS_NAME, TF2_WEIGHTS_NAME
from .file_utils import (TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, WEIGHTS_NAME, DUMMY_INPUTS,
cached_path, hf_bucket_url, is_remote_url)
from .modeling_tf_pytorch_utils import load_pytorch_checkpoint_in_tf2_model
logger = logging.getLogger(__name__)
DUMMY_INPUTS = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
class TFPreTrainedModel(tf.keras.Model):
r""" Base class for all TF models.
......@@ -51,7 +52,15 @@ class TFPreTrainedModel(tf.keras.Model):
config_class = None
pretrained_model_archive_map = {}
base_model_prefix = ""
dummy_inputs = tf.constant(DUMMY_INPUTS) # dummy inputs to build the network
@property
def dummy_inputs(self):
""" Dummy inputs to build the network.
Returns:
tf.Tensor with dummy inputs
"""
return {'input_ids': tf.constant(DUMMY_INPUTS)}
def __init__(self, config, *inputs, **kwargs):
super(TFPreTrainedModel, self).__init__(*inputs, **kwargs)
......@@ -168,13 +177,16 @@ class TFPreTrainedModel(tf.keras.Model):
pretrained_model_name_or_path: either:
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path or url to a `PyTorch state_dict save file` (e.g. `./pt_model/pytorch_model.bin`). In this case, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
model_args: (`optional`) Sequence of positional arguments:
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
config: (`optional`) one of:
- an instance of a class derived from :class:`~transformers.PretrainedConfig`, or
- a string valid as input to :func:`~transformers.PretrainedConfig.from_pretrained()`
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
......@@ -191,10 +203,16 @@ class TFPreTrainedModel(tf.keras.Model):
force_download: (`optional`) boolean, default False:
Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
resume_download: (`optional`) boolean, default False:
Do not delete incompletely recieved file. Attempt to resume the download if such a file exists.
proxies: (`optional`) dict, default None:
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
The proxies are used on each request.
output_loading_info: (`optional`) boolean:
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
kwargs: (`optional`) Remaining dictionary of keyword arguments:
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:
......@@ -216,14 +234,18 @@ class TFPreTrainedModel(tf.keras.Model):
cache_dir = kwargs.pop('cache_dir', None)
from_pt = kwargs.pop('from_pt', False)
force_download = kwargs.pop('force_download', False)
resume_download = kwargs.pop('resume_download', False)
proxies = kwargs.pop('proxies', None)
output_loading_info = kwargs.pop('output_loading_info', False)
# Load config
if config is None:
# Load config if we don't provide a configuration
if not isinstance(config, PretrainedConfig):
config_path = config if config is not None else pretrained_model_name_or_path
config, model_kwargs = cls.config_class.from_pretrained(
pretrained_model_name_or_path, *model_args,
config_path, *model_args,
cache_dir=cache_dir, return_unused_kwargs=True,
force_download=force_download,
resume_download=resume_download,
**kwargs
)
else:
......@@ -244,14 +266,19 @@ class TFPreTrainedModel(tf.keras.Model):
raise EnvironmentError("Error no file named {} found in directory {} or `from_pt` set to False".format(
[WEIGHTS_NAME, TF2_WEIGHTS_NAME],
pretrained_model_name_or_path))
elif os.path.isfile(pretrained_model_name_or_path):
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
archive_file = pretrained_model_name_or_path
elif os.path.isfile(pretrained_model_name_or_path + ".index"):
archive_file = pretrained_model_name_or_path + ".index"
else:
raise EnvironmentError("Error file {} not found".format(pretrained_model_name_or_path))
archive_file = hf_bucket_url(pretrained_model_name_or_path, postfix=TF2_WEIGHTS_NAME)
if from_pt:
raise EnvironmentError("Loading a TF model from a PyTorch checkpoint is not supported when using a model identifier name.")
# redirect to the cache, if necessary
try:
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies)
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir, force_download=force_download,
resume_download=resume_download, proxies=proxies)
except EnvironmentError as e:
if pretrained_model_name_or_path in cls.pretrained_model_archive_map:
logger.error(
......@@ -279,17 +306,46 @@ class TFPreTrainedModel(tf.keras.Model):
if from_pt:
# Load from a PyTorch checkpoint
return load_pytorch_checkpoint_in_tf2_model(model, resolved_archive_file)
return load_pytorch_checkpoint_in_tf2_model(model, resolved_archive_file, allow_missing_keys=True)
ret = model(model.dummy_inputs, training=False) # build the network with dummy inputs
assert os.path.isfile(resolved_archive_file), "Error retrieving file {}".format(resolved_archive_file)
# 'by_name' allow us to do transfer learning by skipping/adding layers
# see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1339-L1357
model.load_weights(resolved_archive_file, by_name=True)
try:
model.load_weights(resolved_archive_file, by_name=True)
except OSError:
raise OSError("Unable to load weights from h5 file. "
"If you tried to load a TF 2.0 model from a PyTorch checkpoint, please set from_pt=True. ")
ret = model(model.dummy_inputs, training=False) # Make sure restore ops are run
# Check if the models are the same to output loading informations
with h5py.File(resolved_archive_file, 'r') as f:
if 'layer_names' not in f.attrs and 'model_weights' in f:
f = f['model_weights']
hdf5_layer_names = set(hdf5_format.load_attributes_from_hdf5_group(f, 'layer_names'))
model_layer_names = set(layer.name for layer in model.layers)
missing_keys = list(model_layer_names - hdf5_layer_names)
unexpected_keys = list(hdf5_layer_names - model_layer_names)
error_msgs = []
if len(missing_keys) > 0:
logger.info("Layers of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, missing_keys))
if len(unexpected_keys) > 0:
logger.info("Layers from pretrained model not used in {}: {}".format(
model.__class__.__name__, unexpected_keys))
if len(error_msgs) > 0:
raise RuntimeError('Error(s) in loading weights for {}:\n\t{}'.format(
model.__class__.__name__, "\n\t".join(error_msgs)))
if output_loading_info:
loading_info = {"missing_keys": missing_keys,
"unexpected_keys": unexpected_keys,
"error_msgs": error_msgs}
return model, loading_info
return model
class TFConv1D(tf.keras.layers.Layer):
......@@ -454,7 +510,7 @@ class TFSequenceSummary(tf.keras.layers.Layer):
elif self.summary_type == 'first':
output = hidden_states[:, 0]
elif self.summary_type == 'mean':
output = tf.mean(hidden_states, axis=1)
output = tf.reduce_mean(hidden_states, axis=1)
elif self.summary_type == 'cls_index':
hidden_shape = shape_list(hidden_states) # e.g. [batch, num choices, seq length, hidden dims]
if cls_index is None:
......
......@@ -460,7 +460,7 @@ class TFXLMPreTrainedModel(TFPreTrainedModel):
langs_list = tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]])
else:
langs_list = None
return [inputs_list, attns_list, langs_list]
return {'input_ids': inputs_list, 'attention_mask': attns_list, 'langs': langs_list}
XLM_START_DOCSTRING = r""" The XLM model was proposed in
......@@ -576,7 +576,7 @@ class TFXLMModel(TFXLMPreTrainedModel):
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = TFXLMModel.from_pretrained('xlm-mlm-en-2048')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
......@@ -649,7 +649,7 @@ class TFXLMWithLMHeadModel(TFXLMPreTrainedModel):
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = TFXLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
......@@ -695,7 +695,7 @@ class TFXLMForSequenceClassification(TFXLMPreTrainedModel):
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = TFXLMForSequenceClassification.from_pretrained('xlm-mlm-en-2048')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
labels = tf.constant([1])[None, :] # Batch size 1
outputs = model(input_ids)
logits = outputs[0]
......@@ -743,7 +743,7 @@ class TFXLMForQuestionAnsweringSimple(TFXLMPreTrainedModel):
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = TFXLMForQuestionAnsweringSimple.from_pretrained('xlm-mlm-en-2048')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
outputs = model(input_ids)
start_scores, end_scores = outputs[:2]
......
......@@ -112,8 +112,7 @@ class TFXLNetRelativeAttention(tf.keras.layers.Layer):
def prune_heads(self, heads):
raise NotImplementedError
@staticmethod
def rel_shift(x, klen=-1):
def rel_shift(self, x, klen=-1):
"""perform relative shift to form the relative attention score."""
x_size = shape_list(x)
......@@ -135,7 +134,7 @@ class TFXLNetRelativeAttention(tf.keras.layers.Layer):
# position based attention score
bd = tf.einsum('ibnd,jbnd->ijbn', q_head + self.r_r_bias, k_head_r)
bd = self.rel_shift(bd, klen=ac.shape[1])
bd = self.rel_shift(bd, klen=shape_list(ac)[1])
# segment based attention score
if seg_mat is None:
......@@ -192,7 +191,7 @@ class TFXLNetRelativeAttention(tf.keras.layers.Layer):
if g is not None:
###### Two-stream attention with relative positional encoding.
# content based attention score
if mems is not None and mems.shape.ndims > 1:
if mems is not None and len(shape_list(mems)) > 1:
cat = tf.concat([mems, h], axis=0)
else:
cat = h
......@@ -252,7 +251,7 @@ class TFXLNetRelativeAttention(tf.keras.layers.Layer):
else:
###### Multi-head attention with relative positional encoding
if mems is not None and mems.shape.ndims > 1:
if mems is not None and len(shape_list(mems)) > 1:
cat = tf.concat([mems, h], axis=0)
else:
cat = h
......@@ -367,7 +366,7 @@ class TFXLNetMainLayer(tf.keras.layers.Layer):
self.use_bfloat16 = config.use_bfloat16
self.initializer_range = config.initializer_range
self.word_embedding = TFSharedEmbeddings(config.n_token, config.d_model, initializer_range=config.initializer_range, name='word_embedding')
self.word_embedding = TFSharedEmbeddings(config.vocab_size, config.d_model, initializer_range=config.initializer_range, name='word_embedding')
self.layer = [TFXLNetLayer(config, name='layer_._{}'.format(i)) for i in range(config.n_layer)]
self.dropout = tf.keras.layers.Dropout(config.dropout)
......@@ -553,7 +552,7 @@ class TFXLNetMainLayer(tf.keras.layers.Layer):
assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) " \
"or attention_mask (uses 0 for padding, added for compatbility with BERT). Please choose one."
if input_mask is None and attention_mask is not None:
input_mask = 1.0 - attention_mask
input_mask = 1.0 - tf.cast(attention_mask, dtype=dtype_float)
if input_mask is not None and perm_mask is not None:
data_mask = input_mask[None] + perm_mask
elif input_mask is not None and perm_mask is None:
......@@ -565,7 +564,7 @@ class TFXLNetMainLayer(tf.keras.layers.Layer):
if data_mask is not None:
# all mems can be attended to
mems_mask = tf.zeros([tf.shape(data_mask)[0], mlen, bsz],
mems_mask = tf.zeros([shape_list(data_mask)[0], mlen, bsz],
dtype=dtype_float)
data_mask = tf.concat([mems_mask, data_mask], axis=1)
if attn_mask is None:
......@@ -590,7 +589,7 @@ class TFXLNetMainLayer(tf.keras.layers.Layer):
word_emb_k = self.word_embedding(input_ids)
output_h = self.dropout(word_emb_k, training=training)
if target_mapping is not None:
word_emb_q = tf.tile(self.mask_emb, [tf.shape(target_mapping)[0], bsz, 1])
word_emb_q = tf.tile(self.mask_emb, [shape_list(target_mapping)[0], bsz, 1])
# else: # We removed the inp_q input which was same as target mapping
# inp_q_ext = inp_q[:, :, None]
# word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
......@@ -812,7 +811,7 @@ class TFXLNetModel(TFXLNetPreTrainedModel):
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = TFXLNetModel.from_pretrained('xlnet-large-cased')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
......@@ -856,7 +855,7 @@ class TFXLNetLMHeadModel(TFXLNetPreTrainedModel):
model = TFXLNetLMHeadModel.from_pretrained('xlnet-large-cased')
# We show how to setup inputs to predict a next token using a bi-directional context.
input_ids = tf.constant(tokenizer.encode("Hello, my dog is very <mask>"))[None, :] # We will predict the masked token
input_ids = tf.constant(tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=True))[None, :] # We will predict the masked token
perm_mask = tf.zeros((1, input_ids.shape[1], input_ids.shape[1]))
perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
target_mapping = tf.zeros((1, 1, input_ids.shape[1])) # Shape [1, 1, seq_length] => let's predict one token
......@@ -912,7 +911,7 @@ class TFXLNetForSequenceClassification(TFXLNetPreTrainedModel):
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = TFXLNetForSequenceClassification.from_pretrained('xlnet-large-cased')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
outputs = model(input_ids)
logits = outputs[0]
......@@ -939,6 +938,59 @@ class TFXLNetForSequenceClassification(TFXLNetPreTrainedModel):
return outputs # return logits, (mems), (hidden states), (attentions)
@add_start_docstrings("""XLNet Model with a token classification head on top (a linear layer on top of
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
XLNET_START_DOCSTRING, XLNET_INPUTS_DOCSTRING)
class TFXLNetForTokenClassification(TFXLNetPreTrainedModel):
r"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**scores**: ``tf.Tensor`` of shape ``(batch_size, sequence_length, config.num_labels)``
Classification scores (before SoftMax).
**mems**: (`optional`, returned when ``config.mem_len > 0``)
list of ``tf.Tensor`` (one for each layer):
that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
if config.mem_len > 0 else tuple of None. Can be used to speed up sequential decoding and attend to longer context.
See details in the docstring of the `mems` input above.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
import tensorflow as tf
from transformers import XLNetTokenizer, TFXLNetForTokenClassification
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = TFXLNetForSequenceClassification.from_pretrained('xlnet-large-cased')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
outputs = model(input_ids)
scores = outputs[0]
"""
def __init__(self, config, *inputs, **kwargs):
super(TFXLNetForTokenClassification, self).__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.transformer = TFXLNetMainLayer(config, name='transformer')
self.classifier = tf.keras.layers.Dense(config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
name='classifier')
def call(self, inputs, **kwargs):
transformer_outputs = self.transformer(inputs, **kwargs)
output = transformer_outputs[0]
logits = self.classifier(output)
outputs = (logits,) + transformer_outputs[1:] # Keep mems, hidden states, attentions if there are in it
return outputs # return logits, (mems), (hidden states), (attentions)
# @add_start_docstrings("""XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
# the hidden-states output to compute `span start logits` and `span end logits`). """,
# XLNET_START_DOCSTRING, XLNET_INPUTS_DOCSTRING)
......@@ -970,7 +1022,7 @@ class TFXLNetForQuestionAnsweringSimple(TFXLNetPreTrainedModel):
tokenizer = XLNetTokenizer.from_pretrained('xlnet-base-cased')
model = TFXLNetForQuestionAnsweringSimple.from_pretrained('xlnet-base-cased')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
outputs = model(input_ids)
start_scores, end_scores = outputs[:2]
......@@ -1034,7 +1086,7 @@ class TFXLNetForQuestionAnsweringSimple(TFXLNetPreTrainedModel):
# tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
# model = XLMForQuestionAnswering.from_pretrained('xlnet-large-cased')
# input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
# input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
# start_positions = tf.constant([1])
# end_positions = tf.constant([3])
# outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
......
......@@ -582,7 +582,7 @@ class TransfoXLModel(TransfoXLPreTrainedModel):
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
model = TransfoXLModel.from_pretrained('transfo-xl-wt103')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states, mems = outputs[:2]
......@@ -592,14 +592,14 @@ class TransfoXLModel(TransfoXLPreTrainedModel):
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.n_token = config.n_token
self.n_token = config.vocab_size
self.d_embed = config.d_embed
self.d_model = config.d_model
self.n_head = config.n_head
self.d_head = config.d_head
self.word_emb = AdaptiveEmbedding(config.n_token, config.d_embed, config.d_model, config.cutoffs,
self.word_emb = AdaptiveEmbedding(config.vocab_size, config.d_embed, config.d_model, config.cutoffs,
div_val=config.div_val)
self.drop = nn.Dropout(config.dropout)
......@@ -825,7 +825,7 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
model = TransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
prediction_scores, mems = outputs[:2]
......@@ -836,11 +836,11 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
self.sample_softmax = config.sample_softmax
# use sampled softmax
if config.sample_softmax > 0:
self.out_layer = nn.Linear(config.d_model, config.n_token)
self.sampler = LogUniformSampler(config.n_token, config.sample_softmax)
self.out_layer = nn.Linear(config.d_model, config.vocab_size)
self.sampler = LogUniformSampler(config.vocab_size, config.sample_softmax)
# use adaptive softmax (including standard softmax)
else:
self.crit = ProjectedAdaptiveLogSoftmax(config.n_token, config.d_embed, config.d_model,
self.crit = ProjectedAdaptiveLogSoftmax(config.vocab_size, config.d_embed, config.d_model,
config.cutoffs, div_val=config.div_val)
self.init_weights()
......
......@@ -31,11 +31,11 @@ from torch.nn import CrossEntropyLoss
from torch.nn import functional as F
from .configuration_utils import PretrainedConfig
from .file_utils import cached_path, WEIGHTS_NAME, TF_WEIGHTS_NAME, TF2_WEIGHTS_NAME
from .file_utils import (TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, WEIGHTS_NAME, DUMMY_INPUTS,
cached_path, hf_bucket_url, is_remote_url)
logger = logging.getLogger(__name__)
try:
from torch.nn import Identity
except ImportError:
......@@ -71,6 +71,15 @@ class PreTrainedModel(nn.Module):
load_tf_weights = lambda model, config, path: None
base_model_prefix = ""
@property
def dummy_inputs(self):
""" Dummy inputs to do a forward pass in the network.
Returns:
torch.Tensor with dummy inputs
"""
return {'input_ids': torch.tensor(DUMMY_INPUTS)}
def __init__(self, config, *inputs, **kwargs):
super(PreTrainedModel, self).__init__()
if not isinstance(config, PretrainedConfig):
......@@ -160,8 +169,7 @@ class PreTrainedModel(nn.Module):
base_model.vocab_size = new_num_tokens
# Tie weights again if needed
if hasattr(self, 'tie_weights'):
self.tie_weights()
self.tie_weights()
return model_embeds
......@@ -265,6 +273,7 @@ class PreTrainedModel(nn.Module):
pretrained_model_name_or_path: either:
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- None if you are both providing the configuration and state dictionary (resp. with keyword arguments ``config`` and ``state_dict``)
......@@ -272,7 +281,9 @@ class PreTrainedModel(nn.Module):
model_args: (`optional`) Sequence of positional arguments:
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
config: (`optional`) one of:
- an instance of a class derived from :class:`~transformers.PretrainedConfig`, or
- a string valid as input to :func:`~transformers.PretrainedConfig.from_pretrained()`
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
......@@ -291,6 +302,9 @@ class PreTrainedModel(nn.Module):
force_download: (`optional`) boolean, default False:
Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
resume_download: (`optional`) boolean, default False:
Do not delete incompletely recieved file. Attempt to resume the download if such a file exists.
proxies: (`optional`) dict, default None:
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
The proxies are used on each request.
......@@ -320,15 +334,18 @@ class PreTrainedModel(nn.Module):
cache_dir = kwargs.pop('cache_dir', None)
from_tf = kwargs.pop('from_tf', False)
force_download = kwargs.pop('force_download', False)
resume_download = kwargs.pop('resume_download', False)
proxies = kwargs.pop('proxies', None)
output_loading_info = kwargs.pop('output_loading_info', False)
# Load config
if config is None:
# Load config if we don't provide a configuration
if not isinstance(config, PretrainedConfig):
config_path = config if config is not None else pretrained_model_name_or_path
config, model_kwargs = cls.config_class.from_pretrained(
pretrained_model_name_or_path, *model_args,
config_path, *model_args,
cache_dir=cache_dir, return_unused_kwargs=True,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
**kwargs
)
......@@ -353,15 +370,21 @@ class PreTrainedModel(nn.Module):
raise EnvironmentError("Error no file named {} found in directory {} or `from_tf` set to False".format(
[WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + ".index"],
pretrained_model_name_or_path))
elif os.path.isfile(pretrained_model_name_or_path):
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
archive_file = pretrained_model_name_or_path
else:
assert from_tf, "Error finding file {}, no file or TF 1.X checkpoint found".format(pretrained_model_name_or_path)
elif os.path.isfile(pretrained_model_name_or_path + ".index"):
assert from_tf, "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format(
pretrained_model_name_or_path + ".index")
archive_file = pretrained_model_name_or_path + ".index"
else:
archive_file = hf_bucket_url(pretrained_model_name_or_path, postfix=WEIGHTS_NAME)
if from_tf:
raise EnvironmentError("Loading a PyTorch model from a TF checkpoint is not supported when using a model identifier name.")
# redirect to the cache, if necessary
try:
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies)
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir, force_download=force_download,
proxies=proxies, resume_download=resume_download)
except EnvironmentError:
if pretrained_model_name_or_path in cls.pretrained_model_archive_map:
msg = "Couldn't reach server at '{}' to download pretrained weights.".format(
......@@ -388,7 +411,11 @@ class PreTrainedModel(nn.Module):
model = cls(config, *model_args, **model_kwargs)
if state_dict is None and not from_tf:
state_dict = torch.load(resolved_archive_file, map_location='cpu')
try:
state_dict = torch.load(resolved_archive_file, map_location='cpu')
except:
raise OSError("Unable to load weights from pytorch checkpoint file. "
"If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. ")
missing_keys = []
unexpected_keys = []
......@@ -458,8 +485,7 @@ class PreTrainedModel(nn.Module):
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
model.__class__.__name__, "\n\t".join(error_msgs)))
if hasattr(model, 'tie_weights'):
model.tie_weights() # make sure word embedding weights are still tied
model.tie_weights() # make sure word embedding weights are still tied if needed
# Set model in evaluation mode to desactivate DropOut modules by default
model.eval()
......@@ -728,7 +754,7 @@ class SequenceSummary(nn.Module):
def __init__(self, config):
super(SequenceSummary, self).__init__()
self.summary_type = config.summary_type if hasattr(config, 'summary_use_proj') else 'last'
self.summary_type = config.summary_type if hasattr(config, 'summary_type') else 'last'
if self.summary_type == 'attn':
# We should use a standard multi-head attention module with absolute positional embedding for that.
# Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
......
......@@ -227,6 +227,16 @@ class XLMPreTrainedModel(PreTrainedModel):
def __init__(self, *inputs, **kwargs):
super(XLMPreTrainedModel, self).__init__(*inputs, **kwargs)
@property
def dummy_inputs(self):
inputs_list = torch.tensor([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]])
attns_list = torch.tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]])
if self.config.use_lang_emb and self.config.n_langs > 1:
langs_list = torch.tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]])
else:
langs_list = None
return {'input_ids': inputs_list, 'attention_mask': attns_list, 'langs': langs_list}
def _init_weights(self, module):
""" Initialize the weights. """
if isinstance(module, nn.Embedding):
......@@ -336,7 +346,7 @@ class XLMModel(XLMPreTrainedModel):
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMModel.from_pretrained('xlm-mlm-en-2048')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
......@@ -624,7 +634,7 @@ class XLMWithLMHeadModel(XLMPreTrainedModel):
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
......@@ -646,7 +656,7 @@ class XLMWithLMHeadModel(XLMPreTrainedModel):
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds)
......@@ -686,7 +696,7 @@ class XLMForSequenceClassification(XLMPreTrainedModel):
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMForSequenceClassification.from_pretrained('xlm-mlm-en-2048')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, logits = outputs[:2]
......@@ -770,7 +780,7 @@ class XLMForQuestionAnsweringSimple(XLMPreTrainedModel):
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMForQuestionAnsweringSimple.from_pretrained('xlm-mlm-en-2048')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
......@@ -866,7 +876,7 @@ class XLMForQuestionAnswering(XLMPreTrainedModel):
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMForQuestionAnswering.from_pretrained('xlm-mlm-en-2048')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
......
# coding=utf-8
# Copyright 2019 Facebook AI Research and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch XLM-RoBERTa model. """
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import logging
from .modeling_roberta import RobertaModel, RobertaForMaskedLM, RobertaForSequenceClassification, RobertaForMultipleChoice, RobertaForTokenClassification
from .configuration_xlm_roberta import XLMRobertaConfig
from .file_utils import add_start_docstrings
logger = logging.getLogger(__name__)
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP = {
'xlm-roberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-roberta-base-pytorch_model.bin",
'xlm-roberta-large': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-roberta-large-pytorch_model.bin",
'xlm-roberta-large-finetuned-conll02-dutch': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-roberta-large-finetuned-conll02-dutch-pytorch_model.bin",
'xlm-roberta-large-finetuned-conll02-spanish': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-roberta-large-finetuned-conll02-spanish-pytorch_model.bin",
'xlm-roberta-large-finetuned-conll03-english': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-roberta-large-finetuned-conll03-english-pytorch_model.bin",
'xlm-roberta-large-finetuned-conll03-german': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-roberta-large-finetuned-conll03-german-pytorch_model.bin",
}
XLM_ROBERTA_START_DOCSTRING = r""" The XLM-RoBERTa model was proposed in
`Unsupervised Cross-lingual Representation Learning at Scale`_
by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. It is based on Facebook's RoBERTa model released in 2019.
It is a large multi-lingual language model, trained on 2.5TB of filtered CommonCrawl data.
This implementation is the same as RoBERTa.
This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
refer to the PyTorch documentation for all matter related to general usage and behavior.
.. _`Unsupervised Cross-lingual Representation Learning at Scale`:
https://arxiv.org/abs/1911.02116
.. _`torch.nn.Module`:
https://pytorch.org/docs/stable/nn.html#module
Parameters:
config (:class:`~transformers.XLMRobertaConfig`): Model configuration class with all the parameters of the
model. Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
XLM_ROBERTA_INPUTS_DOCSTRING = r"""
Inputs:
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Indices of input sequence tokens in the vocabulary.
To match pre-training, XLM-RoBERTa input sequence should be formatted with <s> and </s> tokens as follows:
(a) For sequence pairs:
``tokens: <s> Is this Jacksonville ? </s> </s> No it is not . </s>``
(b) For single sequences:
``tokens: <s> the dog is hairy . </s>``
Fully encoded sequences or sequence pairs can be obtained using the XLMRobertaTokenizer.encode function with
the ``add_special_tokens`` parameter set to ``True``.
XLM-RoBERTa is a model with absolute position embeddings so it's usually advised to pad the inputs on
the right rather than the left.
See :func:`transformers.PreTrainedTokenizer.encode` and
:func:`transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
**token_type_ids**: (`optional` need to be trained) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Optional segment token indices to indicate first and second portions of the inputs.
This embedding matrice is not trained (not pretrained during XLM-RoBERTa pretraining), you will have to train it
during finetuning.
Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
corresponds to a `sentence B` token
(see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details).
**position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Indices of positions of each input sequence tokens in the position embeddings.
Selected in the range ``[0, config.max_position_embeddings - 1[``.
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
Mask to nullify selected heads of the self-attention modules.
Mask values selected in ``[0, 1]``:
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
**inputs_embeds**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, embedding_dim)``:
Optionally, instead of passing ``input_ids`` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
"""
@add_start_docstrings("The bare XLM-RoBERTa Model transformer outputting raw hidden-states without any specific head on top.",
XLM_ROBERTA_START_DOCSTRING, XLM_ROBERTA_INPUTS_DOCSTRING)
class XLMRobertaModel(RobertaModel):
r"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
Sequence of hidden-states at the output of the last layer of the model.
**pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
Last layer hidden-state of the first token of the sequence (classification token)
further processed by a Linear layer and a Tanh activation function. The Linear
layer weights are trained from the next sentence prediction (classification)
eo match pre-training, XLM-RoBERTa input sequence should be formatted with <s> and </s> tokens as follows:
(a) For sequence pairs:
``tokens: <s> is this jack ##son ##ville ? </s> </s> no it is not . </s>``
``token_type_ids: 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1``
(b) For single sequences:
``tokens: <s> the dog is hairy . </s>``
``token_type_ids: 0 0 0 0 0 0 0``
objective during Bert pretraining. This output is usually *not* a good summary
of the semantic content of the input, you're often better with averaging or pooling
the sequence of hidden-states for the whole input sequence.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = XLMRobertaTokenizer.from_pretrained('xlm-roberta-large')
model = XLMRobertaModel.from_pretrained('xlm-roberta-large')
input_ids = torch.tensor(tokenizer.encode("Schloß Nymphenburg ist sehr schön .")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
config_class = XLMRobertaConfig
pretrained_model_archive_map = XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
@add_start_docstrings("""XLM-RoBERTa Model with a `language modeling` head on top. """,
XLM_ROBERTA_START_DOCSTRING, XLM_ROBERTA_INPUTS_DOCSTRING)
class XLMRobertaForMaskedLM(RobertaForMaskedLM):
r"""
**masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Labels for computing the masked language modeling loss.
Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
in ``[0, ..., config.vocab_size]``
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Masked language modeling loss.
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = XLMRobertaTokenizer.from_pretrained('xlm-roberta-large')
model = XLMRobertaForMaskedLM.from_pretrained('xlm-roberta-large')
input_ids = torch.tensor(tokenizer.encode("Schloß Nymphenburg ist sehr schön .")).unsqueeze(0) # Batch size 1
outputs = model(input_ids, masked_lm_labels=input_ids)
loss, prediction_scores = outputs[:2]
"""
config_class = XLMRobertaConfig
pretrained_model_archive_map = XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
@add_start_docstrings("""XLM-RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer
on top of the pooled output) e.g. for GLUE tasks. """,
XLM_ROBERTA_START_DOCSTRING, XLM_ROBERTA_INPUTS_DOCSTRING)
class XLMRobertaForSequenceClassification(RobertaForSequenceClassification):
r"""
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
Labels for computing the sequence classification/regression loss.
Indices should be in ``[0, ..., config.num_labels]``.
If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Classification (or regression if config.num_labels==1) loss.
**logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
Classification (or regression if config.num_labels==1) scores (before SoftMax).
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = XLMRobertaTokenizer.from_pretrained('xlm-roberta-large')
model = XLMRobertaForSequenceClassification.from_pretrained('xlm-roberta-large')
input_ids = torch.tensor(tokenizer.encode("Schloß Nymphenburg ist sehr schön .")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, logits = outputs[:2]
"""
config_class = XLMRobertaConfig
pretrained_model_archive_map = XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
@add_start_docstrings("""XLM-RoBERTa Model with a multiple choice classification head on top (a linear layer on top of
the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
XLM_ROBERTA_START_DOCSTRING, XLM_ROBERTA_INPUTS_DOCSTRING)
class XLMRobertaForMultipleChoice(RobertaForMultipleChoice):
r"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Classification loss.
**classification_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` where `num_choices` is the size of the second dimension
of the input tensors. (see `input_ids` above).
Classification scores (before SoftMax).
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = XLMRobertaTokenizer.from_pretrained('xlm-roberta-large')
model = XLMRobertaForMultipleChoice.from_pretrained('xlm-roberta-large')
choices = ["Schloß Nymphenburg ist sehr schön .", "Der Schloßkanal auch !"]
input_ids = torch.tensor([tokenizer.encode(s, add_special_tokens=True) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
labels = torch.tensor(1).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, classification_scores = outputs[:2]
"""
config_class = XLMRobertaConfig
pretrained_model_archive_map = XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
@add_start_docstrings("""XLM-RoBERTa Model with a token classification head on top (a linear layer on top of
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
XLM_ROBERTA_START_DOCSTRING, XLM_ROBERTA_INPUTS_DOCSTRING)
class XLMRobertaForTokenClassification(RobertaForTokenClassification):
r"""
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Labels for computing the token classification loss.
Indices should be in ``[0, ..., config.num_labels - 1]``.
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Classification loss.
**scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.num_labels)``
Classification scores (before SoftMax).
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = XLMRobertaTokenizer.from_pretrained('xlm-roberta-large')
model = XLMRobertaForTokenClassification.from_pretrained('xlm-roberta-large')
input_ids = torch.tensor(tokenizer.encode("Schloß Nymphenburg ist sehr schön .", add_special_tokens=True)).unsqueeze(0) # Batch size 1
labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, scores = outputs[:2]
"""
config_class = XLMRobertaConfig
pretrained_model_archive_map = XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
......@@ -583,12 +583,13 @@ class XLNetModel(XLNetPreTrainedModel):
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
When ``target_mapping is not None``, the attentions outputs are a list of 2-tuple of ``torch.FloatTensor``.
Examples::
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLNetModel.from_pretrained('xlnet-large-cased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
......@@ -608,7 +609,7 @@ class XLNetModel(XLNetPreTrainedModel):
self.clamp_len = config.clamp_len
self.n_layer = config.n_layer
self.word_embedding = nn.Embedding(config.n_token, config.d_model)
self.word_embedding = nn.Embedding(config.vocab_size, config.d_model)
self.mask_emb = nn.Parameter(torch.FloatTensor(1, 1, config.d_model))
self.layer = nn.ModuleList([XLNetLayer(config) for _ in range(config.n_layer)])
self.dropout = nn.Dropout(config.dropout)
......@@ -878,7 +879,11 @@ class XLNetModel(XLNetPreTrainedModel):
hidden_states = tuple(hs.permute(1, 0, 2).contiguous() for hs in hidden_states)
outputs = outputs + (hidden_states,)
if self.output_attentions:
attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
if target_mapping is not None:
# when target_mapping is provided, there are 2-tuple of attentions
attentions = tuple(tuple(att_stream.permute(2, 3, 0, 1).contiguous() for att_stream in t) for t in attentions)
else:
attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
outputs = outputs + (attentions,)
return outputs # outputs, (new_mems), (hidden_states), (attentions)
......@@ -913,13 +918,14 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
When ``target_mapping is not None``, the attentions outputs are a list of 2-tuple of ``torch.FloatTensor``.
Examples::
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLNetLMHeadModel.from_pretrained('xlnet-large-cased')
# We show how to setup inputs to predict a next token using a bi-directional context.
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>")).unsqueeze(0) # We will predict the masked token
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=True)).unsqueeze(0) # We will predict the masked token
perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float) # Shape [1, 1, seq_length] => let's predict one token
......@@ -934,7 +940,7 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
self.same_length = config.same_length
self.transformer = XLNetModel(config)
self.lm_loss = nn.Linear(config.d_model, config.n_token, bias=True)
self.lm_loss = nn.Linear(config.d_model, config.vocab_size, bias=True)
self.init_weights()
......@@ -995,12 +1001,13 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel):
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
When ``target_mapping is not None``, the attentions outputs are a list of 2-tuple of ``torch.FloatTensor``.
Examples::
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLNetForSequenceClassification.from_pretrained('xlnet-large-cased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, logits = outputs[:2]
......@@ -1046,6 +1053,106 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel):
return outputs # return (loss), logits, (mems), (hidden states), (attentions)
@add_start_docstrings("""XLNet Model with a token classification head on top (a linear layer on top of
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
XLNET_START_DOCSTRING,
XLNET_INPUTS_DOCSTRING)
class XLNetForTokenClassification(XLNetPreTrainedModel):
r"""
Inputs:
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
Indices of input sequence tokens in the vocabulary.
The second dimension of the input (`num_choices`) indicates the number of choices to scores.
**token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Segment token indices to indicate first and second portions of the inputs.
Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
Mask to nullify selected heads of the self-attention modules.
Mask values selected in ``[0, 1]``:
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
**inputs_embeds**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, embedding_dim)``:
Optionally, instead of passing ``input_ids`` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
Labels for computing the multiple choice classification loss.
Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
of the input tensors. (see `input_ids` above)
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Classification loss.
**scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.num_labels)``
Classification scores (before SoftMax).
**mems**: (`optional`, returned when ``config.mem_len > 0``)
list of ``torch.FloatTensor`` (one for each layer):
that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
if config.mem_len > 0 else tuple of None. Can be used to speed up sequential decoding and attend to longer context.
See details in the docstring of the `mems` input above.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLNetForSequenceClassification.from_pretrained('xlnet-large-cased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
scores = outputs[0]
"""
def __init__(self, config):
super(XLNetForTokenClassification, self).__init__(config)
self.num_labels = config.num_labels
self.transformer = XLNetModel(config)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
def forward(self, input_ids=None, attention_mask=None, mems=None, perm_mask=None, target_mapping=None,
token_type_ids=None, input_mask=None, head_mask=None, inputs_embeds=None, labels=None):
outputs = self.transformer(input_ids,
attention_mask=attention_mask,
mems=mems,
perm_mask=perm_mask,
target_mapping=target_mapping,
token_type_ids=token_type_ids,
input_mask=input_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
outputs = (logits,) + outputs[1:] # Keep mems, hidden states, attentions if there are in it
if labels is not None:
loss_fct = CrossEntropyLoss()
# Only keep active parts of the loss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)[active_loss]
active_labels = labels.view(-1)[active_loss]
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
outputs = (loss,) + outputs
return outputs # return (loss), logits, (mems), (hidden states), (attentions)
@add_start_docstrings("""XLNet Model with a multiple choice classification head on top (a linear layer on top of
the pooled output and a softmax) e.g. for RACE/SWAG tasks. """,
XLNET_START_DOCSTRING, XLNET_INPUTS_DOCSTRING)
......@@ -1095,6 +1202,7 @@ class XLNetForMultipleChoice(XLNetPreTrainedModel):
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
When ``target_mapping is not None``, the attentions outputs are a list of 2-tuple of ``torch.FloatTensor``.
Examples::
......@@ -1180,12 +1288,13 @@ class XLNetForQuestionAnsweringSimple(XLNetPreTrainedModel):
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
When ``target_mapping is not None``, the attentions outputs are a list of 2-tuple of ``torch.FloatTensor``.
Examples::
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMForQuestionAnswering.from_pretrained('xlnet-large-cased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
......@@ -1294,12 +1403,13 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel):
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
When ``target_mapping is not None``, the attentions outputs are a list of 2-tuple of ``torch.FloatTensor``.
Examples::
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLMForQuestionAnswering.from_pretrained('xlnet-large-cased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
......
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions and classes related to optimization (weight updates)."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import re
import tensorflow as tf
class WarmUp(tf.keras.optimizers.schedules.LearningRateSchedule):
"""Applys a warmup schedule on a given learning rate decay schedule."""
def __init__(
self,
initial_learning_rate,
decay_schedule_fn,
warmup_steps,
power=1.0,
name=None):
super(WarmUp, self).__init__()
self.initial_learning_rate = initial_learning_rate
self.warmup_steps = warmup_steps
self.power = power
self.decay_schedule_fn = decay_schedule_fn
self.name = name
def __call__(self, step):
with tf.name_scope(self.name or 'WarmUp') as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
global_step_float = tf.cast(step, tf.float32)
warmup_steps_float = tf.cast(self.warmup_steps, tf.float32)
warmup_percent_done = global_step_float / warmup_steps_float
warmup_learning_rate = (
self.initial_learning_rate *
tf.math.pow(warmup_percent_done, self.power))
return tf.cond(global_step_float < warmup_steps_float,
lambda: warmup_learning_rate,
lambda: self.decay_schedule_fn(step),
name=name)
def get_config(self):
return {
'initial_learning_rate': self.initial_learning_rate,
'decay_schedule_fn': self.decay_schedule_fn,
'warmup_steps': self.warmup_steps,
'power': self.power,
'name': self.name
}
def create_optimizer(init_lr, num_train_steps, num_warmup_steps):
"""Creates an optimizer with learning rate schedule."""
# Implements linear decay of the learning rate.
learning_rate_fn = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=init_lr,
decay_steps=num_train_steps,
end_learning_rate=0.0)
if num_warmup_steps:
learning_rate_fn = WarmUp(initial_learning_rate=init_lr,
decay_schedule_fn=learning_rate_fn,
warmup_steps=num_warmup_steps)
optimizer = AdamWeightDecay(
learning_rate=learning_rate_fn,
weight_decay_rate=0.01,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-6,
exclude_from_weight_decay=['layer_norm', 'bias'])
return optimizer
class AdamWeightDecay(tf.keras.optimizers.Adam):
"""Adam enables L2 weight decay and clip_by_global_norm on gradients.
Just adding the square of the weights to the loss function is *not* the
correct way of using L2 regularization/weight decay with Adam, since that will
interact with the m and v parameters in strange ways.
Instead we want ot decay the weights in a manner that doesn't interact with
the m/v parameters. This is equivalent to adding the square of the weights to
the loss with plain (non-momentum) SGD.
"""
def __init__(self,
learning_rate=0.001,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-7,
amsgrad=False,
weight_decay_rate=0.0,
include_in_weight_decay=None,
exclude_from_weight_decay=None,
name='AdamWeightDecay',
**kwargs):
super(AdamWeightDecay, self).__init__(
learning_rate, beta_1, beta_2, epsilon, amsgrad, name, **kwargs)
self.weight_decay_rate = weight_decay_rate
self._include_in_weight_decay = include_in_weight_decay
self._exclude_from_weight_decay = exclude_from_weight_decay
@classmethod
def from_config(cls, config):
"""Creates an optimizer from its config with WarmUp custom object."""
custom_objects = {'WarmUp': WarmUp}
return super(AdamWeightDecay, cls).from_config(
config, custom_objects=custom_objects)
def _prepare_local(self, var_device, var_dtype, apply_state):
super(AdamWeightDecay, self)._prepare_local(var_device, var_dtype,
apply_state)
apply_state['weight_decay_rate'] = tf.constant(
self.weight_decay_rate, name='adam_weight_decay_rate')
def _decay_weights_op(self, var, learning_rate, apply_state):
do_decay = self._do_use_weight_decay(var.name)
if do_decay:
return var.assign_sub(
learning_rate * var *
apply_state['weight_decay_rate'],
use_locking=self._use_locking)
return tf.no_op()
def apply_gradients(self, grads_and_vars, clip_norm, name=None):
grads, tvars = list(zip(*grads_and_vars))
(grads, _) = tf.clip_by_global_norm(grads, clip_norm=clip_norm)
return super(AdamWeightDecay, self).apply_gradients(zip(grads, tvars))
def _get_lr(self, var_device, var_dtype, apply_state):
"""Retrieves the learning rate with the given state."""
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
apply_state = apply_state or {}
coefficients = apply_state.get((var_device, var_dtype))
if coefficients is None:
coefficients = self._fallback_apply_state(var_device, var_dtype)
apply_state[(var_device, var_dtype)] = coefficients
return coefficients['lr_t'], dict(apply_state=apply_state)
def _resource_apply_dense(self, grad, var, apply_state=None):
lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
decay = self._decay_weights_op(var, lr_t, apply_state)
with tf.control_dependencies([decay]):
return super(AdamWeightDecay, self)._resource_apply_dense(
grad, var, **kwargs)
def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
decay = self._decay_weights_op(var, lr_t, apply_state)
with tf.control_dependencies([decay]):
return super(AdamWeightDecay, self)._resource_apply_sparse(
grad, var, indices, **kwargs)
def get_config(self):
config = super(AdamWeightDecay, self).get_config()
config.update({
'weight_decay_rate': self.weight_decay_rate,
})
return config
def _do_use_weight_decay(self, param_name):
"""Whether to use L2 weight decay for `param_name`."""
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(r, param_name) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(r, param_name) is not None:
return False
return True
## Inspired from https://github.com/OpenNMT/OpenNMT-tf/blob/master/opennmt/optimizers/utils.py
class GradientAccumulator(object):
"""Distribution strategies-aware gradient accumulation utility."""
def __init__(self):
"""Initializes the accumulator."""
self._gradients = []
self._accum_steps = tf.Variable(
initial_value=0,
dtype=tf.int64,
trainable=False,
aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA)
@property
def step(self):
"""Number of accumulated steps."""
return self._accum_steps.value()
@property
def gradients(self):
"""The accumulated gradients."""
return list(gradient.value() if gradient is not None else gradient for gradient in self._get_replica_gradients())
def __call__(self, gradients):
"""Accumulates :obj:`gradients`."""
if not self._gradients:
self._gradients.extend([tf.Variable(tf.zeros_like(gradient), trainable=False) if gradient is not None else gradient for gradient in gradients])
if len(gradients) != len(self._gradients):
raise ValueError("Expected %s gradients, but got %d" % (len(self._gradients), len(gradients)))
for accum_gradient, gradient in zip(self._get_replica_gradients(), gradients):
if accum_gradient is not None:
accum_gradient.assign_add(gradient)
self._accum_steps.assign_add(1)
def reset(self):
"""Resets the accumulated gradients."""
if self._gradients:
self._accum_steps.assign(0)
for gradient in self._get_replica_gradients():
if gradient is not None:
gradient.assign(tf.zeros_like(gradient))
def _get_replica_gradients(self):
if tf.distribute.has_strategy():
# In a replica context, we want to accumulate gradients on each replica
# without synchronization, so we directly assign the value of the
# current replica.
replica_context = tf.distribute.get_replica_context()
if replica_context is None or tf.distribute.get_strategy().num_replicas_in_sync == 1:
return self._gradients
return (gradient.device_map.select_for_current_replica(gradient.values, replica_context) for gradient in self._gradients)
else:
return self._gradients
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function, unicode_literals
import sys
import csv
import json
import os
import pickle
import logging
import six
from abc import ABC, abstractmethod
from contextlib import contextmanager
from itertools import groupby
from os.path import abspath, exists
from typing import Union, Optional, Tuple, List, Dict
import numpy as np
from transformers import (AutoConfig, AutoTokenizer, PreTrainedTokenizer,
PretrainedConfig, ModelCard, SquadExample,
squad_convert_examples_to_features, is_tf_available,
is_torch_available, BasicTokenizer,
ALL_PRETRAINED_CONFIG_ARCHIVE_MAP)
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModel, TFAutoModelForSequenceClassification, \
TFAutoModelForQuestionAnswering, TFAutoModelForTokenClassification
if is_torch_available():
import torch
from transformers import AutoModel, AutoModelForSequenceClassification, \
AutoModelForQuestionAnswering, AutoModelForTokenClassification
logger = logging.getLogger(__name__)
def get_framework(model=None):
""" Select framework (TensorFlow/PyTorch) to use.
If both frameworks are installed and no specific model is provided, defaults to using PyTorch.
"""
if is_tf_available() and is_torch_available() and model is not None and not isinstance(model, str):
# Both framework are available but the use supplied a model class instance.
# Try to guess which framework to use from the model classname
framework = 'tf' if model.__class__.__name__.startswith('TF') else 'pt'
elif not is_tf_available() and not is_torch_available():
raise ImportError("At least one of TensorFlow 2.0 or PyTorch should be installed. "
"To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ "
"To install PyTorch, read the instructions at https://pytorch.org/.")
else:
# framework = 'tf' if is_tf_available() else 'pt'
framework = 'pt' if is_torch_available() else 'tf'
return framework
class ArgumentHandler(ABC):
"""
Base interface for handling varargs for each Pipeline
"""
@abstractmethod
def __call__(self, *args, **kwargs):
raise NotImplementedError()
class DefaultArgumentHandler(ArgumentHandler):
"""
Default varargs argument parser handling parameters for each Pipeline
"""
def __call__(self, *args, **kwargs):
if 'X' in kwargs:
return kwargs['X']
elif 'data' in kwargs:
return kwargs['data']
elif len(args) == 1:
if isinstance(args[0], list):
return args[0]
else:
return [args[0]]
elif len(args) > 1:
return list(args)
raise ValueError('Unable to infer the format of the provided data (X=, data=, ...)')
class PipelineDataFormat:
"""
Base class for all the pipeline supported data format both for reading and writing.
Supported data formats currently includes:
- JSON
- CSV
- stdin/stdout (pipe)
PipelineDataFormat also includes some utilities to work with multi-columns like mapping from datasets columns
to pipelines keyword arguments through the `dataset_kwarg_1=dataset_column_1` format.
"""
SUPPORTED_FORMATS = ['json', 'csv', 'pipe']
def __init__(self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False):
self.output_path = output_path
self.input_path = input_path
self.column = column.split(',') if column is not None else ['']
self.is_multi_columns = len(self.column) > 1
if self.is_multi_columns:
self.column = [tuple(c.split('=')) if '=' in c else (c, c) for c in self.column]
if output_path is not None and not overwrite:
if exists(abspath(self.output_path)):
raise OSError('{} already exists on disk'.format(self.output_path))
if input_path is not None:
if not exists(abspath(self.input_path)):
raise OSError('{} doesnt exist on disk'.format(self.input_path))
@abstractmethod
def __iter__(self):
raise NotImplementedError()
@abstractmethod
def save(self, data: dict):
"""
Save the provided data object with the representation for the current `DataFormat`.
:param data: data to store
:return:
"""
raise NotImplementedError()
def save_binary(self, data: Union[dict, List[dict]]) -> str:
"""
Save the provided data object as a pickle-formatted binary data on the disk.
:param data: data to store
:return: (str) Path where the data has been saved
"""
path, _ = os.path.splitext(self.output_path)
binary_path = os.path.extsep.join((path, 'pickle'))
with open(binary_path, 'wb+') as f_output:
pickle.dump(data, f_output)
return binary_path
@staticmethod
def from_str(format: str, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False):
if format == 'json':
return JsonPipelineDataFormat(output_path, input_path, column, overwrite=overwrite)
elif format == 'csv':
return CsvPipelineDataFormat(output_path, input_path, column, overwrite=overwrite)
elif format == 'pipe':
return PipedPipelineDataFormat(output_path, input_path, column, overwrite=overwrite)
else:
raise KeyError('Unknown reader {} (Available reader are json/csv/pipe)'.format(format))
class CsvPipelineDataFormat(PipelineDataFormat):
def __init__(self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False):
super().__init__(output_path, input_path, column, overwrite=overwrite)
def __iter__(self):
with open(self.input_path, 'r') as f:
reader = csv.DictReader(f)
for row in reader:
if self.is_multi_columns:
yield {k: row[c] for k, c in self.column}
else:
yield row[self.column[0]]
def save(self, data: List[dict]):
with open(self.output_path, 'w') as f:
if len(data) > 0:
writer = csv.DictWriter(f, list(data[0].keys()))
writer.writeheader()
writer.writerows(data)
class JsonPipelineDataFormat(PipelineDataFormat):
def __init__(self, output_path: Optional[str], input_path: Optional[str], column: Optional[str], overwrite=False):
super().__init__(output_path, input_path, column, overwrite=overwrite)
with open(input_path, 'r') as f:
self._entries = json.load(f)
def __iter__(self):
for entry in self._entries:
if self.is_multi_columns:
yield {k: entry[c] for k, c in self.column}
else:
yield entry[self.column[0]]
def save(self, data: dict):
with open(self.output_path, 'w') as f:
json.dump(data, f)
class PipedPipelineDataFormat(PipelineDataFormat):
"""
Read data from piped input to the python process.
For multi columns data, columns should separated by \t
If columns are provided, then the output will be a dictionary with {column_x: value_x}
"""
def __iter__(self):
for line in sys.stdin:
# Split for multi-columns
if '\t' in line:
line = line.split('\t')
if self.column:
# Dictionary to map arguments
yield {kwargs: l for (kwargs, _), l in zip(self.column, line)}
else:
yield tuple(line)
# No dictionary to map arguments
else:
yield line
def save(self, data: dict):
print(data)
def save_binary(self, data: Union[dict, List[dict]]) -> str:
if self.output_path is None:
raise KeyError(
'When using piped input on pipeline outputting large object requires an output file path. '
'Please provide such output path through --output argument.'
)
return super().save_binary(data)
class _ScikitCompat(ABC):
"""
Interface layer for the Scikit and Keras compatibility.
"""
@abstractmethod
def transform(self, X):
raise NotImplementedError()
@abstractmethod
def predict(self, X):
raise NotImplementedError()
class Pipeline(_ScikitCompat):
"""
Base class implementing pipelined operations.
Pipeline workflow is defined as a sequence of the following operations:
Input -> Tokenization -> Model Inference -> Post-Processing (Task dependent) -> Output
Pipeline supports running on CPU or GPU through the device argument. Users can specify
device argument as an integer, -1 meaning "CPU", >= 0 referring the CUDA device ordinal.
Some pipeline, like for instance FeatureExtractionPipeline ('feature-extraction') outputs large
tensor object as nested-lists. In order to avoid dumping such large structure as textual data we
provide the binary_output constructor argument. If set to True, the output will be stored in the
pickle format.
Arguments:
**model**: ``(str, PretrainedModel, TFPretrainedModel)``:
Reference to the model to use through this pipeline.
**tokenizer**: ``(str, PreTrainedTokenizer)``:
Reference to the tokenizer to use through this pipeline.
**args_parser**: ``ArgumentHandler``:
Reference to the object in charge of parsing supplied pipeline parameters.
**device**: ``int``:
Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, >=0 will run the model
on the associated CUDA device id.
**binary_output** ``bool`` (default: False):
Flag indicating if the output the pipeline should happen in a binary format (i.e. pickle) or as raw text.
Return:
Pipeline returns list or dictionary depending on:
- Does the user provided multiple sample
- The pipeline expose multiple fields in the output object
Examples:
nlp = pipeline('ner')
nlp = pipeline('ner', model='...', config='...', tokenizer='...')
nlp = NerPipeline(model='...', config='...', tokenizer='...')
nlp = QuestionAnsweringPipeline(model=AutoModel.from_pretrained('...'), tokenizer='...')
"""
default_input_names = None
def __init__(self, model, tokenizer: PreTrainedTokenizer = None,
modelcard: ModelCard = None, framework: Optional[str] = None,
args_parser: ArgumentHandler = None, device: int = -1,
binary_output: bool = False):
if framework is None:
framework = get_framework()
self.model = model
self.tokenizer = tokenizer
self.modelcard = modelcard
self.framework = framework
self.device = device
self.binary_output = binary_output
self._args_parser = args_parser or DefaultArgumentHandler()
# Special handling
if self.device >= 0 and self.framework == 'pt':
self.model = self.model.to('cuda:{}'.format(self.device))
def save_pretrained(self, save_directory):
"""
Save the pipeline's model and tokenizer to the specified save_directory
"""
if not os.path.isdir(save_directory):
logger.error("Provided path ({}) should be a directory".format(save_directory))
return
self.model.save_pretrained(save_directory)
self.tokenizer.save_pretrained(save_directory)
self.modelcard.save_pretrained(save_directory)
def transform(self, X):
"""
Scikit / Keras interface to transformers' pipelines. This method will forward to __call__().
"""
return self(X=X)
def predict(self, X):
"""
Scikit / Keras interface to transformers' pipelines. This method will forward to __call__().
Se
"""
return self(X=X)
@contextmanager
def device_placement(self):
"""
Context Manager allowing tensor allocation on the user-specified device in framework agnostic way.
example:
# Explicitly ask for tensor allocation on CUDA device :0
nlp = pipeline(..., device=0)
with nlp.device_placement():
# Every framework specific tensor allocation will be done on the request device
output = nlp(...)
Returns:
Context manager
"""
if self.framework == 'tf':
with tf.device('/CPU:0' if self.device == -1 else '/device:GPU:{}'.format(self.device)):
yield
else:
if self.device >= 0:
torch.cuda.set_device(self.device)
yield
def inputs_for_model(self, features: Union[dict, List[dict]]) -> Dict:
"""
Generates the input dictionary with model-specific parameters.
Returns:
dict holding all the required parameters for model's forward
"""
args = ['input_ids', 'attention_mask']
model_type = type(self.model).__name__.lower()
if 'distilbert' not in model_type and 'xlm' not in model_type:
args += ['token_type_ids']
# PR #1548 (CLI) There is an issue with attention_mask
# if 'xlnet' in model_type or 'xlm' in model_type:
# args += ['cls_index', 'p_mask']
if isinstance(features, dict):
return {k: features[k] for k in args}
else:
return {k: [feature[k] for feature in features] for k in args}
def __call__(self, *texts, **kwargs):
# Parse arguments
inputs = self._args_parser(*texts, **kwargs)
# Encode for forward
with self.device_placement():
inputs = self.tokenizer.batch_encode_plus(
inputs, add_special_tokens=True,
return_tensors=self.framework,
max_length=self.tokenizer.max_len
)
# Filter out features not available on specific models
inputs = self.inputs_for_model(inputs)
return self._forward(inputs)
def _forward(self, inputs):
"""
Internal framework specific forward dispatching.
Args:
inputs: dict holding all the keyworded arguments for required by the model forward method.
Returns:
Numpy array
"""
if self.framework == 'tf':
# TODO trace model
predictions = self.model(inputs, training=False)[0]
else:
with torch.no_grad():
predictions = self.model(**inputs)[0].cpu()
return predictions.numpy()
class FeatureExtractionPipeline(Pipeline):
"""
Feature extraction pipeline using Model head.
"""
def __init__(self, model,
tokenizer: PreTrainedTokenizer = None,
modelcard: ModelCard = None,
framework: Optional[str] = None,
args_parser: ArgumentHandler = None,
device: int = -1):
super().__init__(model=model,
tokenizer=tokenizer,
modelcard=modelcard,
framework=framework,
args_parser=args_parser,
device=device,
binary_output=True)
def __call__(self, *args, **kwargs):
return super().__call__(*args, **kwargs).tolist()
class TextClassificationPipeline(Pipeline):
"""
Text classification pipeline using ModelForTextClassification head.
"""
def __call__(self, *args, **kwargs):
outputs = super().__call__(*args, **kwargs)
scores = np.exp(outputs) / np.exp(outputs).sum(-1)
return [{'label': self.model.config.id2label[item.argmax()], 'score': item.max()} for item in scores]
class NerPipeline(Pipeline):
"""
Named Entity Recognition pipeline using ModelForTokenClassification head.
"""
default_input_names = 'sequences'
def __init__(self, model, tokenizer: PreTrainedTokenizer = None,
modelcard: ModelCard = None, framework: Optional[str] = None,
args_parser: ArgumentHandler = None, device: int = -1,
binary_output: bool = False, ignore_labels=['O']):
super().__init__(model=model,
tokenizer=tokenizer,
modelcard=modelcard,
framework=framework,
args_parser=args_parser,
device=device,
binary_output=binary_output)
self._basic_tokenizer = BasicTokenizer(do_lower_case=False)
self.ignore_labels = ignore_labels
def __call__(self, *texts, **kwargs):
inputs, answers = self._args_parser(*texts, **kwargs), []
for sentence in inputs:
# Manage correct placement of the tensors
with self.device_placement():
tokens = self.tokenizer.encode_plus(
sentence, return_attention_mask=False,
return_tensors=self.framework,
max_length=self.tokenizer.max_len
)
# Forward
if self.framework == 'tf':
entities = self.model(tokens)[0][0].numpy()
input_ids = tokens['input_ids'].numpy()[0]
else:
with torch.no_grad():
entities = self.model(**tokens)[0][0].cpu().numpy()
input_ids = tokens['input_ids'].cpu().numpy()[0]
score = np.exp(entities) / np.exp(entities).sum(-1, keepdims=True)
labels_idx = score.argmax(axis=-1)
answer = []
for idx, label_idx in enumerate(labels_idx):
if self.model.config.id2label[label_idx] not in self.ignore_labels:
answer += [{
'word': self.tokenizer.decode([int(input_ids[idx])]),
'score': score[idx][label_idx].item(),
'entity': self.model.config.id2label[label_idx]
}]
# Append
answers += [answer]
if len(answers) == 1:
return answers[0]
return answers
class QuestionAnsweringArgumentHandler(ArgumentHandler):
"""
QuestionAnsweringPipeline requires the user to provide multiple arguments (i.e. question & context) to be mapped
to internal SquadExample / SquadFeature structures.
QuestionAnsweringArgumentHandler manages all the possible to create SquadExample from the command-line supplied
arguments.
"""
def __call__(self, *args, **kwargs):
# Position args, handling is sensibly the same as X and data, so forwarding to avoid duplicating
if args is not None and len(args) > 0:
if len(args) == 1:
kwargs['X'] = args[0]
else:
kwargs['X'] = list(args)
# Generic compatibility with sklearn and Keras
# Batched data
if 'X' in kwargs or 'data' in kwargs:
inputs = kwargs['X'] if 'X' in kwargs else kwargs['data']
if isinstance(inputs, dict):
inputs = [inputs]
else:
# Copy to avoid overriding arguments
inputs = [i for i in inputs]
for i, item in enumerate(inputs):
if isinstance(item, dict):
if any(k not in item for k in ['question', 'context']):
raise KeyError('You need to provide a dictionary with keys {question:..., context:...}')
inputs[i] = QuestionAnsweringPipeline.create_sample(**item)
elif not isinstance(item, SquadExample):
raise ValueError(
'{} argument needs to be of type (list[SquadExample | dict], SquadExample, dict)'
.format('X' if 'X' in kwargs else 'data')
)
# Tabular input
elif 'question' in kwargs and 'context' in kwargs:
if isinstance(kwargs['question'], str):
kwargs['question'] = [kwargs['question']]
if isinstance(kwargs['context'], str):
kwargs['context'] = [kwargs['context']]
inputs = [QuestionAnsweringPipeline.create_sample(q, c) for q, c in zip(kwargs['question'], kwargs['context'])]
else:
raise ValueError('Unknown arguments {}'.format(kwargs))
if not isinstance(inputs, list):
inputs = [inputs]
return inputs
class QuestionAnsweringPipeline(Pipeline):
"""
Question Answering pipeline using ModelForQuestionAnswering head.
"""
default_input_names = 'question,context'
def __init__(self, model,
tokenizer: Optional[PreTrainedTokenizer],
modelcard: Optional[ModelCard],
framework: Optional[str] = None,
device: int = -1, **kwargs):
super().__init__(model=model,
tokenizer=tokenizer,
modelcard=modelcard,
framework=framework,
args_parser=QuestionAnsweringArgumentHandler(),
device=device, **kwargs)
@staticmethod
def create_sample(question: Union[str, List[str]], context: Union[str, List[str]]) -> Union[SquadExample, List[SquadExample]]:
"""
QuestionAnsweringPipeline leverages the SquadExample/SquadFeatures internally.
This helper method encapsulate all the logic for converting question(s) and context(s) to SquadExample(s).
We currently support extractive question answering.
Arguments:
question: (str, List[str]) The question to be ask for the associated context
context: (str, List[str]) The context in which we will look for the answer.
Returns:
SquadExample initialized with the corresponding question and context.
"""
if isinstance(question, list):
return [SquadExample(None, q, c, None, None, None) for q, c in zip(question, context)]
else:
return SquadExample(None, question, context, None, None, None)
def __call__(self, *texts, **kwargs):
"""
Args:
We support multiple use-cases, the following are exclusive:
X: sequence of SquadExample
data: sequence of SquadExample
question: (str, List[str]), batch of question(s) to map along with context
context: (str, List[str]), batch of context(s) associated with the provided question keyword argument
Returns:
dict: {'answer': str, 'score": float, 'start": int, "end": int}
answer: the textual answer in the intial context
score: the score the current answer scored for the model
start: the character index in the original string corresponding to the beginning of the answer' span
end: the character index in the original string corresponding to the ending of the answer' span
"""
# Set defaults values
kwargs.setdefault('topk', 1)
kwargs.setdefault('doc_stride', 128)
kwargs.setdefault('max_answer_len', 15)
kwargs.setdefault('max_seq_len', 384)
kwargs.setdefault('max_question_len', 64)
if kwargs['topk'] < 1:
raise ValueError('topk parameter should be >= 1 (got {})'.format(kwargs['topk']))
if kwargs['max_answer_len'] < 1:
raise ValueError('max_answer_len parameter should be >= 1 (got {})'.format(kwargs['max_answer_len']))
# Convert inputs to features
examples = self._args_parser(*texts, **kwargs)
features = squad_convert_examples_to_features(examples, self.tokenizer, kwargs['max_seq_len'], kwargs['doc_stride'], kwargs['max_question_len'], False)
fw_args = self.inputs_for_model([f.__dict__ for f in features])
# Manage tensor allocation on correct device
with self.device_placement():
if self.framework == 'tf':
fw_args = {k: tf.constant(v) for (k, v) in fw_args.items()}
start, end = self.model(fw_args)
start, end = start.numpy(), end.numpy()
else:
with torch.no_grad():
# Retrieve the score for the context tokens only (removing question tokens)
fw_args = {k: torch.tensor(v) for (k, v) in fw_args.items()}
start, end = self.model(**fw_args)
start, end = start.cpu().numpy(), end.cpu().numpy()
answers = []
for (example, feature, start_, end_) in zip(examples, features, start, end):
# Normalize logits and spans to retrieve the answer
start_ = np.exp(start_) / np.sum(np.exp(start_))
end_ = np.exp(end_) / np.sum(np.exp(end_))
# Mask padding and question
start_, end_ = start_ * np.abs(np.array(feature.p_mask) - 1), end_ * np.abs(np.array(feature.p_mask) - 1)
# TODO : What happens if not possible
# Mask CLS
start_[0] = end_[0] = 0
starts, ends, scores = self.decode(start_, end_, kwargs['topk'], kwargs['max_answer_len'])
char_to_word = np.array(example.char_to_word_offset)
# Convert the answer (tokens) back to the original text
answers += [
{
'score': score.item(),
'start': np.where(char_to_word == feature.token_to_orig_map[s])[0][0].item(),
'end': np.where(char_to_word == feature.token_to_orig_map[e])[0][-1].item(),
'answer': ' '.join(example.doc_tokens[feature.token_to_orig_map[s]:feature.token_to_orig_map[e] + 1])
}
for s, e, score in zip(starts, ends, scores)
]
if len(answers) == 1:
return answers[0]
return answers
def decode(self, start: np.ndarray, end: np.ndarray, topk: int, max_answer_len: int) -> Tuple:
"""
Take the output of any QuestionAnswering head and will generate probalities for each span to be
the actual answer.
In addition, it filters out some unwanted/impossible cases like answer len being greater than
max_answer_len or answer end position being before the starting position.
The method supports output the k-best answer through the topk argument.
Args:
start: numpy array, holding individual start probabilities for each token
end: numpy array, holding individual end probabilities for each token
topk: int, indicates how many possible answer span(s) to extract from the model's output
max_answer_len: int, maximum size of the answer to extract from the model's output
"""
# Ensure we have batch axis
if start.ndim == 1:
start = start[None]
if end.ndim == 1:
end = end[None]
# Compute the score of each tuple(start, end) to be the real answer
outer = np.matmul(np.expand_dims(start, -1), np.expand_dims(end, 1))
# Remove candidate with end < start and end - start > max_answer_len
candidates = np.tril(np.triu(outer), max_answer_len - 1)
# Inspired by Chen & al. (https://github.com/facebookresearch/DrQA)
scores_flat = candidates.flatten()
if topk == 1:
idx_sort = [np.argmax(scores_flat)]
elif len(scores_flat) < topk:
idx_sort = np.argsort(-scores_flat)
else:
idx = np.argpartition(-scores_flat, topk)[0:topk]
idx_sort = idx[np.argsort(-scores_flat[idx])]
start, end = np.unravel_index(idx_sort, candidates.shape)[1:]
return start, end, candidates[0, start, end]
def span_to_answer(self, text: str, start: int, end: int):
"""
When decoding from token probalities, this method maps token indexes to actual word in
the initial context.
Args:
text: str, the actual context to extract the answer from
start: int, starting answer token index
end: int, ending answer token index
Returns:
dict: {'answer': str, 'start': int, 'end': int}
"""
words = []
token_idx = char_start_idx = char_end_idx = chars_idx = 0
for i, word in enumerate(text.split(" ")):
token = self.tokenizer.tokenize(word)
# Append words if they are in the span
if start <= token_idx <= end:
if token_idx == start:
char_start_idx = chars_idx
if token_idx == end:
char_end_idx = chars_idx + len(word)
words += [word]
# Stop if we went over the end of the answer
if token_idx > end:
break
# Append the subtokenization length to the running index
token_idx += len(token)
chars_idx += len(word) + 1
# Join text with spaces
return {'answer': ' '.join(words), 'start': max(0, char_start_idx), 'end': min(len(text), char_end_idx)}
# Register all the supported task here
SUPPORTED_TASKS = {
'feature-extraction': {
'impl': FeatureExtractionPipeline,
'tf': TFAutoModel if is_tf_available() else None,
'pt': AutoModel if is_torch_available() else None,
'default': {
'model': {
'pt': 'distilbert-base-uncased',
'tf': 'distilbert-base-uncased',
},
'config': None,
'tokenizer': 'distilbert-base-uncased'
}
},
'sentiment-analysis': {
'impl': TextClassificationPipeline,
'tf': TFAutoModelForSequenceClassification if is_tf_available() else None,
'pt': AutoModelForSequenceClassification if is_torch_available() else None,
'default': {
'model': {
'pt': 'https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-finetuned-sst-2-english-pytorch_model.bin',
'tf': 'https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-finetuned-sst-2-english-tf_model.h5',
},
'config': 'https://s3.amazonaws.com/models.huggingface.co/bert/distilbert-base-uncased-finetuned-sst-2-english-config.json',
'tokenizer': 'distilbert-base-uncased'
}
},
'ner': {
'impl': NerPipeline,
'tf': TFAutoModelForTokenClassification if is_tf_available() else None,
'pt': AutoModelForTokenClassification if is_torch_available() else None,
'default': {
'model': {
'pt':'https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-finetuned-conll03-english-pytorch_model.bin',
'tf': 'https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-finetuned-conll03-english-tf_model.h5',
},
'config': 'https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-finetuned-conll03-english-config.json',
'tokenizer': 'bert-large-cased'
}
},
'question-answering': {
'impl': QuestionAnsweringPipeline,
'tf': TFAutoModelForQuestionAnswering if is_tf_available() else None,
'pt': AutoModelForQuestionAnswering if is_torch_available() else None,
'default': {
'model': {
'pt': 'distilbert-base-uncased-distilled-squad',
'tf': 'distilbert-base-uncased-distilled-squad',
},
'config': None,
'tokenizer': 'distilbert-base-uncased'
}
}
}
def pipeline(task: str, model: Optional = None,
config: Optional[Union[str, PretrainedConfig]] = None,
tokenizer: Optional[Union[str, PreTrainedTokenizer]] = None,
modelcard: Optional[Union[str, ModelCard]] = None,
**kwargs) -> Pipeline:
"""
Utility factory method to build a pipeline.
Pipeline are made of:
A Tokenizer instance in charge of mapping raw textual input to token
A Model instance
Some (optional) post processing for enhancing model's output
Examples:
pipeline('sentiment-analysis')
pipeline('question-answering', model='distilbert-base-uncased-distilled-squad', tokenizer='bert-base-cased')
pipeline('ner', model=AutoModel.from_pretrained(...), tokenizer=AutoTokenizer.from_pretrained(...)
pipeline('ner', model='https://...pytorch-model.bin', config='https://...config.json', tokenizer='bert-base-cased')
"""
# Retrieve the task
if task not in SUPPORTED_TASKS:
raise KeyError("Unknown task {}, available tasks are {}".format(task, list(SUPPORTED_TASKS.keys())))
framework = get_framework(model)
targeted_task = SUPPORTED_TASKS[task]
task, model_class = targeted_task['impl'], targeted_task[framework]
# Use default model/config/tokenizer for the task if no model is provided
if model is None:
models, config, tokenizer = tuple(targeted_task['default'].values())
model = models[framework]
# Try to infer tokenizer from model or config name (if provided as str)
if tokenizer is None:
if isinstance(model, str) and model in ALL_PRETRAINED_CONFIG_ARCHIVE_MAP:
tokenizer = model
elif isinstance(config, str) and config in ALL_PRETRAINED_CONFIG_ARCHIVE_MAP:
tokenizer = config
else:
# Impossible to guest what is the right tokenizer here
raise Exception("Impossible to guess which tokenizer to use. "
"Please provided a PretrainedTokenizer class or a path/url/shortcut name to a pretrained tokenizer.")
# Try to infer modelcard from model or config name (if provided as str)
if modelcard is None:
# Try to fallback on one of the provided string for model or config (will replace the suffix)
if isinstance(model, str):
modelcard = model
elif isinstance(config, str):
modelcard = config
# Instantiate tokenizer if needed
if isinstance(tokenizer, six.string_types):
tokenizer = AutoTokenizer.from_pretrained(tokenizer)
# Instantiate config if needed
if isinstance(config, str):
config = AutoConfig.from_pretrained(config)
# Instantiate modelcard if needed
if isinstance(modelcard, str):
modelcard = ModelCard.from_pretrained(modelcard)
# Instantiate model if needed
if isinstance(model, str):
# Handle transparent TF/PT model conversion
model_kwargs = {}
if framework == 'pt' and model.endswith('.h5'):
model_kwargs['from_tf'] = True
logger.warning('Model might be a TensorFlow model (ending with `.h5`) but TensorFlow is not available. '
'Trying to load the model with PyTorch.')
elif framework == 'tf' and model.endswith('.bin'):
model_kwargs['from_pt'] = True
logger.warning('Model might be a PyTorch model (ending with `.bin`) but PyTorch is not available. '
'Trying to load the model with Tensorflow.')
model = model_class.from_pretrained(model, config=config, **model_kwargs)
return task(model=model, tokenizer=tokenizer, modelcard=modelcard, framework=framework, **kwargs)
......@@ -16,15 +16,12 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import os
import shutil
import json
import random
import uuid
import tempfile
import unittest
import logging
from .tokenization_tests_commons import TemporaryDirectory
class ConfigTester(object):
......@@ -48,16 +45,28 @@ class ConfigTester(object):
def create_and_test_config_to_json_file(self):
config_first = self.config_class(**self.inputs_dict)
json_file_path = os.path.join(os.getcwd(), "config_" + str(uuid.uuid4()) + ".json")
config_first.to_json_file(json_file_path)
config_second = self.config_class.from_json_file(json_file_path)
os.remove(json_file_path)
with TemporaryDirectory() as tmpdirname:
json_file_path = os.path.join(tmpdirname, "config.json")
config_first.to_json_file(json_file_path)
config_second = self.config_class.from_json_file(json_file_path)
self.parent.assertEqual(config_second.to_dict(), config_first.to_dict())
def create_and_test_config_from_and_save_pretrained(self):
config_first = self.config_class(**self.inputs_dict)
with TemporaryDirectory() as tmpdirname:
config_first.save_pretrained(tmpdirname)
config_second = self.config_class.from_pretrained(tmpdirname)
self.parent.assertEqual(config_second.to_dict(), config_first.to_dict())
def run_common_tests(self):
self.create_and_test_config_common_properties()
self.create_and_test_config_to_json_string()
self.create_and_test_config_to_json_file()
self.create_and_test_config_from_and_save_pretrained()
if __name__ == "__main__":
unittest.main()
\ No newline at end of file
# content of conftest.py
import pytest
def pytest_addoption(parser):
parser.addoption(
"--runslow", action="store_true", default=False, help="run slow tests"
)
parser.addoption(
"--use_cuda", action="store_true", default=False, help="run tests on gpu"
)
def pytest_configure(config):
config.addinivalue_line("markers", "slow: mark test as slow to run")
def pytest_collection_modifyitems(config, items):
if config.getoption("--runslow"):
# --runslow given in cli: do not skip slow tests
return
skip_slow = pytest.mark.skip(reason="need --runslow option to run")
for item in items:
if "slow" in item.keywords:
item.add_marker(skip_slow)
@pytest.fixture
def use_cuda(request):
""" Run test on gpu """
return request.config.getoption("--use_cuda")
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
import os
import time
import unittest
import requests
import six
from transformers.hf_api import HfApi, HfFolder, HTTPError, PresignedUrl, S3Obj
USER = "__DUMMY_TRANSFORMERS_USER__"
PASS = "__DUMMY_TRANSFORMERS_PASS__"
FILES = [
(
"Test-{}.txt".format(int(time.time())),
os.path.join(
os.path.dirname(os.path.abspath(__file__)), "fixtures/input.txt"
)
),
(
"yoyo {}.txt".format(int(time.time())), # space is intentional
os.path.join(
os.path.dirname(os.path.abspath(__file__)), "fixtures/empty.txt"
)
),
]
class HfApiCommonTest(unittest.TestCase):
_api = HfApi(endpoint="https://moon-staging.huggingface.co")
class HfApiLoginTest(HfApiCommonTest):
def test_login_invalid(self):
with self.assertRaises(HTTPError):
self._api.login(username=USER, password="fake")
def test_login_valid(self):
token = self._api.login(username=USER, password=PASS)
self.assertIsInstance(token, six.string_types)
class HfApiEndpointsTest(HfApiCommonTest):
@classmethod
def setUpClass(cls):
"""
Share this valid token in all tests below.
"""
cls._token = cls._api.login(username=USER, password=PASS)
def test_whoami(self):
user = self._api.whoami(token=self._token)
self.assertEqual(user, USER)
def test_presign(self):
for FILE_KEY, FILE_PATH in FILES:
urls = self._api.presign(token=self._token, filename=FILE_KEY)
self.assertIsInstance(urls, PresignedUrl)
self.assertEqual(urls.type, "text/plain")
def test_presign_and_upload(self):
for FILE_KEY, FILE_PATH in FILES:
access_url = self._api.presign_and_upload(
token=self._token, filename=FILE_KEY, filepath=FILE_PATH
)
self.assertIsInstance(access_url, six.string_types)
with open(FILE_PATH, 'r') as f:
body = f.read()
r = requests.get(access_url)
self.assertEqual(r.text, body)
def test_list_objs(self):
objs = self._api.list_objs(token=self._token)
self.assertIsInstance(objs, list)
if len(objs) > 0:
o = objs[-1]
self.assertIsInstance(o, S3Obj)
class HfFolderTest(unittest.TestCase):
def test_token_workflow(self):
"""
Test the whole token save/get/delete workflow,
with the desired behavior with respect to non-existent tokens.
"""
token = "token-{}".format(int(time.time()))
HfFolder.save_token(token)
self.assertEqual(
HfFolder.get_token(),
token
)
HfFolder.delete_token()
HfFolder.delete_token()
# ^^ not an error, we test that the
# second call does not fail.
self.assertEqual(
HfFolder.get_token(),
None
)
if __name__ == "__main__":
unittest.main()
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import json
import unittest
from transformers.modelcard import ModelCard
from .tokenization_tests_commons import TemporaryDirectory
class ModelCardTester(unittest.TestCase):
def setUp(self):
self.inputs_dict = {'model_details': {
'Organization': 'testing',
'Model date': 'today',
'Model version': 'v2.1, Developed by Test Corp in 2019.',
'Architecture': 'Convolutional Neural Network.',
},
'metrics': 'BLEU and ROUGE-1',
'evaluation_data':{
'Datasets':{
'BLEU': 'My-great-dataset-v1',
'ROUGE-1': 'My-short-dataset-v2.1',
},
'Preprocessing': 'See details on https://arxiv.org/pdf/1810.03993.pdf'
},
'training_data':{
'Dataset': 'English Wikipedia dump dated 2018-12-01',
'Preprocessing': 'Using SentencePiece vocabulary of size 52k tokens. See details on https://arxiv.org/pdf/1810.03993.pdf'
},
'quantitative_analyses': {
'BLEU': 55.1,
'ROUGE-1': 76,
},
}
def test_model_card_common_properties(self):
modelcard = ModelCard.from_dict(self.inputs_dict)
self.assertTrue(hasattr(modelcard, 'model_details'))
self.assertTrue(hasattr(modelcard, 'intended_use'))
self.assertTrue(hasattr(modelcard, 'factors'))
self.assertTrue(hasattr(modelcard, 'metrics'))
self.assertTrue(hasattr(modelcard, 'evaluation_data'))
self.assertTrue(hasattr(modelcard, 'training_data'))
self.assertTrue(hasattr(modelcard, 'quantitative_analyses'))
self.assertTrue(hasattr(modelcard, 'ethical_considerations'))
self.assertTrue(hasattr(modelcard, 'caveats_and_recommendations'))
def test_model_card_to_json_string(self):
modelcard = ModelCard.from_dict(self.inputs_dict)
obj = json.loads(modelcard.to_json_string())
for key, value in self.inputs_dict.items():
self.assertEqual(obj[key], value)
def test_model_card_to_json_file(self):
model_card_first = ModelCard.from_dict(self.inputs_dict)
with TemporaryDirectory() as tmpdirname:
filename = os.path.join(tmpdirname, u"modelcard.json")
model_card_first.to_json_file(filename)
model_card_second = ModelCard.from_json_file(filename)
self.assertEqual(model_card_second.to_dict(), model_card_first.to_dict())
def test_model_card_from_and_save_pretrained(self):
model_card_first = ModelCard.from_dict(self.inputs_dict)
with TemporaryDirectory() as tmpdirname:
model_card_first.save_pretrained(tmpdirname)
model_card_second = ModelCard.from_pretrained(tmpdirname)
self.assertEqual(model_card_second.to_dict(), model_card_first.to_dict())
if __name__ == "__main__":
unittest.main()
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
from transformers import is_torch_available
from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from .utils import CACHE_DIR, require_torch, slow, torch_device
if is_torch_available():
from transformers import (AlbertConfig, AlbertModel, AlbertForMaskedLM,
AlbertForSequenceClassification, AlbertForQuestionAnswering,
)
from transformers.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP
@require_torch
class AlbertModelTest(CommonTestCases.CommonModelTester):
all_model_classes = (AlbertModel, AlbertForMaskedLM) if is_torch_available() else ()
class AlbertModelTester(object):
def __init__(self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
embedding_size=16,
hidden_size=36,
num_hidden_layers=6,
num_hidden_groups=6,
num_attention_heads=6,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.num_hidden_groups = num_hidden_groups
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = AlbertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
num_hidden_groups=self.num_hidden_groups)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def check_loss_output(self, result):
self.parent.assertListEqual(
list(result["loss"].size()),
[])
def create_and_check_albert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = AlbertModel(config=config)
model.to(torch_device)
model.eval()
sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
sequence_output, pooled_output = model(input_ids)
result = {
"sequence_output": sequence_output,
"pooled_output": pooled_output,
}
self.parent.assertListEqual(
list(result["sequence_output"].size()),
[self.batch_size, self.seq_length, self.hidden_size])
self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])
def create_and_check_albert_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = AlbertForMaskedLM(config=config)
model.to(torch_device)
model.eval()
loss, prediction_scores = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, masked_lm_labels=token_labels)
result = {
"loss": loss,
"prediction_scores": prediction_scores,
}
self.parent.assertListEqual(
list(result["prediction_scores"].size()),
[self.batch_size, self.seq_length, self.vocab_size])
self.check_loss_output(result)
def create_and_check_albert_for_question_answering(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = AlbertForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
loss, start_logits, end_logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids,
start_positions=sequence_labels, end_positions=sequence_labels)
result = {
"loss": loss,
"start_logits": start_logits,
"end_logits": end_logits,
}
self.parent.assertListEqual(
list(result["start_logits"].size()),
[self.batch_size, self.seq_length])
self.parent.assertListEqual(
list(result["end_logits"].size()),
[self.batch_size, self.seq_length])
self.check_loss_output(result)
def create_and_check_albert_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
config.num_labels = self.num_labels
model = AlbertForSequenceClassification(config)
model.to(torch_device)
model.eval()
loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(
list(result["logits"].size()),
[self.batch_size, self.num_labels])
self.check_loss_output(result)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids, token_type_ids, input_mask,
sequence_labels, token_labels, choice_labels) = config_and_inputs
inputs_dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
def setUp(self):
self.model_tester = AlbertModelTest.AlbertModelTester(self)
self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_albert_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_albert_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_albert_for_masked_lm(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_albert_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_albert_for_sequence_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in list(ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = AlbertModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main()
......@@ -18,11 +18,12 @@ from __future__ import print_function
import unittest
import shutil
import pytest
import logging
from transformers import is_torch_available
from .utils import require_torch, slow, SMALL_MODEL_IDENTIFIER
if is_torch_available():
from transformers import (AutoConfig, BertConfig,
AutoModel, BertModel,
......@@ -33,12 +34,11 @@ if is_torch_available():
from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
else:
pytestmark = pytest.mark.skip("Require Torch")
@require_torch
class AutoModelTest(unittest.TestCase):
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
logging.basicConfig(level=logging.INFO)
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......@@ -53,7 +53,7 @@ class AutoModelTest(unittest.TestCase):
for value in loading_info.values():
self.assertEqual(len(value), 0)
@pytest.mark.slow
@slow
def test_lmhead_model_from_pretrained(self):
logging.basicConfig(level=logging.INFO)
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......@@ -66,7 +66,7 @@ class AutoModelTest(unittest.TestCase):
self.assertIsNotNone(model)
self.assertIsInstance(model, BertForMaskedLM)
@pytest.mark.slow
@slow
def test_sequence_classification_model_from_pretrained(self):
logging.basicConfig(level=logging.INFO)
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......@@ -79,7 +79,7 @@ class AutoModelTest(unittest.TestCase):
self.assertIsNotNone(model)
self.assertIsInstance(model, BertForSequenceClassification)
@pytest.mark.slow
@slow
def test_question_answering_model_from_pretrained(self):
logging.basicConfig(level=logging.INFO)
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......@@ -92,6 +92,11 @@ class AutoModelTest(unittest.TestCase):
self.assertIsNotNone(model)
self.assertIsInstance(model, BertForQuestionAnswering)
def test_from_pretrained_identifier(self):
logging.basicConfig(level=logging.INFO)
model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
self.assertIsInstance(model, BertForMaskedLM)
if __name__ == "__main__":
unittest.main()
......@@ -17,13 +17,12 @@ from __future__ import division
from __future__ import print_function
import unittest
import shutil
import pytest
from transformers import is_torch_available
from .modeling_common_test import (CommonTestCases, ids_tensor, floats_tensor)
from .configuration_common_test import ConfigTester
from .utils import CACHE_DIR, require_torch, slow, torch_device
if is_torch_available():
from transformers import (BertConfig, BertModel, BertForMaskedLM,
......@@ -31,11 +30,9 @@ if is_torch_available():
BertForQuestionAnswering, BertForSequenceClassification,
BertForTokenClassification, BertForMultipleChoice)
from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP
else:
pytestmark = pytest.mark.skip("Require Torch")
@pytest.mark.usefixtures("use_cuda")
@require_torch
class BertModelTest(CommonTestCases.CommonModelTester):
all_model_classes = (BertModel, BertForMaskedLM, BertForNextSentencePrediction,
......@@ -67,7 +64,6 @@ class BertModelTest(CommonTestCases.CommonModelTester):
num_labels=3,
num_choices=4,
scope=None,
device='cpu',
):
self.parent = parent
self.batch_size = batch_size
......@@ -91,29 +87,28 @@ class BertModelTest(CommonTestCases.CommonModelTester):
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.device = device
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).to(self.device)
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2).to(self.device)
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size).to(self.device)
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size).to(self.device)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels).to(self.device)
choice_labels = ids_tensor([self.batch_size], self.num_choices).to(self.device)
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = BertConfig(
vocab_size_or_config_json_file=self.vocab_size,
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
......@@ -144,7 +139,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_bert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = BertModel(config=config)
model.to(input_ids.device)
model.to(torch_device)
model.eval()
sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
......@@ -161,6 +156,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_bert_model_as_decoder(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask):
model = BertModel(config)
model.to(torch_device)
model.eval()
sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask)
sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states)
......@@ -177,6 +173,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_bert_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = BertForMaskedLM(config=config)
model.to(torch_device)
model.eval()
loss, prediction_scores = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, masked_lm_labels=token_labels)
result = {
......@@ -190,6 +187,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_bert_model_for_masked_lm_as_decoder(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask):
model = BertForMaskedLM(config=config)
model.to(torch_device)
model.eval()
loss, prediction_scores = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, masked_lm_labels=token_labels, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask)
loss, prediction_scores = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, masked_lm_labels=token_labels, encoder_hidden_states=encoder_hidden_states)
......@@ -204,6 +202,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_bert_for_next_sequence_prediction(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = BertForNextSentencePrediction(config=config)
model.to(torch_device)
model.eval()
loss, seq_relationship_score = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, next_sentence_label=sequence_labels)
result = {
......@@ -217,6 +216,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_bert_for_pretraining(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = BertForPreTraining(config=config)
model.to(torch_device)
model.eval()
loss, prediction_scores, seq_relationship_score = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids,
masked_lm_labels=token_labels, next_sentence_label=sequence_labels)
......@@ -235,6 +235,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_bert_for_question_answering(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = BertForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
loss, start_logits, end_logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids,
start_positions=sequence_labels, end_positions=sequence_labels)
......@@ -254,6 +255,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_bert_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
config.num_labels = self.num_labels
model = BertForSequenceClassification(config)
model.to(torch_device)
model.eval()
loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
result = {
......@@ -268,6 +270,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_bert_for_token_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
config.num_labels = self.num_labels
model = BertForTokenClassification(config=config)
model.to(torch_device)
model.eval()
loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
result = {
......@@ -282,6 +285,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_bert_for_multiple_choice(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
config.num_choices = self.num_choices
model = BertForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
......@@ -313,10 +317,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def test_config(self):
self.config_tester.run_common_tests()
def test_bert_model(self, use_cuda=False):
# ^^ This could be a real fixture
if use_cuda:
self.model_tester.device = "cuda"
def test_bert_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_bert_model(*config_and_inputs)
......@@ -356,12 +357,10 @@ class BertModelTest(CommonTestCases.CommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_bert_for_token_classification(*config_and_inputs)
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = BertModel.from_pretrained(model_name, cache_dir=cache_dir)
shutil.rmtree(cache_dir)
model = BertModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
self.assertIsNotNone(model)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment