Unverified Commit 562f8640 authored by Thomas Wolf's avatar Thomas Wolf Committed by GitHub
Browse files

Merge branch 'master' into fix-xlnet-squad2.0

parents ca99a2d5 8618bf15
# MIT License
# Copyright (c) 2019 Yang Liu and the HuggingFace team
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import copy
import math
import numpy as np
import torch
from torch import nn
from torch.nn.init import xavier_uniform_
from transformers import BertModel, BertConfig, PreTrainedModel
from configuration_bertabs import BertAbsConfig
MAX_SIZE = 5000
BERTABS_FINETUNED_MODEL_MAP = {
"bertabs-finetuned-cnndm": "https://s3.amazonaws.com/models.huggingface.co/bert/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization-pytorch_model.bin",
}
class BertAbsPreTrainedModel(PreTrainedModel):
config_class = BertAbsConfig
pretrained_model_archive_map = BERTABS_FINETUNED_MODEL_MAP
load_tf_weights = False
base_model_prefix = "bert"
class BertAbs(BertAbsPreTrainedModel):
def __init__(self, args, checkpoint=None, bert_extractive_checkpoint=None):
super(BertAbs, self).__init__(args)
self.args = args
self.bert = Bert()
# If pre-trained weights are passed for Bert, load these.
load_bert_pretrained_extractive = True if bert_extractive_checkpoint else False
if load_bert_pretrained_extractive:
self.bert.model.load_state_dict(
dict(
[
(n[11:], p)
for n, p in bert_extractive_checkpoint.items()
if n.startswith("bert.model")
]
),
strict=True,
)
self.vocab_size = self.bert.model.config.vocab_size
if args.max_pos > 512:
my_pos_embeddings = nn.Embedding(
args.max_pos, self.bert.model.config.hidden_size
)
my_pos_embeddings.weight.data[
:512
] = self.bert.model.embeddings.position_embeddings.weight.data
my_pos_embeddings.weight.data[
512:
] = self.bert.model.embeddings.position_embeddings.weight.data[-1][
None, :
].repeat(
args.max_pos - 512, 1
)
self.bert.model.embeddings.position_embeddings = my_pos_embeddings
tgt_embeddings = nn.Embedding(
self.vocab_size, self.bert.model.config.hidden_size, padding_idx=0
)
tgt_embeddings.weight = copy.deepcopy(
self.bert.model.embeddings.word_embeddings.weight
)
self.decoder = TransformerDecoder(
self.args.dec_layers,
self.args.dec_hidden_size,
heads=self.args.dec_heads,
d_ff=self.args.dec_ff_size,
dropout=self.args.dec_dropout,
embeddings=tgt_embeddings,
vocab_size=self.vocab_size,
)
gen_func = nn.LogSoftmax(dim=-1)
self.generator = nn.Sequential(
nn.Linear(args.dec_hidden_size, args.vocab_size), gen_func
)
self.generator[0].weight = self.decoder.embeddings.weight
load_from_checkpoints = False if checkpoint is None else True
if load_from_checkpoints:
self.load_state_dict(checkpoint)
def init_weights(self):
for module in self.decoder.modules():
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
for p in self.generator.parameters():
if p.dim() > 1:
xavier_uniform_(p)
else:
p.data.zero_()
def forward(
self,
encoder_input_ids,
decoder_input_ids,
token_type_ids,
encoder_attention_mask,
decoder_attention_mask,
):
encoder_output = self.bert(
input_ids=encoder_input_ids,
token_type_ids=token_type_ids,
attention_mask=encoder_attention_mask,
)
encoder_hidden_states = encoder_output[0]
dec_state = self.decoder.init_decoder_state(
encoder_input_ids, encoder_hidden_states
)
decoder_outputs, _ = self.decoder(
decoder_input_ids[:, :-1], encoder_hidden_states, dec_state
)
return decoder_outputs
class Bert(nn.Module):
""" This class is not really necessary and should probably disappear.
"""
def __init__(self):
super(Bert, self).__init__()
config = BertConfig.from_pretrained("bert-base-uncased")
self.model = BertModel(config)
def forward(self, input_ids, attention_mask=None, token_type_ids=None, **kwargs):
self.eval()
with torch.no_grad():
encoder_outputs, _ = self.model(
input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
**kwargs
)
return encoder_outputs
class TransformerDecoder(nn.Module):
"""
The Transformer decoder from "Attention is All You Need".
Args:
num_layers (int): number of encoder layers.
d_model (int): size of the model
heads (int): number of heads
d_ff (int): size of the inner FF layer
dropout (float): dropout parameters
embeddings (:obj:`onmt.modules.Embeddings`):
embeddings to use, should have positional encodings
attn_type (str): if using a seperate copy attention
"""
def __init__(self, num_layers, d_model, heads, d_ff, dropout, embeddings, vocab_size):
super(TransformerDecoder, self).__init__()
# Basic attributes.
self.decoder_type = "transformer"
self.num_layers = num_layers
self.embeddings = embeddings
self.pos_emb = PositionalEncoding(dropout, self.embeddings.embedding_dim)
# Build TransformerDecoder.
self.transformer_layers = nn.ModuleList(
[
TransformerDecoderLayer(d_model, heads, d_ff, dropout)
for _ in range(num_layers)
]
)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
# forward(input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask)
# def forward(self, input_ids, state, attention_mask=None, memory_lengths=None,
# step=None, cache=None, encoder_attention_mask=None, encoder_hidden_states=None, memory_masks=None):
def forward(
self,
input_ids,
encoder_hidden_states=None,
state=None,
attention_mask=None,
memory_lengths=None,
step=None,
cache=None,
encoder_attention_mask=None,
):
"""
See :obj:`onmt.modules.RNNDecoderBase.forward()`
memory_bank = encoder_hidden_states
"""
# Name conversion
tgt = input_ids
memory_bank = encoder_hidden_states
memory_mask = encoder_attention_mask
# src_words = state.src
src_words = state.src
src_batch, src_len = src_words.size()
padding_idx = self.embeddings.padding_idx
# Decoder padding mask
tgt_words = tgt
tgt_batch, tgt_len = tgt_words.size()
tgt_pad_mask = (
tgt_words.data.eq(padding_idx).unsqueeze(1).expand(tgt_batch, tgt_len, tgt_len)
)
# Encoder padding mask
if memory_mask is not None:
src_len = memory_mask.size(-1)
src_pad_mask = memory_mask.expand(src_batch, tgt_len, src_len)
else:
src_pad_mask = (
src_words.data.eq(padding_idx)
.unsqueeze(1)
.expand(src_batch, tgt_len, src_len)
)
# Pass through the embeddings
emb = self.embeddings(input_ids)
output = self.pos_emb(emb, step)
assert emb.dim() == 3 # len x batch x embedding_dim
if state.cache is None:
saved_inputs = []
for i in range(self.num_layers):
prev_layer_input = None
if state.cache is None:
if state.previous_input is not None:
prev_layer_input = state.previous_layer_inputs[i]
output, all_input = self.transformer_layers[i](
output,
memory_bank,
src_pad_mask,
tgt_pad_mask,
previous_input=prev_layer_input,
layer_cache=state.cache["layer_{}".format(i)]
if state.cache is not None
else None,
step=step,
)
if state.cache is None:
saved_inputs.append(all_input)
if state.cache is None:
saved_inputs = torch.stack(saved_inputs)
output = self.layer_norm(output)
if state.cache is None:
state = state.update_state(tgt, saved_inputs)
# Decoders in transformers return a tuple. Beam search will fail
# if we don't follow this convention.
return output, state # , state
def init_decoder_state(self, src, memory_bank, with_cache=False):
""" Init decoder state """
state = TransformerDecoderState(src)
if with_cache:
state._init_cache(memory_bank, self.num_layers)
return state
class PositionalEncoding(nn.Module):
def __init__(self, dropout, dim, max_len=5000):
pe = torch.zeros(max_len, dim)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(
(torch.arange(0, dim, 2, dtype=torch.float) * -(math.log(10000.0) / dim))
)
pe[:, 0::2] = torch.sin(position.float() * div_term)
pe[:, 1::2] = torch.cos(position.float() * div_term)
pe = pe.unsqueeze(0)
super(PositionalEncoding, self).__init__()
self.register_buffer("pe", pe)
self.dropout = nn.Dropout(p=dropout)
self.dim = dim
def forward(self, emb, step=None):
emb = emb * math.sqrt(self.dim)
if step:
emb = emb + self.pe[:, step][:, None, :]
else:
emb = emb + self.pe[:, : emb.size(1)]
emb = self.dropout(emb)
return emb
def get_emb(self, emb):
return self.pe[:, : emb.size(1)]
class TransformerDecoderLayer(nn.Module):
"""
Args:
d_model (int): the dimension of keys/values/queries in
MultiHeadedAttention, also the input size of
the first-layer of the PositionwiseFeedForward.
heads (int): the number of heads for MultiHeadedAttention.
d_ff (int): the second-layer of the PositionwiseFeedForward.
dropout (float): dropout probability(0-1.0).
self_attn_type (string): type of self-attention scaled-dot, average
"""
def __init__(self, d_model, heads, d_ff, dropout):
super(TransformerDecoderLayer, self).__init__()
self.self_attn = MultiHeadedAttention(heads, d_model, dropout=dropout)
self.context_attn = MultiHeadedAttention(heads, d_model, dropout=dropout)
self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout)
self.layer_norm_1 = nn.LayerNorm(d_model, eps=1e-6)
self.layer_norm_2 = nn.LayerNorm(d_model, eps=1e-6)
self.drop = nn.Dropout(dropout)
mask = self._get_attn_subsequent_mask(MAX_SIZE)
# Register self.mask as a buffer in TransformerDecoderLayer, so
# it gets TransformerDecoderLayer's cuda behavior automatically.
self.register_buffer("mask", mask)
def forward(
self,
inputs,
memory_bank,
src_pad_mask,
tgt_pad_mask,
previous_input=None,
layer_cache=None,
step=None,
):
"""
Args:
inputs (`FloatTensor`): `[batch_size x 1 x model_dim]`
memory_bank (`FloatTensor`): `[batch_size x src_len x model_dim]`
src_pad_mask (`LongTensor`): `[batch_size x 1 x src_len]`
tgt_pad_mask (`LongTensor`): `[batch_size x 1 x 1]`
Returns:
(`FloatTensor`, `FloatTensor`, `FloatTensor`):
* output `[batch_size x 1 x model_dim]`
* attn `[batch_size x 1 x src_len]`
* all_input `[batch_size x current_step x model_dim]`
"""
dec_mask = torch.gt(
tgt_pad_mask + self.mask[:, : tgt_pad_mask.size(1), : tgt_pad_mask.size(1)], 0
)
input_norm = self.layer_norm_1(inputs)
all_input = input_norm
if previous_input is not None:
all_input = torch.cat((previous_input, input_norm), dim=1)
dec_mask = None
query = self.self_attn(
all_input,
all_input,
input_norm,
mask=dec_mask,
layer_cache=layer_cache,
type="self",
)
query = self.drop(query) + inputs
query_norm = self.layer_norm_2(query)
mid = self.context_attn(
memory_bank,
memory_bank,
query_norm,
mask=src_pad_mask,
layer_cache=layer_cache,
type="context",
)
output = self.feed_forward(self.drop(mid) + query)
return output, all_input
# return output
def _get_attn_subsequent_mask(self, size):
"""
Get an attention mask to avoid using the subsequent info.
Args:
size: int
Returns:
(`LongTensor`):
* subsequent_mask `[1 x size x size]`
"""
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype("uint8")
subsequent_mask = torch.from_numpy(subsequent_mask)
return subsequent_mask
class MultiHeadedAttention(nn.Module):
"""
Multi-Head Attention module from
"Attention is All You Need"
:cite:`DBLP:journals/corr/VaswaniSPUJGKP17`.
Similar to standard `dot` attention but uses
multiple attention distributions simulataneously
to select relevant items.
.. mermaid::
graph BT
A[key]
B[value]
C[query]
O[output]
subgraph Attn
D[Attn 1]
E[Attn 2]
F[Attn N]
end
A --> D
C --> D
A --> E
C --> E
A --> F
C --> F
D --> O
E --> O
F --> O
B --> O
Also includes several additional tricks.
Args:
head_count (int): number of parallel heads
model_dim (int): the dimension of keys/values/queries,
must be divisible by head_count
dropout (float): dropout parameter
"""
def __init__(self, head_count, model_dim, dropout=0.1, use_final_linear=True):
assert model_dim % head_count == 0
self.dim_per_head = model_dim // head_count
self.model_dim = model_dim
super(MultiHeadedAttention, self).__init__()
self.head_count = head_count
self.linear_keys = nn.Linear(model_dim, head_count * self.dim_per_head)
self.linear_values = nn.Linear(model_dim, head_count * self.dim_per_head)
self.linear_query = nn.Linear(model_dim, head_count * self.dim_per_head)
self.softmax = nn.Softmax(dim=-1)
self.dropout = nn.Dropout(dropout)
self.use_final_linear = use_final_linear
if self.use_final_linear:
self.final_linear = nn.Linear(model_dim, model_dim)
def forward(
self,
key,
value,
query,
mask=None,
layer_cache=None,
type=None,
predefined_graph_1=None,
):
"""
Compute the context vector and the attention vectors.
Args:
key (`FloatTensor`): set of `key_len`
key vectors `[batch, key_len, dim]`
value (`FloatTensor`): set of `key_len`
value vectors `[batch, key_len, dim]`
query (`FloatTensor`): set of `query_len`
query vectors `[batch, query_len, dim]`
mask: binary mask indicating which keys have
non-zero attention `[batch, query_len, key_len]`
Returns:
(`FloatTensor`, `FloatTensor`) :
* output context vectors `[batch, query_len, dim]`
* one of the attention vectors `[batch, query_len, key_len]`
"""
batch_size = key.size(0)
dim_per_head = self.dim_per_head
head_count = self.head_count
key_len = key.size(1)
query_len = query.size(1)
def shape(x):
""" projection """
return x.view(batch_size, -1, head_count, dim_per_head).transpose(1, 2)
def unshape(x):
""" compute context """
return (
x.transpose(1, 2)
.contiguous()
.view(batch_size, -1, head_count * dim_per_head)
)
# 1) Project key, value, and query.
if layer_cache is not None:
if type == "self":
query, key, value = (
self.linear_query(query),
self.linear_keys(query),
self.linear_values(query),
)
key = shape(key)
value = shape(value)
if layer_cache is not None:
device = key.device
if layer_cache["self_keys"] is not None:
key = torch.cat((layer_cache["self_keys"].to(device), key), dim=2)
if layer_cache["self_values"] is not None:
value = torch.cat(
(layer_cache["self_values"].to(device), value), dim=2
)
layer_cache["self_keys"] = key
layer_cache["self_values"] = value
elif type == "context":
query = self.linear_query(query)
if layer_cache is not None:
if layer_cache["memory_keys"] is None:
key, value = self.linear_keys(key), self.linear_values(value)
key = shape(key)
value = shape(value)
else:
key, value = (
layer_cache["memory_keys"],
layer_cache["memory_values"],
)
layer_cache["memory_keys"] = key
layer_cache["memory_values"] = value
else:
key, value = self.linear_keys(key), self.linear_values(value)
key = shape(key)
value = shape(value)
else:
key = self.linear_keys(key)
value = self.linear_values(value)
query = self.linear_query(query)
key = shape(key)
value = shape(value)
query = shape(query)
key_len = key.size(2)
query_len = query.size(2)
# 2) Calculate and scale scores.
query = query / math.sqrt(dim_per_head)
scores = torch.matmul(query, key.transpose(2, 3))
if mask is not None:
mask = mask.unsqueeze(1).expand_as(scores)
scores = scores.masked_fill(mask, -1e18)
# 3) Apply attention dropout and compute context vectors.
attn = self.softmax(scores)
if not predefined_graph_1 is None:
attn_masked = attn[:, -1] * predefined_graph_1
attn_masked = attn_masked / (torch.sum(attn_masked, 2).unsqueeze(2) + 1e-9)
attn = torch.cat([attn[:, :-1], attn_masked.unsqueeze(1)], 1)
drop_attn = self.dropout(attn)
if self.use_final_linear:
context = unshape(torch.matmul(drop_attn, value))
output = self.final_linear(context)
return output
else:
context = torch.matmul(drop_attn, value)
return context
class DecoderState(object):
"""Interface for grouping together the current state of a recurrent
decoder. In the simplest case just represents the hidden state of
the model. But can also be used for implementing various forms of
input_feeding and non-recurrent models.
Modules need to implement this to utilize beam search decoding.
"""
def detach(self):
""" Need to document this """
self.hidden = tuple([_.detach() for _ in self.hidden])
self.input_feed = self.input_feed.detach()
def beam_update(self, idx, positions, beam_size):
""" Need to document this """
for e in self._all:
sizes = e.size()
br = sizes[1]
if len(sizes) == 3:
sent_states = e.view(sizes[0], beam_size, br // beam_size, sizes[2])[
:, :, idx
]
else:
sent_states = e.view(
sizes[0], beam_size, br // beam_size, sizes[2], sizes[3]
)[:, :, idx]
sent_states.data.copy_(sent_states.data.index_select(1, positions))
def map_batch_fn(self, fn):
raise NotImplementedError()
class TransformerDecoderState(DecoderState):
""" Transformer Decoder state base class """
def __init__(self, src):
"""
Args:
src (FloatTensor): a sequence of source words tensors
with optional feature tensors, of size (len x batch).
"""
self.src = src
self.previous_input = None
self.previous_layer_inputs = None
self.cache = None
@property
def _all(self):
"""
Contains attributes that need to be updated in self.beam_update().
"""
if self.previous_input is not None and self.previous_layer_inputs is not None:
return (self.previous_input, self.previous_layer_inputs, self.src)
else:
return (self.src,)
def detach(self):
if self.previous_input is not None:
self.previous_input = self.previous_input.detach()
if self.previous_layer_inputs is not None:
self.previous_layer_inputs = self.previous_layer_inputs.detach()
self.src = self.src.detach()
def update_state(self, new_input, previous_layer_inputs):
state = TransformerDecoderState(self.src)
state.previous_input = new_input
state.previous_layer_inputs = previous_layer_inputs
return state
def _init_cache(self, memory_bank, num_layers):
self.cache = {}
for l in range(num_layers):
layer_cache = {"memory_keys": None, "memory_values": None}
layer_cache["self_keys"] = None
layer_cache["self_values"] = None
self.cache["layer_{}".format(l)] = layer_cache
def repeat_beam_size_times(self, beam_size):
""" Repeat beam_size times along batch dimension. """
self.src = self.src.data.repeat(1, beam_size, 1)
def map_batch_fn(self, fn):
def _recursive_map(struct, batch_dim=0):
for k, v in struct.items():
if v is not None:
if isinstance(v, dict):
_recursive_map(v)
else:
struct[k] = fn(v, batch_dim)
self.src = fn(self.src, 0)
if self.cache is not None:
_recursive_map(self.cache)
def gelu(x):
return (
0.5
* x
* (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
)
class PositionwiseFeedForward(nn.Module):
""" A two-layer Feed-Forward-Network with residual layer norm.
Args:
d_model (int): the size of input for the first-layer of the FFN.
d_ff (int): the hidden layer size of the second-layer
of the FNN.
dropout (float): dropout probability in :math:`[0, 1)`.
"""
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
self.actv = gelu
self.dropout_1 = nn.Dropout(dropout)
self.dropout_2 = nn.Dropout(dropout)
def forward(self, x):
inter = self.dropout_1(self.actv(self.w_1(self.layer_norm(x))))
output = self.dropout_2(self.w_2(inter))
return output + x
#
# TRANSLATOR
# The following code is used to generate summaries using the
# pre-trained weights and beam search.
#
def build_predictor(args, tokenizer, symbols, model, logger=None):
# we should be able to refactor the global scorer a lot
scorer = GNMTGlobalScorer(args.alpha, length_penalty="wu")
translator = Translator(
args, model, tokenizer, symbols, global_scorer=scorer, logger=logger
)
return translator
class GNMTGlobalScorer(object):
"""
NMT re-ranking score from
"Google's Neural Machine Translation System" :cite:`wu2016google`
Args:
alpha (float): length parameter
beta (float): coverage parameter
"""
def __init__(self, alpha, length_penalty):
self.alpha = alpha
penalty_builder = PenaltyBuilder(length_penalty)
self.length_penalty = penalty_builder.length_penalty()
def score(self, beam, logprobs):
"""
Rescores a prediction based on penalty functions
"""
normalized_probs = self.length_penalty(beam, logprobs, self.alpha)
return normalized_probs
class PenaltyBuilder(object):
"""
Returns the Length and Coverage Penalty function for Beam Search.
Args:
length_pen (str): option name of length pen
cov_pen (str): option name of cov pen
"""
def __init__(self, length_pen):
self.length_pen = length_pen
def length_penalty(self):
if self.length_pen == "wu":
return self.length_wu
elif self.length_pen == "avg":
return self.length_average
else:
return self.length_none
"""
Below are all the different penalty terms implemented so far
"""
def length_wu(self, beam, logprobs, alpha=0.0):
"""
NMT length re-ranking score from
"Google's Neural Machine Translation System" :cite:`wu2016google`.
"""
modifier = ((5 + len(beam.next_ys)) ** alpha) / ((5 + 1) ** alpha)
return logprobs / modifier
def length_average(self, beam, logprobs, alpha=0.0):
"""
Returns the average probability of tokens in a sequence.
"""
return logprobs / len(beam.next_ys)
def length_none(self, beam, logprobs, alpha=0.0, beta=0.0):
"""
Returns unmodified scores.
"""
return logprobs
class Translator(object):
"""
Uses a model to translate a batch of sentences.
Args:
model (:obj:`onmt.modules.NMTModel`):
NMT model to use for translation
fields (dict of Fields): data fields
beam_size (int): size of beam to use
n_best (int): number of translations produced
max_length (int): maximum length output to produce
global_scores (:obj:`GlobalScorer`):
object to rescore final translations
copy_attn (bool): use copy attention during translation
beam_trace (bool): trace beam search for debugging
logger(logging.Logger): logger.
"""
def __init__(self, args, model, vocab, symbols, global_scorer=None, logger=None):
self.logger = logger
self.args = args
self.model = model
self.generator = self.model.generator
self.vocab = vocab
self.symbols = symbols
self.start_token = symbols["BOS"]
self.end_token = symbols["EOS"]
self.global_scorer = global_scorer
self.beam_size = args.beam_size
self.min_length = args.min_length
self.max_length = args.max_length
def translate(self, batch, step, attn_debug=False):
""" Generates summaries from one batch of data.
"""
self.model.eval()
with torch.no_grad():
batch_data = self.translate_batch(batch)
translations = self.from_batch(batch_data)
return translations
def translate_batch(self, batch, fast=False):
"""
Translate a batch of sentences.
Mostly a wrapper around :obj:`Beam`.
Args:
batch (:obj:`Batch`): a batch from a dataset object
data (:obj:`Dataset`): the dataset object
fast (bool): enables fast beam search (may not support all features)
Todo:
Shouldn't need the original dataset.
"""
with torch.no_grad():
return self._fast_translate_batch(
batch, self.max_length, min_length=self.min_length
)
# Where the beam search lives
# I have no idea why it is being called from the method above
def _fast_translate_batch(self, batch, max_length, min_length=0):
""" Beam Search using the encoder inputs contained in `batch`.
"""
# The batch object is funny
# Instead of just looking at the size of the arguments we encapsulate
# a size argument.
# Where is it defined?
beam_size = self.beam_size
batch_size = batch.batch_size
src = batch.src
segs = batch.segs
mask_src = batch.mask_src
src_features = self.model.bert(src, segs, mask_src)
dec_states = self.model.decoder.init_decoder_state(
src, src_features, with_cache=True
)
device = src_features.device
# Tile states and memory beam_size times.
dec_states.map_batch_fn(lambda state, dim: tile(state, beam_size, dim=dim))
src_features = tile(src_features, beam_size, dim=0)
batch_offset = torch.arange(batch_size, dtype=torch.long, device=device)
beam_offset = torch.arange(
0, batch_size * beam_size, step=beam_size, dtype=torch.long, device=device
)
alive_seq = torch.full(
[batch_size * beam_size, 1], self.start_token, dtype=torch.long, device=device
)
# Give full probability to the first beam on the first step.
topk_log_probs = torch.tensor(
[0.0] + [float("-inf")] * (beam_size - 1), device=device
).repeat(batch_size)
# Structure that holds finished hypotheses.
hypotheses = [[] for _ in range(batch_size)] # noqa: F812
results = {}
results["predictions"] = [[] for _ in range(batch_size)] # noqa: F812
results["scores"] = [[] for _ in range(batch_size)] # noqa: F812
results["gold_score"] = [0] * batch_size
results["batch"] = batch
for step in range(max_length):
decoder_input = alive_seq[:, -1].view(1, -1)
# Decoder forward.
decoder_input = decoder_input.transpose(0, 1)
dec_out, dec_states = self.model.decoder(
decoder_input, src_features, dec_states, step=step
)
# Generator forward.
log_probs = self.generator.forward(dec_out.transpose(0, 1).squeeze(0))
vocab_size = log_probs.size(-1)
if step < min_length:
log_probs[:, self.end_token] = -1e20
# Multiply probs by the beam probability.
log_probs += topk_log_probs.view(-1).unsqueeze(1)
alpha = self.global_scorer.alpha
length_penalty = ((5.0 + (step + 1)) / 6.0) ** alpha
# Flatten probs into a list of possibilities.
curr_scores = log_probs / length_penalty
if self.args.block_trigram:
cur_len = alive_seq.size(1)
if cur_len > 3:
for i in range(alive_seq.size(0)):
fail = False
words = [int(w) for w in alive_seq[i]]
words = [self.vocab.ids_to_tokens[w] for w in words]
words = " ".join(words).replace(" ##", "").split()
if len(words) <= 3:
continue
trigrams = [
(words[i - 1], words[i], words[i + 1])
for i in range(1, len(words) - 1)
]
trigram = tuple(trigrams[-1])
if trigram in trigrams[:-1]:
fail = True
if fail:
curr_scores[i] = -10e20
curr_scores = curr_scores.reshape(-1, beam_size * vocab_size)
topk_scores, topk_ids = curr_scores.topk(beam_size, dim=-1)
# Recover log probs.
topk_log_probs = topk_scores * length_penalty
# Resolve beam origin and true word ids.
topk_beam_index = topk_ids.div(vocab_size)
topk_ids = topk_ids.fmod(vocab_size)
# Map beam_index to batch_index in the flat representation.
batch_index = topk_beam_index + beam_offset[
: topk_beam_index.size(0)
].unsqueeze(1)
select_indices = batch_index.view(-1)
# Append last prediction.
alive_seq = torch.cat(
[alive_seq.index_select(0, select_indices), topk_ids.view(-1, 1)], -1
)
is_finished = topk_ids.eq(self.end_token)
if step + 1 == max_length:
is_finished.fill_(1)
# End condition is top beam is finished.
end_condition = is_finished[:, 0].eq(1)
# Save finished hypotheses.
if is_finished.any():
predictions = alive_seq.view(-1, beam_size, alive_seq.size(-1))
for i in range(is_finished.size(0)):
b = batch_offset[i]
if end_condition[i]:
is_finished[i].fill_(1)
finished_hyp = is_finished[i].nonzero().view(-1)
# Store finished hypotheses for this batch.
for j in finished_hyp:
hypotheses[b].append((topk_scores[i, j], predictions[i, j, 1:]))
# If the batch reached the end, save the n_best hypotheses.
if end_condition[i]:
best_hyp = sorted(hypotheses[b], key=lambda x: x[0], reverse=True)
score, pred = best_hyp[0]
results["scores"][b].append(score)
results["predictions"][b].append(pred)
non_finished = end_condition.eq(0).nonzero().view(-1)
# If all sentences are translated, no need to go further.
if len(non_finished) == 0:
break
# Remove finished batches for the next step.
topk_log_probs = topk_log_probs.index_select(0, non_finished)
batch_index = batch_index.index_select(0, non_finished)
batch_offset = batch_offset.index_select(0, non_finished)
alive_seq = predictions.index_select(0, non_finished).view(
-1, alive_seq.size(-1)
)
# Reorder states.
select_indices = batch_index.view(-1)
src_features = src_features.index_select(0, select_indices)
dec_states.map_batch_fn(
lambda state, dim: state.index_select(dim, select_indices)
)
return results
def from_batch(self, translation_batch):
batch = translation_batch["batch"]
assert len(translation_batch["gold_score"]) == len(translation_batch["predictions"])
batch_size = batch.batch_size
preds, _, _, tgt_str, src = (
translation_batch["predictions"],
translation_batch["scores"],
translation_batch["gold_score"],
batch.tgt_str,
batch.src,
)
translations = []
for b in range(batch_size):
pred_sents = self.vocab.convert_ids_to_tokens([int(n) for n in preds[b][0]])
pred_sents = " ".join(pred_sents).replace(" ##", "")
gold_sent = " ".join(tgt_str[b].split())
raw_src = [self.vocab.ids_to_tokens[int(t)] for t in src[b]][:500]
raw_src = " ".join(raw_src)
translation = (pred_sents, gold_sent, raw_src)
translations.append(translation)
return translations
def tile(x, count, dim=0):
"""
Tiles x on dimension dim count times.
"""
perm = list(range(len(x.size())))
if dim != 0:
perm[0], perm[dim] = perm[dim], perm[0]
x = x.permute(perm).contiguous()
out_size = list(x.size())
out_size[0] *= count
batch = x.size(0)
x = (
x.view(batch, -1)
.transpose(0, 1)
.repeat(count, 1)
.transpose(0, 1)
.contiguous()
.view(*out_size)
)
if dim != 0:
x = x.permute(perm).contiguous()
return x
#
# Optimizer for training. We keep this here in case we want to add
# a finetuning script.
#
class BertSumOptimizer(object):
""" Specific optimizer for BertSum.
As described in [1], the authors fine-tune BertSum for abstractive
summarization using two Adam Optimizers with different warm-up steps and
learning rate. They also use a custom learning rate scheduler.
[1] Liu, Yang, and Mirella Lapata. "Text summarization with pretrained encoders."
arXiv preprint arXiv:1908.08345 (2019).
"""
def __init__(self, model, lr, warmup_steps, beta_1=0.99, beta_2=0.999, eps=1e-8):
self.encoder = model.encoder
self.decoder = model.decoder
self.lr = lr
self.warmup_steps = warmup_steps
self.optimizers = {
"encoder": torch.optim.Adam(
model.encoder.parameters(),
lr=lr["encoder"],
betas=(beta_1, beta_2),
eps=eps,
),
"decoder": torch.optim.Adam(
model.decoder.parameters(),
lr=lr["decoder"],
betas=(beta_1, beta_2),
eps=eps,
),
}
self._step = 0
self.current_learning_rates = {}
def _update_rate(self, stack):
return self.lr[stack] * min(
self._step ** (-0.5), self._step * self.warmup_steps[stack] ** (-1.5)
)
def zero_grad(self):
self.optimizer_decoder.zero_grad()
self.optimizer_encoder.zero_grad()
def step(self):
self._step += 1
for stack, optimizer in self.optimizers.items():
new_rate = self._update_rate(stack)
for param_group in optimizer.param_groups:
param_group["lr"] = new_rate
optimizer.step()
self.current_learning_rates[stack] = new_rate
# progress bars in model download and training scripts
tqdm
# Accessing files from S3 directly.
boto3
# Used for downloading models over HTTP
requests
# For ROUGE
nltk
py-rouge
#! /usr/bin/python3
import argparse
from collections import namedtuple
import logging
import os
import sys
import torch
from torch.utils.data import DataLoader, SequentialSampler
from tqdm import tqdm
from transformers import BertTokenizer
from modeling_bertabs import BertAbs, build_predictor
from utils_summarization import (
SummarizationDataset,
encode_for_summarization,
build_mask,
fit_to_block_size,
compute_token_type_ids,
)
logger = logging.getLogger(__name__)
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
Batch = namedtuple(
"Batch", ["document_names", "batch_size", "src", "segs", "mask_src", "tgt_str"]
)
def evaluate(args):
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", do_lower_case=True)
model = BertAbs.from_pretrained("bertabs-finetuned-cnndm")
model.to(args.device)
model.eval()
symbols = {
"BOS": tokenizer.vocab["[unused0]"],
"EOS": tokenizer.vocab["[unused1]"],
"PAD": tokenizer.vocab["[PAD]"],
}
if args.compute_rouge:
reference_summaries = []
generated_summaries = []
import rouge
import nltk
nltk.download('punkt')
rouge_evaluator = rouge.Rouge(
metrics=['rouge-n', 'rouge-l'],
max_n=2,
limit_length=True,
length_limit=args.beam_size,
length_limit_type='words',
apply_avg=True,
apply_best=False,
alpha=0.5, # Default F1_score
weight_factor=1.2,
stemming=True,
)
# these (unused) arguments are defined to keep the compatibility
# with the legacy code and will be deleted in a next iteration.
args.result_path = ""
args.temp_dir = ""
data_iterator = build_data_iterator(args, tokenizer)
predictor = build_predictor(args, tokenizer, symbols, model)
logger.info("***** Running evaluation *****")
logger.info(" Number examples = %d", len(data_iterator.dataset))
logger.info(" Batch size = %d", args.batch_size)
logger.info("")
logger.info("***** Beam Search parameters *****")
logger.info(" Beam size = %d", args.beam_size)
logger.info(" Minimum length = %d", args.min_length)
logger.info(" Maximum length = %d", args.max_length)
logger.info(" Alpha (length penalty) = %.2f", args.alpha)
logger.info(" Trigrams %s be blocked", ("will" if args.block_trigram else "will NOT"))
for batch in tqdm(data_iterator):
batch_data = predictor.translate_batch(batch)
translations = predictor.from_batch(batch_data)
summaries = [format_summary(t) for t in translations]
save_summaries(summaries, args.summaries_output_dir, batch.document_names)
if args.compute_rouge:
reference_summaries += batch.tgt_str
generated_summaries += summaries
if args.compute_rouge:
scores = rouge_evaluator.get_scores(generated_summaries, reference_summaries)
str_scores = format_rouge_scores(scores)
save_rouge_scores(str_scores)
print(str_scores)
def save_summaries(summaries, path, original_document_name):
""" Write the summaries in fies that are prefixed by the original
files' name with the `_summary` appended.
Attributes:
original_document_names: List[string]
Name of the document that was summarized.
path: string
Path were the summaries will be written
summaries: List[string]
The summaries that we produced.
"""
for summary, document_name in zip(summaries, original_document_name):
# Prepare the summary file's name
if "." in document_name:
bare_document_name = ".".join(document_name.split(".")[:-1])
extension = document_name.split(".")[-1]
name = bare_document_name + "_summary." + extension
else:
name = document_name + "_summary"
file_path = os.path.join(path, name)
with open(file_path, "w") as output:
output.write(summary)
def format_summary(translation):
""" Transforms the output of the `from_batch` function
into nicely formatted summaries.
"""
raw_summary, _, _ = translation
summary = (
raw_summary.replace("[unused0]", "")
.replace("[unused3]", "")
.replace("[PAD]", "")
.replace("[unused1]", "")
.replace(r" +", " ")
.replace(" [unused2] ", ". ")
.replace("[unused2]", "")
.strip()
)
return summary
def format_rouge_scores(scores):
return """\n
****** ROUGE SCORES ******
** ROUGE 1
F1 >> {:.3f}
Precision >> {:.3f}
Recall >> {:.3f}
** ROUGE 2
F1 >> {:.3f}
Precision >> {:.3f}
Recall >> {:.3f}
** ROUGE L
F1 >> {:.3f}
Precision >> {:.3f}
Recall >> {:.3f}""".format(
scores['rouge-1']['f'],
scores['rouge-1']['p'],
scores['rouge-1']['r'],
scores['rouge-2']['f'],
scores['rouge-2']['p'],
scores['rouge-2']['r'],
scores['rouge-l']['f'],
scores['rouge-l']['p'],
scores['rouge-l']['r'],
)
def save_rouge_scores(str_scores):
with open("rouge_scores.txt", "w") as output:
output.write(str_scores)
#
# LOAD the dataset
#
def build_data_iterator(args, tokenizer):
dataset = load_and_cache_examples(args, tokenizer)
sampler = SequentialSampler(dataset)
collate_fn = lambda data: collate(data, tokenizer, block_size=512, device=args.device)
iterator = DataLoader(
dataset, sampler=sampler, batch_size=args.batch_size, collate_fn=collate_fn,
)
return iterator
def load_and_cache_examples(args, tokenizer):
dataset = SummarizationDataset(args.documents_dir)
return dataset
def collate(data, tokenizer, block_size, device):
""" Collate formats the data passed to the data loader.
In particular we tokenize the data batch after batch to avoid keeping them
all in memory. We output the data as a namedtuple to fit the original BertAbs's
API.
"""
data = [x for x in data if not len(x[1]) == 0] # remove empty_files
names = [name for name, _, _ in data]
summaries = [" ".join(summary_list) for _, _, summary_list in data]
encoded_text = [
encode_for_summarization(story, summary, tokenizer) for _, story, summary in data
]
encoded_stories = torch.tensor(
[
fit_to_block_size(story, block_size, tokenizer.pad_token_id)
for story, _ in encoded_text
]
)
encoder_token_type_ids = compute_token_type_ids(encoded_stories, tokenizer.cls_token_id)
encoder_mask = build_mask(encoded_stories, tokenizer.pad_token_id)
batch = Batch(
document_names=names,
batch_size=len(encoded_stories),
src=encoded_stories.to(device),
segs=encoder_token_type_ids.to(device),
mask_src=encoder_mask.to(device),
tgt_str=summaries,
)
return batch
def decode_summary(summary_tokens, tokenizer):
""" Decode the summary and return it in a format
suitable for evaluation.
"""
summary_tokens = summary_tokens.to("cpu").numpy()
summary = tokenizer.decode(summary_tokens)
sentences = summary.split(".")
sentences = [s + "." for s in sentences]
return sentences
def main():
""" The main function defines the interface with the users.
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--documents_dir",
default=None,
type=str,
required=True,
help="The folder where the documents to summarize are located.",
)
parser.add_argument(
"--summaries_output_dir",
default=None,
type=str,
required=False,
help="The folder in wich the summaries should be written. Defaults to the folder where the documents are",
)
parser.add_argument(
"--compute_rouge",
default=False,
type=bool,
required=False,
help="Compute the ROUGE metrics during evaluation. Only available for the CNN/DailyMail dataset.",
)
# EVALUATION options
parser.add_argument(
"--no_cuda",
default=False,
type=bool,
help="Whether to force the execution on CPU.",
)
parser.add_argument(
"--batch_size", default=4, type=int, help="Batch size per GPU/CPU for training.",
)
# BEAM SEARCH arguments
parser.add_argument(
"--min_length",
default=50,
type=int,
help="Minimum number of tokens for the summaries.",
)
parser.add_argument(
"--max_length",
default=200,
type=int,
help="Maixmum number of tokens for the summaries.",
)
parser.add_argument(
"--beam_size",
default=5,
type=int,
help="The number of beams to start with for each example.",
)
parser.add_argument(
"--alpha",
default=0.95,
type=float,
help="The value of alpha for the length penalty in the beam search.",
)
parser.add_argument(
"--block_trigram",
default=True,
type=bool,
help="Whether to block the existence of repeating trigrams in the text generated by beam search.",
)
args = parser.parse_args()
# Select device (distibuted not available)
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
# Check the existence of directories
if not args.summaries_output_dir:
args.summaries_output_dir = args.documents_dir
if not documents_dir_is_valid(args.documents_dir):
raise FileNotFoundError(
"We could not find the directory you specified for the documents to summarize, or it was empty. Please specify a valid path."
)
os.makedirs(args.summaries_output_dir, exist_ok=True)
evaluate(args)
def documents_dir_is_valid(path):
if not os.path.exists(path):
return False
file_list = os.listdir(path)
if len(file_list) == 0:
return False
return True
if __name__ == "__main__":
main()
...@@ -10,9 +10,14 @@ from torch.utils.data import Dataset ...@@ -10,9 +10,14 @@ from torch.utils.data import Dataset
# ------------ # ------------
class CNNDailyMailDataset(Dataset): class SummarizationDataset(Dataset):
""" Abstracts the dataset used to train seq2seq models. """ Abstracts the dataset used to train seq2seq models.
The class will process the documents that are located in the specified
folder. The preprocessing will work on any document that is reasonably
formatted. On the CNN/DailyMail dataset it will extract both the story
and the summary.
CNN/Daily News: CNN/Daily News:
The CNN/Daily News raw datasets are downloaded from [1]. The stories are The CNN/Daily News raw datasets are downloaded from [1]. The stories are
...@@ -25,33 +30,33 @@ class CNNDailyMailDataset(Dataset): ...@@ -25,33 +30,33 @@ class CNNDailyMailDataset(Dataset):
[2] https://github.com/abisee/cnn-dailymail/ [2] https://github.com/abisee/cnn-dailymail/
""" """
def __init__(self, tokenizer, prefix="train", data_dir=""): def __init__(self, path="", prefix="train"):
assert os.path.isdir(data_dir) """ We initialize the class by listing all the documents to summarize.
self.tokenizer = tokenizer Files are not read in memory due to the size of some datasets (like CNN/DailyMail).
"""
# We initialize the class by listing all the files that contain assert os.path.isdir(path)
# stories and summaries. Files are not read in memory given
# the size of the corpus. self.documents = []
self.stories_path = [] story_filenames_list = os.listdir(path)
datasets = ("cnn", "dailymail")
for dataset in datasets:
path_to_stories = os.path.join(data_dir, dataset, "stories")
story_filenames_list = os.listdir(path_to_stories)
for story_filename in story_filenames_list: for story_filename in story_filenames_list:
path_to_story = os.path.join(path_to_stories, story_filename) if "summary" in story_filename:
continue
path_to_story = os.path.join(path, story_filename)
if not os.path.isfile(path_to_story): if not os.path.isfile(path_to_story):
continue continue
self.stories_path.append(path_to_story) self.documents.append(path_to_story)
def __len__(self): def __len__(self):
return len(self.stories_path) """ Returns the number of documents. """
return len(self.documents)
def __getitem__(self, idx): def __getitem__(self, idx):
story_path = self.stories_path[idx] document_path = self.documents[idx]
with open(story_path, encoding="utf-8") as source: document_name = document_path.split("/")[-1]
with open(document_path, encoding="utf-8") as source:
raw_story = source.read() raw_story = source.read()
story_lines, summary_lines = process_story(raw_story) story_lines, summary_lines = process_story(raw_story)
return story_lines, summary_lines return document_name, story_lines, summary_lines
def process_story(raw_story): def process_story(raw_story):
...@@ -81,7 +86,7 @@ def process_story(raw_story): ...@@ -81,7 +86,7 @@ def process_story(raw_story):
story_lines.append(element) story_lines.append(element)
except IndexError: except IndexError:
# if "@highlight" is absent from the file we pop # if "@highlight" is absent from the file we pop
# all elements until there is None. # all elements until there is None, raising an exception.
return story_lines, [] return story_lines, []
# gather summary lines # gather summary lines
...@@ -104,31 +109,22 @@ def _add_missing_period(line): ...@@ -104,31 +109,22 @@ def _add_missing_period(line):
# -------------------------- # --------------------------
def fit_to_block_size(sequence, block_size, pad_token): def fit_to_block_size(sequence, block_size, pad_token_id):
""" Adapt the source and target sequences' lengths to the block size. """ Adapt the source and target sequences' lengths to the block size.
If the sequence is shorter than the block size we pad it with -1 ids If the sequence is shorter we append padding token to the right of the sequence.
which correspond to padding tokens.
""" """
if len(sequence) > block_size: if len(sequence) > block_size:
return sequence[:block_size] return sequence[:block_size]
else: else:
sequence.extend([pad_token] * (block_size - len(sequence))) sequence.extend([pad_token_id] * (block_size - len(sequence)))
return sequence return sequence
def build_lm_labels(sequence, pad_token): def build_mask(sequence, pad_token_id):
""" Padding token, encoded as 0, are represented by the value -1 so they
are not taken into account in the loss computation. """
padded = sequence.clone()
padded[padded == pad_token] = -1
return padded
def build_mask(sequence, pad_token):
""" Builds the mask. The attention mechanism will only attend to positions """ Builds the mask. The attention mechanism will only attend to positions
with value 1. """ with value 1. """
mask = torch.ones_like(sequence) mask = torch.ones_like(sequence)
idx_pad_tokens = sequence == pad_token idx_pad_tokens = sequence == pad_token_id
mask[idx_pad_tokens] = 0 mask[idx_pad_tokens] = 0
return mask return mask
...@@ -138,18 +134,11 @@ def encode_for_summarization(story_lines, summary_lines, tokenizer): ...@@ -138,18 +134,11 @@ def encode_for_summarization(story_lines, summary_lines, tokenizer):
as specified in [1] by using `[SEP] [CLS]` tokens to separate as specified in [1] by using `[SEP] [CLS]` tokens to separate
sentences. sentences.
""" """
story_lines_token_ids = [ story_lines_token_ids = [tokenizer.encode(line) for line in story_lines]
tokenizer.add_special_tokens_single_sequence(tokenizer.encode(line))
for line in story_lines
]
summary_lines_token_ids = [
tokenizer.add_special_tokens_single_sequence(tokenizer.encode(line))
for line in summary_lines
]
story_token_ids = [ story_token_ids = [
token for sentence in story_lines_token_ids for token in sentence token for sentence in story_lines_token_ids for token in sentence
] ]
summary_lines_token_ids = [tokenizer.encode(line) for line in summary_lines]
summary_token_ids = [ summary_token_ids = [
token for sentence in summary_lines_token_ids for token in sentence token for sentence in summary_lines_token_ids for token in sentence
] ]
...@@ -174,7 +163,7 @@ def compute_token_type_ids(batch, separator_token_id): ...@@ -174,7 +163,7 @@ def compute_token_type_ids(batch, separator_token_id):
""" """
batch_embeddings = [] batch_embeddings = []
for sequence in batch: for sequence in batch:
sentence_num = 0 sentence_num = -1
embeddings = [] embeddings = []
for s in sequence: for s in sequence:
if s == separator_token_id: if s == separator_token_id:
......
...@@ -21,7 +21,6 @@ from utils_summarization import ( ...@@ -21,7 +21,6 @@ from utils_summarization import (
compute_token_type_ids, compute_token_type_ids,
fit_to_block_size, fit_to_block_size,
build_mask, build_mask,
build_lm_labels,
process_story, process_story,
) )
...@@ -88,20 +87,6 @@ class SummarizationDataProcessingTest(unittest.TestCase): ...@@ -88,20 +87,6 @@ class SummarizationDataProcessingTest(unittest.TestCase):
expected_summary_lines = ["It was the best of times."] expected_summary_lines = ["It was the best of times."]
self.assertEqual(expected_summary_lines, summary_lines) self.assertEqual(expected_summary_lines, summary_lines)
def test_build_lm_labels_no_padding(self):
sequence = torch.tensor([1, 2, 3, 4])
expected = sequence
np.testing.assert_array_equal(
build_lm_labels(sequence, 0).numpy(), expected.numpy()
)
def test_build_lm_labels(self):
sequence = torch.tensor([1, 2, 3, 4, 0, 0, 0])
expected = torch.tensor([1, 2, 3, 4, -1, -1, -1])
np.testing.assert_array_equal(
build_lm_labels(sequence, 0).numpy(), expected.numpy()
)
def test_build_mask_no_padding(self): def test_build_mask_no_padding(self):
sequence = torch.tensor([1, 2, 3, 4]) sequence = torch.tensor([1, 2, 3, 4])
expected = torch.tensor([1, 1, 1, 1]) expected = torch.tensor([1, 1, 1, 1])
...@@ -125,7 +110,7 @@ class SummarizationDataProcessingTest(unittest.TestCase): ...@@ -125,7 +110,7 @@ class SummarizationDataProcessingTest(unittest.TestCase):
[[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] [[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]]
) )
expected = torch.tensor( expected = torch.tensor(
[[0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1], [0, 1, 1, 1, 0, 0]] [[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]]
) )
result = compute_token_type_ids(batch, separator) result = compute_token_type_ids(batch, separator)
......
...@@ -72,8 +72,7 @@ class ExamplesTests(unittest.TestCase): ...@@ -72,8 +72,7 @@ class ExamplesTests(unittest.TestCase):
logger.addHandler(stream_handler) logger.addHandler(stream_handler)
testargs = ["run_squad.py", testargs = ["run_squad.py",
"--train_file=./examples/tests_samples/SQUAD/dev-v2.0-small.json", "--data_dir=./examples/tests_samples/SQUAD",
"--predict_file=./examples/tests_samples/SQUAD/dev-v2.0-small.json",
"--model_name=bert-base-uncased", "--model_name=bert-base-uncased",
"--output_dir=./examples/tests_samples/temp_dir", "--output_dir=./examples/tests_samples/temp_dir",
"--max_steps=10", "--max_steps=10",
......
{
"version": "v2.0",
"data": [{
"title": "Normans",
"paragraphs": [{
"qas": [{
"question": "In what country is Normandy located?",
"id": "56ddde6b9a695914005b9628",
"answers": [{
"text": "France",
"answer_start": 159
}],
"is_impossible": false
}, {
"question": "When were the Normans in Normandy?",
"id": "56ddde6b9a695914005b9629",
"answers": [{
"text": "10th and 11th centuries",
"answer_start": 94
}],
"is_impossible": false
}, {
"question": "From which countries did the Norse originate?",
"id": "56ddde6b9a695914005b962a",
"answers": [{
"text": "Denmark, Iceland and Norway",
"answer_start": 256
}],
"is_impossible": false
}, {
"plausible_answers": [{
"text": "Rollo",
"answer_start": 308
}],
"question": "Who did King Charles III swear fealty to?",
"id": "5ad39d53604f3c001a3fe8d3",
"answers": [],
"is_impossible": true
}, {
"plausible_answers": [{
"text": "10th century",
"answer_start": 671
}],
"question": "When did the Frankish identity emerge?",
"id": "5ad39d53604f3c001a3fe8d4",
"answers": [],
"is_impossible": true
}],
"context": "The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in the 10th and 11th centuries gave their name to Normandy, a region in France. They were descended from Norse (\"Norman\" comes from \"Norseman\") raiders and pirates from Denmark, Iceland and Norway who, under their leader Rollo, agreed to swear fealty to King Charles III of West Francia. Through generations of assimilation and mixing with the native Frankish and Roman-Gaulish populations, their descendants would gradually merge with the Carolingian-based cultures of West Francia. The distinct cultural and ethnic identity of the Normans emerged initially in the first half of the 10th century, and it continued to evolve over the succeeding centuries."
}, {
"qas": [{
"question": "Who was the duke in the battle of Hastings?",
"id": "56dddf4066d3e219004dad5f",
"answers": [{
"text": "William the Conqueror",
"answer_start": 1022
}],
"is_impossible": false
}, {
"plausible_answers": [{
"text": "Antioch",
"answer_start": 1295
}],
"question": "What principality did William the conquerer found?",
"id": "5ad3a266604f3c001a3fea2b",
"answers": [],
"is_impossible": true
}],
"context": "The Norman dynasty had a major political, cultural and military impact on medieval Europe and even the Near East. The Normans were famed for their martial spirit and eventually for their Christian piety, becoming exponents of the Catholic orthodoxy into which they assimilated. They adopted the Gallo-Romance language of the Frankish land they settled, their dialect becoming known as Norman, Normaund or Norman French, an important literary language. The Duchy of Normandy, which they formed by treaty with the French crown, was a great fief of medieval France, and under Richard I of Normandy was forged into a cohesive and formidable principality in feudal tenure. The Normans are noted both for their culture, such as their unique Romanesque architecture and musical traditions, and for their significant military accomplishments and innovations. Norman adventurers founded the Kingdom of Sicily under Roger II after conquering southern Italy on the Saracens and Byzantines, and an expedition on behalf of their duke, William the Conqueror, led to the Norman conquest of England at the Battle of Hastings in 1066. Norman cultural and military influence spread from these new European centres to the Crusader states of the Near East, where their prince Bohemond I founded the Principality of Antioch in the Levant, to Scotland and Wales in Great Britain, to Ireland, and to the coasts of north Africa and the Canary Islands."
}]
}, {
"title": "Computational_complexity_theory",
"paragraphs": [{
"qas": [{
"question": "What branch of theoretical computer science deals with broadly classifying computational problems by difficulty and class of relationship?",
"id": "56e16182e3433e1400422e28",
"answers": [{
"text": "Computational complexity theory",
"answer_start": 0
}],
"is_impossible": false
}, {
"plausible_answers": [{
"text": "algorithm",
"answer_start": 472
}],
"question": "What is a manual application of mathematical steps?",
"id": "5ad5316b5b96ef001a10ab76",
"answers": [],
"is_impossible": true
}],
"context": "Computational complexity theory is a branch of the theory of computation in theoretical computer science that focuses on classifying computational problems according to their inherent difficulty, and relating those classes to each other. A computational problem is understood to be a task that is in principle amenable to being solved by a computer, which is equivalent to stating that the problem may be solved by mechanical application of mathematical steps, such as an algorithm."
}, {
"qas": [{
"question": "What measure of a computational problem broadly defines the inherent difficulty of the solution?",
"id": "56e16839cd28a01900c67887",
"answers": [{
"text": "if its solution requires significant resources",
"answer_start": 46
}],
"is_impossible": false
}, {
"question": "What method is used to intuitively assess or quantify the amount of resources required to solve a computational problem?",
"id": "56e16839cd28a01900c67888",
"answers": [{
"text": "mathematical models of computation",
"answer_start": 176
}],
"is_impossible": false
}, {
"question": "What are two basic primary resources used to guage complexity?",
"id": "56e16839cd28a01900c67889",
"answers": [{
"text": "time and storage",
"answer_start": 305
}],
"is_impossible": false
}, {
"plausible_answers": [{
"text": "the number of gates in a circuit",
"answer_start": 436
}],
"question": "What unit is measured to determine circuit simplicity?",
"id": "5ad532575b96ef001a10ab7f",
"answers": [],
"is_impossible": true
}, {
"plausible_answers": [{
"text": "the number of processors",
"answer_start": 502
}],
"question": "What number is used in perpendicular computing?",
"id": "5ad532575b96ef001a10ab80",
"answers": [],
"is_impossible": true
}],
"context": "A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying the amount of resources needed to solve them, such as time and storage. Other complexity measures are also used, such as the amount of communication (used in communication complexity), the number of gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). One of the roles of computational complexity theory is to determine the practical limits on what computers can and cannot do."
}]
}]
}
\ No newline at end of file
""" Official evaluation script for SQuAD version 2.0.
Modified by XLNet authors to update `find_best_threshold` scripts for SQuAD V2.0
In addition to basic functionality, we also compute additional statistics and
plot precision-recall curves if an additional na_prob.json file is provided.
This file is expected to map question ID's to the model's predicted probability
that a question is unanswerable.
"""
import argparse
import collections
import json
import numpy as np
import os
import re
import string
import sys
class EVAL_OPTS():
def __init__(self, data_file, pred_file, out_file="",
na_prob_file="na_prob.json", na_prob_thresh=1.0,
out_image_dir=None, verbose=False):
self.data_file = data_file
self.pred_file = pred_file
self.out_file = out_file
self.na_prob_file = na_prob_file
self.na_prob_thresh = na_prob_thresh
self.out_image_dir = out_image_dir
self.verbose = verbose
OPTS = None
def parse_args():
parser = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.')
parser.add_argument('data_file', metavar='data.json', help='Input data JSON file.')
parser.add_argument('pred_file', metavar='pred.json', help='Model predictions.')
parser.add_argument('--out-file', '-o', metavar='eval.json',
help='Write accuracy metrics to file (default is stdout).')
parser.add_argument('--na-prob-file', '-n', metavar='na_prob.json',
help='Model estimates of probability of no answer.')
parser.add_argument('--na-prob-thresh', '-t', type=float, default=1.0,
help='Predict "" if no-answer probability exceeds this (default = 1.0).')
parser.add_argument('--out-image-dir', '-p', metavar='out_images', default=None,
help='Save precision-recall curves to directory.')
parser.add_argument('--verbose', '-v', action='store_true')
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
return parser.parse_args()
def make_qid_to_has_ans(dataset):
qid_to_has_ans = {}
for article in dataset:
for p in article['paragraphs']:
for qa in p['qas']:
qid_to_has_ans[qa['id']] = bool(qa['answers'])
return qid_to_has_ans
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
regex = re.compile(r'\b(a|an|the)\b', re.UNICODE)
return re.sub(regex, ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def get_tokens(s):
if not s: return []
return normalize_answer(s).split()
def compute_exact(a_gold, a_pred):
return int(normalize_answer(a_gold) == normalize_answer(a_pred))
def compute_f1(a_gold, a_pred):
gold_toks = get_tokens(a_gold)
pred_toks = get_tokens(a_pred)
common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
num_same = sum(common.values())
if len(gold_toks) == 0 or len(pred_toks) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks)
if num_same == 0:
return 0
precision = 1.0 * num_same / len(pred_toks)
recall = 1.0 * num_same / len(gold_toks)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def get_raw_scores(dataset, preds):
exact_scores = {}
f1_scores = {}
for article in dataset:
for p in article['paragraphs']:
for qa in p['qas']:
qid = qa['id']
gold_answers = [a['text'] for a in qa['answers']
if normalize_answer(a['text'])]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
gold_answers = ['']
if qid not in preds:
print('Missing prediction for %s' % qid)
continue
a_pred = preds[qid]
# Take max over all gold answers
exact_scores[qid] = max(compute_exact(a, a_pred) for a in gold_answers)
f1_scores[qid] = max(compute_f1(a, a_pred) for a in gold_answers)
return exact_scores, f1_scores
def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh):
new_scores = {}
for qid, s in scores.items():
pred_na = na_probs[qid] > na_prob_thresh
if pred_na:
new_scores[qid] = float(not qid_to_has_ans[qid])
else:
new_scores[qid] = s
return new_scores
def make_eval_dict(exact_scores, f1_scores, qid_list=None):
if not qid_list:
total = len(exact_scores)
return collections.OrderedDict([
('exact', 100.0 * sum(exact_scores.values()) / total),
('f1', 100.0 * sum(f1_scores.values()) / total),
('total', total),
])
else:
total = len(qid_list)
return collections.OrderedDict([
('exact', 100.0 * sum(exact_scores[k] for k in qid_list) / total),
('f1', 100.0 * sum(f1_scores[k] for k in qid_list) / total),
('total', total),
])
def merge_eval(main_eval, new_eval, prefix):
for k in new_eval:
main_eval['%s_%s' % (prefix, k)] = new_eval[k]
def plot_pr_curve(precisions, recalls, out_image, title):
plt.step(recalls, precisions, color='b', alpha=0.2, where='post')
plt.fill_between(recalls, precisions, step='post', alpha=0.2, color='b')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.xlim([0.0, 1.05])
plt.ylim([0.0, 1.05])
plt.title(title)
plt.savefig(out_image)
plt.clf()
def make_precision_recall_eval(scores, na_probs, num_true_pos, qid_to_has_ans,
out_image=None, title=None):
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
true_pos = 0.0
cur_p = 1.0
cur_r = 0.0
precisions = [1.0]
recalls = [0.0]
avg_prec = 0.0
for i, qid in enumerate(qid_list):
if qid_to_has_ans[qid]:
true_pos += scores[qid]
cur_p = true_pos / float(i+1)
cur_r = true_pos / float(num_true_pos)
if i == len(qid_list) - 1 or na_probs[qid] != na_probs[qid_list[i+1]]:
# i.e., if we can put a threshold after this point
avg_prec += cur_p * (cur_r - recalls[-1])
precisions.append(cur_p)
recalls.append(cur_r)
if out_image:
plot_pr_curve(precisions, recalls, out_image, title)
return {'ap': 100.0 * avg_prec}
def run_precision_recall_analysis(main_eval, exact_raw, f1_raw, na_probs,
qid_to_has_ans, out_image_dir):
if out_image_dir and not os.path.exists(out_image_dir):
os.makedirs(out_image_dir)
num_true_pos = sum(1 for v in qid_to_has_ans.values() if v)
if num_true_pos == 0:
return
pr_exact = make_precision_recall_eval(
exact_raw, na_probs, num_true_pos, qid_to_has_ans,
out_image=os.path.join(out_image_dir, 'pr_exact.png'),
title='Precision-Recall curve for Exact Match score')
pr_f1 = make_precision_recall_eval(
f1_raw, na_probs, num_true_pos, qid_to_has_ans,
out_image=os.path.join(out_image_dir, 'pr_f1.png'),
title='Precision-Recall curve for F1 score')
oracle_scores = {k: float(v) for k, v in qid_to_has_ans.items()}
pr_oracle = make_precision_recall_eval(
oracle_scores, na_probs, num_true_pos, qid_to_has_ans,
out_image=os.path.join(out_image_dir, 'pr_oracle.png'),
title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)')
merge_eval(main_eval, pr_exact, 'pr_exact')
merge_eval(main_eval, pr_f1, 'pr_f1')
merge_eval(main_eval, pr_oracle, 'pr_oracle')
def histogram_na_prob(na_probs, qid_list, image_dir, name):
if not qid_list:
return
x = [na_probs[k] for k in qid_list]
weights = np.ones_like(x) / float(len(x))
plt.hist(x, weights=weights, bins=20, range=(0.0, 1.0))
plt.xlabel('Model probability of no-answer')
plt.ylabel('Proportion of dataset')
plt.title('Histogram of no-answer probability: %s' % name)
plt.savefig(os.path.join(image_dir, 'na_prob_hist_%s.png' % name))
plt.clf()
def find_best_thresh(preds, scores, na_probs, qid_to_has_ans):
num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
cur_score = num_no_ans
best_score = cur_score
best_thresh = 0.0
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
for i, qid in enumerate(qid_list):
if qid not in scores: continue
if qid_to_has_ans[qid]:
diff = scores[qid]
else:
if preds[qid]:
diff = -1
else:
diff = 0
cur_score += diff
if cur_score > best_score:
best_score = cur_score
best_thresh = na_probs[qid]
return 100.0 * best_score / len(scores), best_thresh
def find_best_thresh_v2(preds, scores, na_probs, qid_to_has_ans):
num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
cur_score = num_no_ans
best_score = cur_score
best_thresh = 0.0
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
for i, qid in enumerate(qid_list):
if qid not in scores: continue
if qid_to_has_ans[qid]:
diff = scores[qid]
else:
if preds[qid]:
diff = -1
else:
diff = 0
cur_score += diff
if cur_score > best_score:
best_score = cur_score
best_thresh = na_probs[qid]
has_ans_score, has_ans_cnt = 0, 0
for qid in qid_list:
if not qid_to_has_ans[qid]: continue
has_ans_cnt += 1
if qid not in scores: continue
has_ans_score += scores[qid]
return 100.0 * best_score / len(scores), best_thresh, 1.0 * has_ans_score / has_ans_cnt
def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans):
best_exact, exact_thresh = find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans)
best_f1, f1_thresh = find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans)
main_eval['best_exact'] = best_exact
main_eval['best_exact_thresh'] = exact_thresh
main_eval['best_f1'] = best_f1
main_eval['best_f1_thresh'] = f1_thresh
def find_all_best_thresh_v2(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans):
best_exact, exact_thresh, has_ans_exact = find_best_thresh_v2(preds, exact_raw, na_probs, qid_to_has_ans)
best_f1, f1_thresh, has_ans_f1 = find_best_thresh_v2(preds, f1_raw, na_probs, qid_to_has_ans)
main_eval['best_exact'] = best_exact
main_eval['best_exact_thresh'] = exact_thresh
main_eval['best_f1'] = best_f1
main_eval['best_f1_thresh'] = f1_thresh
main_eval['has_ans_exact'] = has_ans_exact
main_eval['has_ans_f1'] = has_ans_f1
def main(OPTS):
with open(OPTS.data_file) as f:
dataset_json = json.load(f)
dataset = dataset_json['data']
with open(OPTS.pred_file) as f:
preds = json.load(f)
if OPTS.na_prob_file:
with open(OPTS.na_prob_file) as f:
na_probs = json.load(f)
else:
na_probs = {k: 0.0 for k in preds}
qid_to_has_ans = make_qid_to_has_ans(dataset) # maps qid to True/False
has_ans_qids = [k for k, v in qid_to_has_ans.items() if v]
no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
exact_raw, f1_raw = get_raw_scores(dataset, preds)
exact_thresh = apply_no_ans_threshold(exact_raw, na_probs, qid_to_has_ans,
OPTS.na_prob_thresh)
f1_thresh = apply_no_ans_threshold(f1_raw, na_probs, qid_to_has_ans,
OPTS.na_prob_thresh)
out_eval = make_eval_dict(exact_thresh, f1_thresh)
if has_ans_qids:
has_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=has_ans_qids)
merge_eval(out_eval, has_ans_eval, 'HasAns')
if no_ans_qids:
no_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=no_ans_qids)
merge_eval(out_eval, no_ans_eval, 'NoAns')
if OPTS.na_prob_file:
find_all_best_thresh(out_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans)
if OPTS.na_prob_file and OPTS.out_image_dir:
run_precision_recall_analysis(out_eval, exact_raw, f1_raw, na_probs,
qid_to_has_ans, OPTS.out_image_dir)
histogram_na_prob(na_probs, has_ans_qids, OPTS.out_image_dir, 'hasAns')
histogram_na_prob(na_probs, no_ans_qids, OPTS.out_image_dir, 'noAns')
if OPTS.out_file:
with open(OPTS.out_file, 'w') as f:
json.dump(out_eval, f)
else:
print(json.dumps(out_eval, indent=2))
return out_eval
if __name__ == '__main__':
OPTS = parse_args()
if OPTS.out_image_dir:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
main(OPTS)
...@@ -5,7 +5,7 @@ boto3 ...@@ -5,7 +5,7 @@ boto3
# Used for downloading models over HTTP # Used for downloading models over HTTP
requests requests
# For OpenAI GPT # For OpenAI GPT
regex regex != 2019.12.17
# For XLNet # For XLNet
sentencepiece sentencepiece
# For XLM # For XLM
......
...@@ -36,9 +36,17 @@ To create the package for pypi. ...@@ -36,9 +36,17 @@ To create the package for pypi.
from io import open from io import open
from setuptools import find_packages, setup from setuptools import find_packages, setup
extras = {
'serving': ['pydantic', 'uvicorn', 'fastapi'],
'serving-tf': ['pydantic', 'uvicorn', 'fastapi', 'tensorflow'],
'serving-torch': ['pydantic', 'uvicorn', 'fastapi', 'torch']
}
extras['all'] = [package for package in extras.values()]
setup( setup(
name="transformers", name="transformers",
version="2.1.1", version="2.3.0",
author="Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Google AI Language Team Authors, Open AI team Authors, Facebook AI Authors, Carnegie Mellon University Authors", author="Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Google AI Language Team Authors, Open AI team Authors, Facebook AI Authors, Carnegie Mellon University Authors",
author_email="thomas@huggingface.co", author_email="thomas@huggingface.co",
description="State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch", description="State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch",
...@@ -51,18 +59,17 @@ setup( ...@@ -51,18 +59,17 @@ setup(
"tests.*", "tests"]), "tests.*", "tests"]),
install_requires=['numpy', install_requires=['numpy',
'boto3', 'boto3',
'filelock',
'requests', 'requests',
'tqdm', 'tqdm',
'regex', 'regex != 2019.12.17',
'sentencepiece', 'sentencepiece',
'sacremoses'], 'sacremoses'],
entry_points={ extras_require=extras,
'console_scripts': [ scripts=[
"transformers=transformers.__main__:main", 'transformers-cli'
] ],
},
# python_requires='>=3.5.0', # python_requires='>=3.5.0',
tests_require=['pytest'],
classifiers=[ classifiers=[
'Intended Audience :: Science/Research', 'Intended Audience :: Science/Research',
'License :: OSI Approved :: Apache Software License', 'License :: OSI Approved :: Apache Software License',
......
...@@ -39,7 +39,7 @@ class XxxConfig(PretrainedConfig): ...@@ -39,7 +39,7 @@ class XxxConfig(PretrainedConfig):
Arguments: Arguments:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `XxxModel`. vocab_size: Vocabulary size of `inputs_ids` in `XxxModel`.
hidden_size: Size of the encoder layers and the pooler layer. hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer encoder. num_hidden_layers: Number of hidden layers in the Transformer encoder.
num_attention_heads: Number of attention heads for each attention layer in num_attention_heads: Number of attention heads for each attention layer in
...@@ -64,7 +64,7 @@ class XxxConfig(PretrainedConfig): ...@@ -64,7 +64,7 @@ class XxxConfig(PretrainedConfig):
pretrained_config_archive_map = XXX_PRETRAINED_CONFIG_ARCHIVE_MAP pretrained_config_archive_map = XXX_PRETRAINED_CONFIG_ARCHIVE_MAP
def __init__(self, def __init__(self,
vocab_size_or_config_json_file=50257, vocab_size=50257,
n_positions=1024, n_positions=1024,
n_ctx=1024, n_ctx=1024,
n_embd=768, n_embd=768,
...@@ -75,8 +75,6 @@ class XxxConfig(PretrainedConfig): ...@@ -75,8 +75,6 @@ class XxxConfig(PretrainedConfig):
attn_pdrop=0.1, attn_pdrop=0.1,
layer_norm_epsilon=1e-5, layer_norm_epsilon=1e-5,
initializer_range=0.02, initializer_range=0.02,
num_labels=1,
summary_type='cls_index', summary_type='cls_index',
summary_use_proj=True, summary_use_proj=True,
summary_activation=None, summary_activation=None,
...@@ -84,7 +82,7 @@ class XxxConfig(PretrainedConfig): ...@@ -84,7 +82,7 @@ class XxxConfig(PretrainedConfig):
summary_first_dropout=0.1, summary_first_dropout=0.1,
**kwargs): **kwargs):
super(XxxConfig, self).__init__(**kwargs) super(XxxConfig, self).__init__(**kwargs)
self.vocab_size = vocab_size_or_config_json_file if isinstance(vocab_size_or_config_json_file, six.string_types) else -1 self.vocab_size = vocab_size
self.n_ctx = n_ctx self.n_ctx = n_ctx
self.n_positions = n_positions self.n_positions = n_positions
self.n_embd = n_embd self.n_embd = n_embd
...@@ -95,23 +93,11 @@ class XxxConfig(PretrainedConfig): ...@@ -95,23 +93,11 @@ class XxxConfig(PretrainedConfig):
self.attn_pdrop = attn_pdrop self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range self.initializer_range = initializer_range
self.num_labels = num_labels
self.summary_type = summary_type self.summary_type = summary_type
self.summary_use_proj = summary_use_proj self.summary_use_proj = summary_use_proj
self.summary_activation = summary_activation self.summary_activation = summary_activation
self.summary_first_dropout = summary_first_dropout self.summary_first_dropout = summary_first_dropout
self.summary_proj_to_labels = summary_proj_to_labels self.summary_proj_to_labels = summary_proj_to_labels
if isinstance(vocab_size_or_config_json_file, six.string_types):
with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
elif not isinstance(vocab_size_or_config_json_file, int):
raise ValueError(
"First argument must be either a vocabulary size (int)"
"or the path to a pretrained model config file (str)"
)
@property @property
def max_position_embeddings(self): def max_position_embeddings(self):
......
...@@ -26,9 +26,9 @@ from transformers import XxxConfig, XxxForPreTraining, load_tf_weights_in_xxx ...@@ -26,9 +26,9 @@ from transformers import XxxConfig, XxxForPreTraining, load_tf_weights_in_xxx
import logging import logging
logging.basicConfig(level=logging.INFO) logging.basicConfig(level=logging.INFO)
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, xxx_config_file, pytorch_dump_path): def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path):
# Initialise PyTorch model # Initialise PyTorch model
config = XxxConfig.from_json_file(xxx_config_file) config = XxxConfig.from_json_file(config_file)
print("Building PyTorch model from configuration: {}".format(str(config))) print("Building PyTorch model from configuration: {}".format(str(config)))
model = XxxForPreTraining(config) model = XxxForPreTraining(config)
...@@ -48,11 +48,11 @@ if __name__ == "__main__": ...@@ -48,11 +48,11 @@ if __name__ == "__main__":
type = str, type = str,
required = True, required = True,
help = "Path to the TensorFlow checkpoint path.") help = "Path to the TensorFlow checkpoint path.")
parser.add_argument("--xxx_config_file", parser.add_argument("--config_file",
default = None, default = None,
type = str, type = str,
required = True, required = True,
help = "The config json file corresponding to the pre-trained XXX model. \n" help = "The config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture.") "This specifies the model architecture.")
parser.add_argument("--pytorch_dump_path", parser.add_argument("--pytorch_dump_path",
default = None, default = None,
...@@ -61,5 +61,5 @@ if __name__ == "__main__": ...@@ -61,5 +61,5 @@ if __name__ == "__main__":
help = "Path to the output PyTorch model.") help = "Path to the output PyTorch model.")
args = parser.parse_args() args = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path,
args.xxx_config_file, args.config_file,
args.pytorch_dump_path) args.pytorch_dump_path)
...@@ -26,13 +26,15 @@ import logging ...@@ -26,13 +26,15 @@ import logging
import math import math
import os import os
import sys import sys
import copy
import itertools
from io import open from io import open
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
from .configuration_xxx import XxxConfig from .configuration_xxx import XxxConfig
from .modeling_tf_utils import TFPreTrainedModel, get_initializer from .modeling_tf_utils import TFPreTrainedModel, get_initializer, shape_list
from .file_utils import add_start_docstrings from .file_utils import add_start_docstrings
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
...@@ -121,9 +123,9 @@ class TFXxxMainLayer(tf.keras.layers.Layer): ...@@ -121,9 +123,9 @@ class TFXxxMainLayer(tf.keras.layers.Layer):
input_ids = inputs input_ids = inputs
if attention_mask is None: if attention_mask is None:
attention_mask = tf.fill(tf.shape(input_ids), 1) attention_mask = tf.fill(shape_list(input_ids), 1)
if token_type_ids is None: if token_type_ids is None:
token_type_ids = tf.fill(tf.shape(input_ids), 0) token_type_ids = tf.fill(shape_list(input_ids), 0)
# We create a 3D attention mask from a 2D tensor mask. # We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length] # Sizes are [batch_size, 1, 1, to_seq_length]
......
...@@ -25,6 +25,8 @@ import logging ...@@ -25,6 +25,8 @@ import logging
import math import math
import os import os
import sys import sys
import copy
import itertools
from io import open from io import open
import torch import torch
......
...@@ -17,12 +17,11 @@ from __future__ import division ...@@ -17,12 +17,11 @@ from __future__ import division
from __future__ import print_function from __future__ import print_function
import unittest import unittest
import shutil
import pytest
import sys import sys
from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor) from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester from .configuration_common_test import ConfigTester
from .utils import CACHE_DIR, require_tf, slow
from transformers import XxxConfig, is_tf_available from transformers import XxxConfig, is_tf_available
...@@ -33,10 +32,9 @@ if is_tf_available(): ...@@ -33,10 +32,9 @@ if is_tf_available():
TFXxxForTokenClassification, TFXxxForTokenClassification,
TFXxxForQuestionAnswering, TFXxxForQuestionAnswering,
TF_XXX_PRETRAINED_MODEL_ARCHIVE_MAP) TF_XXX_PRETRAINED_MODEL_ARCHIVE_MAP)
else:
pytestmark = pytest.mark.skip("Require TensorFlow")
@require_tf
class TFXxxModelTest(TFCommonTestCases.TFCommonModelTester): class TFXxxModelTest(TFCommonTestCases.TFCommonModelTester):
all_model_classes = (TFXxxModel, TFXxxForMaskedLM, TFXxxForQuestionAnswering, all_model_classes = (TFXxxModel, TFXxxForMaskedLM, TFXxxForQuestionAnswering,
...@@ -112,7 +110,7 @@ class TFXxxModelTest(TFCommonTestCases.TFCommonModelTester): ...@@ -112,7 +110,7 @@ class TFXxxModelTest(TFCommonTestCases.TFCommonModelTester):
choice_labels = ids_tensor([self.batch_size], self.num_choices) choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = XxxConfig( config = XxxConfig(
vocab_size_or_config_json_file=self.vocab_size, vocab_size=self.vocab_size,
hidden_size=self.hidden_size, hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers, num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads, num_attention_heads=self.num_attention_heads,
...@@ -244,12 +242,10 @@ class TFXxxModelTest(TFCommonTestCases.TFCommonModelTester): ...@@ -244,12 +242,10 @@ class TFXxxModelTest(TFCommonTestCases.TFCommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xxx_for_token_classification(*config_and_inputs) self.model_tester.create_and_check_xxx_for_token_classification(*config_and_inputs)
@pytest.mark.slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in ['xxx-base-uncased']: for model_name in ['xxx-base-uncased']:
model = TFXxxModel.from_pretrained(model_name, cache_dir=cache_dir) model = TFXxxModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
shutil.rmtree(cache_dir)
self.assertIsNotNone(model) self.assertIsNotNone(model)
if __name__ == "__main__": if __name__ == "__main__":
......
...@@ -17,13 +17,12 @@ from __future__ import division ...@@ -17,13 +17,12 @@ from __future__ import division
from __future__ import print_function from __future__ import print_function
import unittest import unittest
import shutil
import pytest
from transformers import is_torch_available from transformers import is_torch_available
from .modeling_common_test import (CommonTestCases, ids_tensor) from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester from .configuration_common_test import ConfigTester
from .utils import CACHE_DIR, require_torch, slow, torch_device
if is_torch_available(): if is_torch_available():
from transformers import (XxxConfig, XxxModel, XxxForMaskedLM, from transformers import (XxxConfig, XxxModel, XxxForMaskedLM,
...@@ -31,10 +30,9 @@ if is_torch_available(): ...@@ -31,10 +30,9 @@ if is_torch_available():
XxxForQuestionAnswering, XxxForSequenceClassification, XxxForQuestionAnswering, XxxForSequenceClassification,
XxxForTokenClassification, XxxForMultipleChoice) XxxForTokenClassification, XxxForMultipleChoice)
from transformers.modeling_xxx import XXX_PRETRAINED_MODEL_ARCHIVE_MAP from transformers.modeling_xxx import XXX_PRETRAINED_MODEL_ARCHIVE_MAP
else:
pytestmark = pytest.mark.skip("Require Torch")
@require_torch
class XxxModelTest(CommonTestCases.CommonModelTester): class XxxModelTest(CommonTestCases.CommonModelTester):
all_model_classes = (XxxModel, XxxForMaskedLM, XxxForQuestionAnswering, all_model_classes = (XxxModel, XxxForMaskedLM, XxxForQuestionAnswering,
...@@ -110,7 +108,7 @@ class XxxModelTest(CommonTestCases.CommonModelTester): ...@@ -110,7 +108,7 @@ class XxxModelTest(CommonTestCases.CommonModelTester):
choice_labels = ids_tensor([self.batch_size], self.num_choices) choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = XxxConfig( config = XxxConfig(
vocab_size_or_config_json_file=self.vocab_size, vocab_size=self.vocab_size,
hidden_size=self.hidden_size, hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers, num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads, num_attention_heads=self.num_attention_heads,
...@@ -131,6 +129,7 @@ class XxxModelTest(CommonTestCases.CommonModelTester): ...@@ -131,6 +129,7 @@ class XxxModelTest(CommonTestCases.CommonModelTester):
def create_and_check_xxx_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): def create_and_check_xxx_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = XxxModel(config=config) model = XxxModel(config=config)
model.to(torch_device)
model.eval() model.eval()
sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids) sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
...@@ -148,6 +147,7 @@ class XxxModelTest(CommonTestCases.CommonModelTester): ...@@ -148,6 +147,7 @@ class XxxModelTest(CommonTestCases.CommonModelTester):
def create_and_check_xxx_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): def create_and_check_xxx_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = XxxForMaskedLM(config=config) model = XxxForMaskedLM(config=config)
model.to(torch_device)
model.eval() model.eval()
loss, prediction_scores = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, masked_lm_labels=token_labels) loss, prediction_scores = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, masked_lm_labels=token_labels)
result = { result = {
...@@ -162,6 +162,7 @@ class XxxModelTest(CommonTestCases.CommonModelTester): ...@@ -162,6 +162,7 @@ class XxxModelTest(CommonTestCases.CommonModelTester):
def create_and_check_xxx_for_question_answering(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): def create_and_check_xxx_for_question_answering(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = XxxForQuestionAnswering(config=config) model = XxxForQuestionAnswering(config=config)
model.to(torch_device)
model.eval() model.eval()
loss, start_logits, end_logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, loss, start_logits, end_logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids,
start_positions=sequence_labels, end_positions=sequence_labels) start_positions=sequence_labels, end_positions=sequence_labels)
...@@ -182,6 +183,7 @@ class XxxModelTest(CommonTestCases.CommonModelTester): ...@@ -182,6 +183,7 @@ class XxxModelTest(CommonTestCases.CommonModelTester):
def create_and_check_xxx_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): def create_and_check_xxx_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
config.num_labels = self.num_labels config.num_labels = self.num_labels
model = XxxForSequenceClassification(config) model = XxxForSequenceClassification(config)
model.to(torch_device)
model.eval() model.eval()
loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
result = { result = {
...@@ -197,6 +199,7 @@ class XxxModelTest(CommonTestCases.CommonModelTester): ...@@ -197,6 +199,7 @@ class XxxModelTest(CommonTestCases.CommonModelTester):
def create_and_check_xxx_for_token_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): def create_and_check_xxx_for_token_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
config.num_labels = self.num_labels config.num_labels = self.num_labels
model = XxxForTokenClassification(config=config) model = XxxForTokenClassification(config=config)
model.to(torch_device)
model.eval() model.eval()
loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
result = { result = {
...@@ -243,12 +246,10 @@ class XxxModelTest(CommonTestCases.CommonModelTester): ...@@ -243,12 +246,10 @@ class XxxModelTest(CommonTestCases.CommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xxx_for_token_classification(*config_and_inputs) self.model_tester.create_and_check_xxx_for_token_classification(*config_and_inputs)
@pytest.mark.slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in list(XXX_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: for model_name in list(XXX_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = XxxModel.from_pretrained(model_name, cache_dir=cache_dir) model = XxxModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
shutil.rmtree(cache_dir)
self.assertIsNotNone(model) self.assertIsNotNone(model)
if __name__ == "__main__": if __name__ == "__main__":
......
...@@ -85,7 +85,7 @@ class XxxTokenizer(PreTrainedTokenizer): ...@@ -85,7 +85,7 @@ class XxxTokenizer(PreTrainedTokenizer):
Args: Args:
vocab_file: Path to a one-wordpiece-per-line vocabulary file vocab_file: Path to a one-wordpiece-per-line vocabulary file
do_lower_case: Whether to lower case the input. Only has an effect when do_wordpiece_only=False do_lower_case: Whether to lower case the input. Only has an effect when do_basic_tokenize=True
""" """
vocab_files_names = VOCAB_FILES_NAMES vocab_files_names = VOCAB_FILES_NAMES
......
#!/usr/bin/env python
from argparse import ArgumentParser
from transformers.commands.download import DownloadCommand
from transformers.commands.run import RunCommand
from transformers.commands.user import UserCommands
from transformers.commands.convert import ConvertCommand
from transformers.commands.serving import ServeCommand
if __name__ == '__main__':
parser = ArgumentParser('Transformers CLI tool', usage='transformers-cli <command> [<args>]')
commands_parser = parser.add_subparsers(help='transformers-cli command helpers')
# Register commands
ConvertCommand.register_subcommand(commands_parser)
DownloadCommand.register_subcommand(commands_parser)
RunCommand.register_subcommand(commands_parser)
ServeCommand.register_subcommand(commands_parser)
UserCommands.register_subcommand(commands_parser)
# Let's go
args = parser.parse_args()
if not hasattr(args, 'func'):
parser.print_help()
exit(1)
# Run
service = args.func(args)
service.run()
__version__ = "2.1.1" __version__ = "2.3.0"
# Work around to update TensorFlow's absl.logging threshold which alters the # Work around to update TensorFlow's absl.logging threshold which alters the
# default Python logging output behavior when present. # default Python logging output behavior when present.
...@@ -19,21 +19,29 @@ logger = logging.getLogger(__name__) # pylint: disable=invalid-name ...@@ -19,21 +19,29 @@ logger = logging.getLogger(__name__) # pylint: disable=invalid-name
# Files and general utilities # Files and general utilities
from .file_utils import (TRANSFORMERS_CACHE, PYTORCH_TRANSFORMERS_CACHE, PYTORCH_PRETRAINED_BERT_CACHE, from .file_utils import (TRANSFORMERS_CACHE, PYTORCH_TRANSFORMERS_CACHE, PYTORCH_PRETRAINED_BERT_CACHE,
cached_path, add_start_docstrings, add_end_docstrings, cached_path, add_start_docstrings, add_end_docstrings,
WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, CONFIG_NAME, WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, CONFIG_NAME, MODEL_CARD_NAME,
is_tf_available, is_torch_available) is_tf_available, is_torch_available)
from .data import (is_sklearn_available, from .data import (is_sklearn_available,
InputExample, InputFeatures, DataProcessor, InputExample, InputFeatures, DataProcessor,
SingleSentenceClassificationProcessor,
glue_output_modes, glue_convert_examples_to_features, glue_output_modes, glue_convert_examples_to_features,
glue_processors, glue_tasks_num_labels) glue_processors, glue_tasks_num_labels,
xnli_output_modes, xnli_processors, xnli_tasks_num_labels,
squad_convert_examples_to_features, SquadFeatures,
SquadExample, SquadV1Processor, SquadV2Processor)
if is_sklearn_available(): if is_sklearn_available():
from .data import glue_compute_metrics from .data import glue_compute_metrics, xnli_compute_metrics
# Model Cards
from .modelcard import ModelCard
# Tokenizers # Tokenizers
from .tokenization_utils import (PreTrainedTokenizer) from .tokenization_utils import (PreTrainedTokenizer)
from .tokenization_auto import AutoTokenizer from .tokenization_auto import AutoTokenizer
from .tokenization_bert import BertTokenizer, BasicTokenizer, WordpieceTokenizer from .tokenization_bert import BertTokenizer, BasicTokenizer, WordpieceTokenizer
from .tokenization_bert_japanese import BertJapaneseTokenizer, MecabTokenizer, CharacterTokenizer
from .tokenization_openai import OpenAIGPTTokenizer from .tokenization_openai import OpenAIGPTTokenizer
from .tokenization_transfo_xl import (TransfoXLTokenizer, TransfoXLCorpus) from .tokenization_transfo_xl import (TransfoXLTokenizer, TransfoXLCorpus)
from .tokenization_gpt2 import GPT2Tokenizer from .tokenization_gpt2 import GPT2Tokenizer
...@@ -42,26 +50,33 @@ from .tokenization_xlnet import XLNetTokenizer, SPIECE_UNDERLINE ...@@ -42,26 +50,33 @@ from .tokenization_xlnet import XLNetTokenizer, SPIECE_UNDERLINE
from .tokenization_xlm import XLMTokenizer from .tokenization_xlm import XLMTokenizer
from .tokenization_roberta import RobertaTokenizer from .tokenization_roberta import RobertaTokenizer
from .tokenization_distilbert import DistilBertTokenizer from .tokenization_distilbert import DistilBertTokenizer
from .tokenization_albert import AlbertTokenizer
from .tokenization_camembert import CamembertTokenizer
from .tokenization_t5 import T5Tokenizer
from .tokenization_xlm_roberta import XLMRobertaTokenizer
# Configurations # Configurations
from .configuration_utils import PretrainedConfig from .configuration_utils import PretrainedConfig
from .configuration_auto import AutoConfig from .configuration_auto import AutoConfig, ALL_PRETRAINED_CONFIG_ARCHIVE_MAP
from .configuration_bert import BertConfig, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_bert import BertConfig, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP
from .configuration_openai import OpenAIGPTConfig, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_openai import OpenAIGPTConfig, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP
from .configuration_transfo_xl import TransfoXLConfig, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_transfo_xl import TransfoXLConfig, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP
from .configuration_gpt2 import GPT2Config, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_gpt2 import GPT2Config, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP
from .configuration_ctrl import CTRLConfig, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_ctrl import CTRLConfig, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP
from .configuration_xlnet import XLNetConfig, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_xlnet import XLNetConfig, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP
from .configuration_ctrl import CTRLConfig, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP
from .configuration_xlm import XLMConfig, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_xlm import XLMConfig, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP
from .configuration_roberta import RobertaConfig, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_roberta import RobertaConfig, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP
from .configuration_distilbert import DistilBertConfig, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP from .configuration_distilbert import DistilBertConfig, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP
from .configuration_albert import AlbertConfig, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP
from .configuration_camembert import CamembertConfig, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP
from .configuration_t5 import T5Config, T5_PRETRAINED_CONFIG_ARCHIVE_MAP
from .configuration_xlm_roberta import XLMRobertaConfig, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP
# Modeling # Modeling
if is_torch_available(): if is_torch_available():
from .modeling_utils import (PreTrainedModel, prune_layer, Conv1D) from .modeling_utils import (PreTrainedModel, prune_layer, Conv1D)
from .modeling_auto import (AutoModel, AutoModelForSequenceClassification, AutoModelForQuestionAnswering, from .modeling_auto import (AutoModel, AutoModelForSequenceClassification, AutoModelForQuestionAnswering,
AutoModelWithLMHead) AutoModelWithLMHead, AutoModelForTokenClassification, ALL_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_bert import (BertPreTrainedModel, BertModel, BertForPreTraining, from .modeling_bert import (BertPreTrainedModel, BertModel, BertForPreTraining,
BertForMaskedLM, BertForNextSentencePrediction, BertForMaskedLM, BertForNextSentencePrediction,
...@@ -81,9 +96,10 @@ if is_torch_available(): ...@@ -81,9 +96,10 @@ if is_torch_available():
CTRLLMHeadModel, CTRLLMHeadModel,
CTRL_PRETRAINED_MODEL_ARCHIVE_MAP) CTRL_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_xlnet import (XLNetPreTrainedModel, XLNetModel, XLNetLMHeadModel, from .modeling_xlnet import (XLNetPreTrainedModel, XLNetModel, XLNetLMHeadModel,
XLNetForSequenceClassification, XLNetForMultipleChoice, XLNetForSequenceClassification, XLNetForTokenClassification,
XLNetForQuestionAnsweringSimple, XLNetForQuestionAnswering, XLNetForMultipleChoice, XLNetForQuestionAnsweringSimple,
load_tf_weights_in_xlnet, XLNET_PRETRAINED_MODEL_ARCHIVE_MAP) XLNetForQuestionAnswering, load_tf_weights_in_xlnet,
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_xlm import (XLMPreTrainedModel , XLMModel, from .modeling_xlm import (XLMPreTrainedModel , XLMModel,
XLMWithLMHeadModel, XLMForSequenceClassification, XLMWithLMHeadModel, XLMForSequenceClassification,
XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple,
...@@ -92,11 +108,25 @@ if is_torch_available(): ...@@ -92,11 +108,25 @@ if is_torch_available():
RobertaForSequenceClassification, RobertaForMultipleChoice, RobertaForSequenceClassification, RobertaForMultipleChoice,
RobertaForTokenClassification, RobertaForTokenClassification,
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP) ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_distilbert import (DistilBertForMaskedLM, DistilBertModel, from .modeling_distilbert import (DistilBertPreTrainedModel, DistilBertForMaskedLM, DistilBertModel,
DistilBertForSequenceClassification, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForQuestionAnswering,
DistilBertForTokenClassification, DistilBertForTokenClassification,
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP) DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_camembert import (CamembertForMaskedLM, CamembertModel,
CamembertForSequenceClassification, CamembertForMultipleChoice,
CamembertForTokenClassification,
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_encoder_decoder import PreTrainedEncoderDecoder, Model2Model from .modeling_encoder_decoder import PreTrainedEncoderDecoder, Model2Model
from .modeling_t5 import (T5PreTrainedModel, T5Model, T5WithLMHeadModel,
load_tf_weights_in_t5,
T5_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_albert import (AlbertPreTrainedModel, AlbertModel, AlbertForMaskedLM, AlbertForSequenceClassification,
AlbertForQuestionAnswering,
load_tf_weights_in_albert, ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_xlm_roberta import (XLMRobertaForMaskedLM, XLMRobertaModel, XLMRobertaForMultipleChoice,
XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification)
# Optimization # Optimization
from .optimization import (AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, from .optimization import (AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup,
...@@ -105,9 +135,9 @@ if is_torch_available(): ...@@ -105,9 +135,9 @@ if is_torch_available():
# TensorFlow # TensorFlow
if is_tf_available(): if is_tf_available():
from .modeling_tf_utils import TFPreTrainedModel, TFSharedEmbeddings, TFSequenceSummary from .modeling_tf_utils import TFPreTrainedModel, TFSharedEmbeddings, TFSequenceSummary, shape_list
from .modeling_tf_auto import (TFAutoModel, TFAutoModelForSequenceClassification, TFAutoModelForQuestionAnswering, from .modeling_tf_auto import (TFAutoModel, TFAutoModelForSequenceClassification, TFAutoModelForQuestionAnswering,
TFAutoModelWithLMHead) TFAutoModelWithLMHead, TFAutoModelForTokenClassification, TF_ALL_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_tf_bert import (TFBertPreTrainedModel, TFBertMainLayer, TFBertEmbeddings, from .modeling_tf_bert import (TFBertPreTrainedModel, TFBertMainLayer, TFBertEmbeddings,
TFBertModel, TFBertForPreTraining, TFBertModel, TFBertForPreTraining,
...@@ -131,6 +161,7 @@ if is_tf_available(): ...@@ -131,6 +161,7 @@ if is_tf_available():
from .modeling_tf_xlnet import (TFXLNetPreTrainedModel, TFXLNetMainLayer, from .modeling_tf_xlnet import (TFXLNetPreTrainedModel, TFXLNetMainLayer,
TFXLNetModel, TFXLNetLMHeadModel, TFXLNetModel, TFXLNetLMHeadModel,
TFXLNetForSequenceClassification, TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetForQuestionAnsweringSimple, TFXLNetForQuestionAnsweringSimple,
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP) TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP)
...@@ -149,6 +180,7 @@ if is_tf_available(): ...@@ -149,6 +180,7 @@ if is_tf_available():
from .modeling_tf_distilbert import (TFDistilBertPreTrainedModel, TFDistilBertMainLayer, from .modeling_tf_distilbert import (TFDistilBertPreTrainedModel, TFDistilBertMainLayer,
TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertModel, TFDistilBertForMaskedLM,
TFDistilBertForSequenceClassification, TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForQuestionAnswering, TFDistilBertForQuestionAnswering,
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP) TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP)
...@@ -156,6 +188,16 @@ if is_tf_available(): ...@@ -156,6 +188,16 @@ if is_tf_available():
TFCTRLLMHeadModel, TFCTRLLMHeadModel,
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP) TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_tf_albert import (TFAlbertPreTrainedModel, TFAlbertModel, TFAlbertForMaskedLM,
TFAlbertForSequenceClassification,
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_tf_t5 import (TFT5PreTrainedModel, TFT5Model, TFT5WithLMHeadModel,
TF_T5_PRETRAINED_MODEL_ARCHIVE_MAP)
# Optimization
from .optimization_tf import (WarmUp, create_optimizer, AdamWeightDecay, GradientAccumulator)
# TF 2.0 <=> PyTorch conversion utilities # TF 2.0 <=> PyTorch conversion utilities
from .modeling_tf_pytorch_utils import (convert_tf_weight_name_to_pt_weight_name, from .modeling_tf_pytorch_utils import (convert_tf_weight_name_to_pt_weight_name,
load_pytorch_checkpoint_in_tf2_model, load_pytorch_checkpoint_in_tf2_model,
...@@ -165,6 +207,10 @@ from .modeling_tf_pytorch_utils import (convert_tf_weight_name_to_pt_weight_name ...@@ -165,6 +207,10 @@ from .modeling_tf_pytorch_utils import (convert_tf_weight_name_to_pt_weight_name
load_tf2_weights_in_pytorch_model, load_tf2_weights_in_pytorch_model,
load_tf2_model_in_pytorch_model) load_tf2_model_in_pytorch_model)
# Pipelines
from .pipelines import pipeline, PipelineDataFormat, CsvPipelineDataFormat, JsonPipelineDataFormat, PipedPipelineDataFormat, \
Pipeline, FeatureExtractionPipeline, QuestionAnsweringPipeline, NerPipeline, TextClassificationPipeline
if not is_tf_available() and not is_torch_available(): if not is_tf_available() and not is_torch_available():
logger.warning("Neither PyTorch nor TensorFlow >= 2.0 have been found." logger.warning("Neither PyTorch nor TensorFlow >= 2.0 have been found."
"Models won't be available and only tokenizers, configuration" "Models won't be available and only tokenizers, configuration"
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment