Unverified Commit 54abc67a authored by Thomas Wolf's avatar Thomas Wolf Committed by GitHub
Browse files

Merge pull request #2255 from aaugustin/implement-best-practices

Implement some Python best practices
parents 645713e2 c11b3e29
......@@ -86,6 +86,20 @@ jobs:
- run: sudo pip install --progress-bar off -r docs/requirements.txt
- run: sudo pip install --progress-bar off -r requirements.txt
- run: ./.circleci/deploy.sh
check_code_quality:
working_directory: ~/transformers
docker:
- image: circleci/python:3.6
resource_class: medium
parallelism: 1
steps:
- checkout
- run: sudo pip install --editable .
- run: sudo pip install torch tensorflow
- run: sudo pip install black git+git://github.com/timothycrosley/isort.git@e63ae06ec7d70b06df9e528357650281a3d3ec22#egg=isort flake8
- run: black --check --line-length 119 examples templates transformers utils
- run: isort --check-only --recursive examples templates transformers utils
- run: flake8 examples templates transformers utils
check_repository_consistency:
working_directory: ~/transformers
docker:
......@@ -105,6 +119,7 @@ workflows:
version: 2
build_and_test:
jobs:
- check_code_quality
- check_repository_consistency
- run_examples_py3_torch
- run_tests_py3_custom_tokenizers
......
.PHONY: style
style:
black --line-length 119 examples templates transformers utils
isort --recursive examples templates transformers utils
......@@ -18,12 +18,14 @@
# If checking the tensors placement
# tf.debugging.set_log_device_placement(True)
from typing import List
import timeit
from transformers import is_tf_available, is_torch_available
from time import time
import argparse
import csv
import timeit
from time import time
from typing import List
from transformers import AutoConfig, AutoTokenizer, is_tf_available, is_torch_available
if is_tf_available():
import tensorflow as tf
......@@ -33,7 +35,6 @@ if is_torch_available():
import torch
from transformers import AutoModel
from transformers import AutoConfig, AutoTokenizer
input_text = """Bent over their instruments, three hundred Fertilizers were plunged, as
the Director of Hatcheries and Conditioning entered the room, in the
......@@ -247,7 +248,8 @@ the wall, slowly on into the Social Predestination Room.
as they entered."""
def create_setup_and_compute(model_names: List[str],
def create_setup_and_compute(
model_names: List[str],
gpu: bool = True,
tensorflow: bool = False,
average_over: int = 3,
......@@ -256,7 +258,8 @@ def create_setup_and_compute(model_names: List[str],
amp: bool = False,
fp16: bool = False,
save_to_csv: bool = False,
csv_filename: str = f"results_{round(time())}.csv"):
csv_filename: str = f"results_{round(time())}.csv",
):
if xla:
tf.config.optimizer.set_jit(True)
if amp:
......@@ -266,7 +269,7 @@ def create_setup_and_compute(model_names: List[str],
dictionary = {model_name: {} for model_name in model_names}
results = _compute_tensorflow(model_names, dictionary, average_over, amp)
else:
device = 'cuda' if (gpu and torch.cuda.is_available()) else 'cpu'
device = "cuda" if (gpu and torch.cuda.is_available()) else "cpu"
dictionary = {model_name: {} for model_name in model_names}
results = _compute_pytorch(model_names, dictionary, average_over, device, torchscript, fp16)
......@@ -276,22 +279,40 @@ def create_setup_and_compute(model_names: List[str],
for batch_size in results[model_name]["bs"]:
print("\t\t" + f"===== BATCH SIZE: {batch_size} =====")
for slice_size in results[model_name]["ss"]:
result = results[model_name]['results'][batch_size][slice_size]
result = results[model_name]["results"][batch_size][slice_size]
if isinstance(result, str):
print(f"\t\t{model_name}/{batch_size}/{slice_size}: "
f"{result}")
print(f"\t\t{model_name}/{batch_size}/{slice_size}: " f"{result}")
else:
print(f"\t\t{model_name}/{batch_size}/{slice_size}: "
f"{(round(1000 * result) / 1000)}"
f"s")
print(f"\t\t{model_name}/{batch_size}/{slice_size}: " f"{(round(1000 * result) / 1000)}" f"s")
if save_to_csv:
with open(csv_filename, mode='w') as csv_file:
fieldnames = ['model',
'1x8', '1x64', '1x128', '1x256', '1x512', '1x1024',
'2x8', '2x64', '2x128', '2x256', '2x512', '2x1024',
'4x8', '4x64', '4x128', '4x256', '4x512', '4x1024',
'8x8', '8x64', '8x128', '8x256', '8x512', '8x1024',
with open(csv_filename, mode="w") as csv_file:
fieldnames = [
"model",
"1x8",
"1x64",
"1x128",
"1x256",
"1x512",
"1x1024",
"2x8",
"2x64",
"2x128",
"2x256",
"2x512",
"2x1024",
"4x8",
"4x64",
"4x128",
"4x256",
"4x512",
"4x1024",
"8x8",
"8x64",
"8x128",
"8x256",
"8x512",
"8x1024",
]
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
......@@ -299,11 +320,11 @@ def create_setup_and_compute(model_names: List[str],
for model_name in model_names:
model_results = {
f'{bs}x{ss}': results[model_name]['results'][bs][ss]
f"{bs}x{ss}": results[model_name]["results"][bs][ss]
for bs in results[model_name]["results"]
for ss in results[model_name]['results'][bs]
for ss in results[model_name]["results"][bs]
}
writer.writerow({'model': model_name, **model_results})
writer.writerow({"model": model_name, **model_results})
def _compute_pytorch(model_names, dictionary, average_over, device, torchscript, fp16):
......@@ -343,7 +364,7 @@ def _compute_pytorch(model_names, dictionary, average_over, device, torchscript,
print("Going through model with sequence of shape", sequence.shape)
runtimes = timeit.repeat(lambda: inference(sequence), repeat=average_over, number=3)
average_time = sum(runtimes)/float(len(runtimes)) / 3.0
average_time = sum(runtimes) / float(len(runtimes)) / 3.0
dictionary[model_name]["results"][batch_size][slice_size] = average_time
except RuntimeError as e:
print("Doesn't fit on GPU.", e)
......@@ -379,7 +400,9 @@ def _compute_tensorflow(model_names, dictionary, average_over, amp):
if max_input_size is not None and slice_size > max_input_size:
dictionary[model_name]["results"][batch_size][slice_size] = "N/A"
else:
sequence = tf.stack([tf.squeeze(tf.constant(tokenized_sequence[:slice_size])[None, :])] * batch_size)
sequence = tf.stack(
[tf.squeeze(tf.constant(tokenized_sequence[:slice_size])[None, :])] * batch_size
)
try:
print("Going through model with sequence of shape", sequence.shape)
......@@ -387,7 +410,7 @@ def _compute_tensorflow(model_names, dictionary, average_over, amp):
inference(sequence)
runtimes = timeit.repeat(lambda: inference(sequence), repeat=average_over, number=3)
average_time = sum(runtimes)/float(len(runtimes)) / 3.0
average_time = sum(runtimes) / float(len(runtimes)) / 3.0
dictionary[model_name]["results"][batch_size][slice_size] = average_time
except tf.errors.ResourceExhaustedError as e:
print("Doesn't fit on GPU.", e)
......@@ -399,33 +422,64 @@ def _compute_tensorflow(model_names, dictionary, average_over, amp):
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--models", required=False, type=str, default='all', help="Model checkpoints to be provided "
parser.add_argument(
"--models",
required=False,
type=str,
default="all",
help="Model checkpoints to be provided "
"to the AutoModel classes. Leave "
"blank to benchmark the base version "
"of all available model "
"architectures.")
parser.add_argument("--torch", required=False, action="store_true", help="Benchmark the Pytorch version of the "
"models")
parser.add_argument("--torch_cuda", required=False, action="store_true", help="Pytorch only: run on available "
"cuda devices")
parser.add_argument("--torchscript", required=False, action="store_true", help="Pytorch only: trace the models "
"using torchscript")
parser.add_argument("--tensorflow", required=False, action="store_true", help="Benchmark the TensorFlow version "
"architectures.",
)
parser.add_argument(
"--torch", required=False, action="store_true", help="Benchmark the Pytorch version of the " "models"
)
parser.add_argument(
"--torch_cuda", required=False, action="store_true", help="Pytorch only: run on available " "cuda devices"
)
parser.add_argument(
"--torchscript",
required=False,
action="store_true",
help="Pytorch only: trace the models " "using torchscript",
)
parser.add_argument(
"--tensorflow",
required=False,
action="store_true",
help="Benchmark the TensorFlow version "
"of the models. Will run on GPU if "
"the correct dependencies are "
"installed")
"installed",
)
parser.add_argument("--xla", required=False, action="store_true", help="TensorFlow only: use XLA acceleration.")
parser.add_argument("--amp", required=False, action="store_true", help="TensorFlow only: use automatic mixed precision acceleration.")
parser.add_argument("--fp16", required=False, action="store_true", help="PyTorch only: use FP16 to accelerate inference.")
parser.add_argument("--keras_predict", required=False, action="store_true", help="Whether to use model.predict "
"instead of model() to do a "
"forward pass.")
parser.add_argument(
"--amp",
required=False,
action="store_true",
help="TensorFlow only: use automatic mixed precision acceleration.",
)
parser.add_argument(
"--fp16", required=False, action="store_true", help="PyTorch only: use FP16 to accelerate inference."
)
parser.add_argument(
"--keras_predict",
required=False,
action="store_true",
help="Whether to use model.predict " "instead of model() to do a " "forward pass.",
)
parser.add_argument("--save_to_csv", required=False, action="store_true", help="Save to a CSV file.")
parser.add_argument("--csv_filename", required=False, default=None, help="CSV filename used if saving results to csv.")
parser.add_argument("--average_over", required=False, default=30, type=int, help="Times an experiment will be run.")
parser.add_argument(
"--csv_filename", required=False, default=None, help="CSV filename used if saving results to csv."
)
parser.add_argument(
"--average_over", required=False, default=30, type=int, help="Times an experiment will be run."
)
args = parser.parse_args()
if args.models == 'all':
if args.models == "all":
args.models = [
"gpt2",
"bert-base-cased",
......@@ -436,7 +490,7 @@ def main():
"distilbert-base-uncased",
"distilgpt2",
"roberta-base",
"ctrl"
"ctrl",
]
else:
args.models = args.models.split()
......@@ -453,7 +507,7 @@ def main():
fp16=args.fp16,
save_to_csv=args.save_to_csv,
csv_filename=args.csv_filename,
average_over=args.average_over
average_over=args.average_over,
)
else:
raise ImportError("Trying to run a PyTorch benchmark but PyTorch was not found in the environment.")
......@@ -467,11 +521,11 @@ def main():
amp=args.amp,
save_to_csv=args.save_to_csv,
csv_filename=args.csv_filename,
average_over=args.average_over
average_over=args.average_over,
)
else:
raise ImportError("Trying to run a TensorFlow benchmark but TensorFlow was not found in the environment.")
if __name__ == '__main__':
main()
if __name__ == "__main__":
main()
from pathlib import Path
import tarfile
import urllib.request
import torch
from transformers.tokenization_camembert import CamembertTokenizer
from transformers.modeling_camembert import CamembertForMaskedLM
from transformers.tokenization_camembert import CamembertTokenizer
def fill_mask(masked_input, model, tokenizer, topk=5):
# Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py
assert masked_input.count('<mask>') == 1
assert masked_input.count("<mask>") == 1
input_ids = torch.tensor(tokenizer.encode(masked_input, add_special_tokens=True)).unsqueeze(0) # Batch size 1
logits = model(input_ids)[0] # The last hidden-state is the first element of the output tuple
masked_index = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item()
logits = logits[0, masked_index, :]
prob = logits.softmax(dim=0)
values, indices = prob.topk(k=topk, dim=0)
topk_predicted_token_bpe = ' '.join([tokenizer.convert_ids_to_tokens(indices[i].item())
for i in range(len(indices))])
topk_predicted_token_bpe = " ".join(
[tokenizer.convert_ids_to_tokens(indices[i].item()) for i in range(len(indices))]
)
masked_token = tokenizer.mask_token
topk_filled_outputs = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(' ')):
predicted_token = predicted_token_bpe.replace('\u2581', ' ')
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" ")):
predicted_token = predicted_token_bpe.replace("\u2581", " ")
if " {0}".format(masked_token) in masked_input:
topk_filled_outputs.append((
masked_input.replace(
' {0}'.format(masked_token), predicted_token
),
topk_filled_outputs.append(
(
masked_input.replace(" {0}".format(masked_token), predicted_token),
values[index].item(),
predicted_token,
))
)
)
else:
topk_filled_outputs.append((
masked_input.replace(masked_token, predicted_token),
values[index].item(),
predicted_token,
))
topk_filled_outputs.append(
(masked_input.replace(masked_token, predicted_token), values[index].item(), predicted_token,)
)
return topk_filled_outputs
tokenizer = CamembertTokenizer.from_pretrained('camembert-base')
model = CamembertForMaskedLM.from_pretrained('camembert-base')
tokenizer = CamembertTokenizer.from_pretrained("camembert-base")
model = CamembertForMaskedLM.from_pretrained("camembert-base")
model.eval()
masked_input = "Le camembert est <mask> :)"
......
......@@ -22,48 +22,57 @@
--model_name openai-gpt \
--do_train \
--do_eval \
--train_dataset $ROC_STORIES_DIR/cloze_test_val__spring2016\ -\ cloze_test_ALL_val.csv \
--eval_dataset $ROC_STORIES_DIR/cloze_test_test__spring2016\ -\ cloze_test_ALL_test.csv \
--train_dataset "$ROC_STORIES_DIR/cloze_test_val__spring2016 - cloze_test_ALL_val.csv" \
--eval_dataset "$ROC_STORIES_DIR/cloze_test_test__spring2016 - cloze_test_ALL_test.csv" \
--output_dir ../log \
--train_batch_size 16 \
"""
import argparse
import os
import csv
import random
import logging
from tqdm import tqdm, trange
import os
import random
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from tqdm import tqdm, trange
from transformers import (
CONFIG_NAME,
WEIGHTS_NAME,
AdamW,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTTokenizer,
cached_path,
get_linear_schedule_with_warmup,
)
from transformers import (OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer,
AdamW, cached_path, WEIGHTS_NAME, CONFIG_NAME,
get_linear_schedule_with_warmup)
ROCSTORIES_URL = "https://s3.amazonaws.com/datasets.huggingface.co/ROCStories.tar.gz"
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
logger = logging.getLogger(__name__)
def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs == labels)
def load_rocstories_dataset(dataset_path):
""" Output a list of tuples(story, 1st continuation, 2nd continuation, label) """
with open(dataset_path, encoding='utf_8') as f:
with open(dataset_path, encoding="utf_8") as f:
f = csv.reader(f)
output = []
next(f) # skip the first line
for line in tqdm(f):
output.append((' '.join(line[1:5]), line[5], line[6], int(line[-1])-1))
output.append((" ".join(line[1:5]), line[5], line[6], int(line[-1]) - 1))
return output
def pre_process_datasets(encoded_datasets, input_len, cap_length, start_token, delimiter_token, clf_token):
""" Pre-process datasets containing lists of tuples(story, 1st continuation, 2nd continuation, label)
......@@ -80,56 +89,68 @@ def pre_process_datasets(encoded_datasets, input_len, cap_length, start_token, d
for i, (story, cont1, cont2, mc_label), in enumerate(dataset):
with_cont1 = [start_token] + story[:cap_length] + [delimiter_token] + cont1[:cap_length] + [clf_token]
with_cont2 = [start_token] + story[:cap_length] + [delimiter_token] + cont2[:cap_length] + [clf_token]
input_ids[i, 0, :len(with_cont1)] = with_cont1
input_ids[i, 1, :len(with_cont2)] = with_cont2
input_ids[i, 0, : len(with_cont1)] = with_cont1
input_ids[i, 1, : len(with_cont2)] = with_cont2
mc_token_ids[i, 0] = len(with_cont1) - 1
mc_token_ids[i, 1] = len(with_cont2) - 1
lm_labels[i, 0, :len(with_cont1)] = with_cont1
lm_labels[i, 1, :len(with_cont2)] = with_cont2
lm_labels[i, 0, : len(with_cont1)] = with_cont1
lm_labels[i, 1, : len(with_cont2)] = with_cont2
mc_labels[i] = mc_label
all_inputs = (input_ids, mc_token_ids, lm_labels, mc_labels)
tensor_datasets.append(tuple(torch.tensor(t) for t in all_inputs))
return tensor_datasets
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default='openai-gpt',
help='pretrained model name')
parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument('--train_dataset', type=str, default='')
parser.add_argument('--eval_dataset', type=str, default='')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--num_train_epochs', type=int, default=3)
parser.add_argument('--train_batch_size', type=int, default=8)
parser.add_argument('--eval_batch_size', type=int, default=16)
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument('--max_grad_norm', type=int, default=1)
parser.add_argument("--max_steps", default=-1, type=int,
parser.add_argument("--model_name", type=str, default="openai-gpt", help="pretrained model name")
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--train_dataset", type=str, default="")
parser.add_argument("--eval_dataset", type=str, default="")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--num_train_epochs", type=int, default=3)
parser.add_argument("--train_batch_size", type=int, default=8)
parser.add_argument("--eval_batch_size", type=int, default=16)
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", type=int, default=1)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training \
steps to perform. Override num_train_epochs.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
steps to perform. Override num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before\
performing a backward/update pass.")
parser.add_argument('--learning_rate', type=float, default=6.25e-5)
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
parser.add_argument('--weight_decay', type=float, default=0.01)
parser.add_argument('--lm_coef', type=float, default=0.9)
parser.add_argument('--n_valid', type=int, default=374)
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
performing a backward/update pass.",
)
parser.add_argument("--learning_rate", type=float, default=6.25e-5)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--lr_schedule", type=str, default="warmup_linear")
parser.add_argument("--weight_decay", type=float, default=0.01)
parser.add_argument("--lm_coef", type=float, default=0.9)
parser.add_argument("--n_valid", type=int, default=374)
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
args = parser.parse_args()
print(args)
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
......@@ -152,7 +173,7 @@ def main():
# Load tokenizer and model
# This loading functions also add new tokens and embeddings called `special tokens`
# These new embeddings will be fine-tuned on the RocStories dataset
special_tokens = ['_start_', '_delimiter_', '_classify_']
special_tokens = ["_start_", "_delimiter_", "_classify_"]
tokenizer = OpenAIGPTTokenizer.from_pretrained(args.model_name)
tokenizer.add_tokens(special_tokens)
special_tokens_ids = tokenizer.convert_tokens_to_ids(special_tokens)
......@@ -163,6 +184,7 @@ def main():
# Load and encode the datasets
if not args.train_dataset and not args.eval_dataset:
roc_stories = cached_path(ROCSTORIES_URL)
def tokenize_and_encode(obj):
""" Tokenize and encode a nested object """
if isinstance(obj, str):
......@@ -170,6 +192,7 @@ def main():
elif isinstance(obj, int):
return obj
return list(tokenize_and_encode(o) for o in obj)
logger.info("Encoding dataset...")
train_dataset = load_rocstories_dataset(args.train_dataset)
eval_dataset = load_rocstories_dataset(args.eval_dataset)
......@@ -178,8 +201,11 @@ def main():
# Compute the max input length for the Transformer
max_length = model.config.n_positions // 2 - 2
input_length = max(len(story[:max_length]) + max(len(cont1[:max_length]), len(cont2[:max_length])) + 3 \
for dataset in encoded_datasets for story, cont1, cont2, _ in dataset)
input_length = max(
len(story[:max_length]) + max(len(cont1[:max_length]), len(cont2[:max_length])) + 3
for dataset in encoded_datasets
for story, cont1, cont2, _ in dataset
)
input_length = min(input_length, model.config.n_positions) # Max size of input for the pre-trained model
# Prepare inputs tensors and dataloaders
......@@ -198,20 +224,23 @@ def main():
if args.do_train:
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps //\
(len(train_dataloader) // args.gradient_accumulation_steps) + 1
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader)\
// args.gradient_accumulation_steps * args.num_train_epochs
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
{
"params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
if args.do_train:
nb_tr_steps, tr_loss, exp_average_loss = 0, 0, None
......@@ -230,14 +259,16 @@ def main():
optimizer.step()
optimizer.zero_grad()
tr_loss += loss.item()
exp_average_loss = loss.item() if exp_average_loss is None else 0.7*exp_average_loss+0.3*loss.item()
exp_average_loss = (
loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item()
)
nb_tr_steps += 1
tqdm_bar.desc = "Training loss: {:.2e} lr: {:.2e}".format(exp_average_loss, scheduler.get_lr()[0])
# Save a trained model
if args.do_train:
# Save a trained model, configuration and tokenizer
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model itself
model_to_save = model.module if hasattr(model, "module") else model # Only save the model itself
# If we save using the predefined names, we can load using `from_pretrained`
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
......@@ -260,10 +291,12 @@ def main():
batch = tuple(t.to(device) for t in batch)
input_ids, mc_token_ids, lm_labels, mc_labels = batch
with torch.no_grad():
_, mc_loss, _, mc_logits = model(input_ids, mc_token_ids=mc_token_ids, lm_labels=lm_labels, mc_labels=mc_labels)
_, mc_loss, _, mc_logits = model(
input_ids, mc_token_ids=mc_token_ids, lm_labels=lm_labels, mc_labels=mc_labels
)
mc_logits = mc_logits.detach().cpu().numpy()
mc_labels = mc_labels.to('cpu').numpy()
mc_labels = mc_labels.to("cpu").numpy()
tmp_eval_accuracy = accuracy(mc_logits, mc_labels)
eval_loss += mc_loss.mean().item()
......@@ -274,10 +307,8 @@ def main():
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples
train_loss = tr_loss/nb_tr_steps if args.do_train else None
result = {'eval_loss': eval_loss,
'eval_accuracy': eval_accuracy,
'train_loss': train_loss}
train_loss = tr_loss / nb_tr_steps if args.do_train else None
result = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss}
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
......@@ -286,5 +317,6 @@ def main():
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if __name__ == '__main__':
if __name__ == "__main__":
main()
This diff is collapsed.
......@@ -23,51 +23,44 @@ from __future__ import absolute_import, division, print_function, unicode_litera
import argparse
import logging
import time
import math
import time
import torch
from transformers import TransfoXLLMHeadModel, TransfoXLCorpus, TransfoXLTokenizer
from transformers import TransfoXLCorpus, TransfoXLLMHeadModel, TransfoXLTokenizer
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
logger = logging.getLogger(__name__)
def main():
parser = argparse.ArgumentParser(description='PyTorch Transformer Language Model')
parser.add_argument('--model_name', type=str, default='transfo-xl-wt103',
help='pretrained model name')
parser.add_argument('--split', type=str, default='test',
choices=['all', 'valid', 'test'],
help='which split to evaluate')
parser.add_argument('--batch_size', type=int, default=10,
help='batch size')
parser.add_argument('--tgt_len', type=int, default=128,
help='number of tokens to predict')
parser.add_argument('--ext_len', type=int, default=0,
help='length of the extended context')
parser.add_argument('--mem_len', type=int, default=1600,
help='length of the retained previous heads')
parser.add_argument('--clamp_len', type=int, default=1000,
help='max positional embedding index')
parser.add_argument('--no_cuda', action='store_true',
help='Do not use CUDA even though CUA is available')
parser.add_argument('--work_dir', type=str, required=True,
help='path to the work_dir')
parser.add_argument('--no_log', action='store_true',
help='do not log the eval result')
parser.add_argument('--same_length', action='store_true',
help='set same length attention with masking')
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
parser = argparse.ArgumentParser(description="PyTorch Transformer Language Model")
parser.add_argument("--model_name", type=str, default="transfo-xl-wt103", help="pretrained model name")
parser.add_argument(
"--split", type=str, default="test", choices=["all", "valid", "test"], help="which split to evaluate"
)
parser.add_argument("--batch_size", type=int, default=10, help="batch size")
parser.add_argument("--tgt_len", type=int, default=128, help="number of tokens to predict")
parser.add_argument("--ext_len", type=int, default=0, help="length of the extended context")
parser.add_argument("--mem_len", type=int, default=1600, help="length of the retained previous heads")
parser.add_argument("--clamp_len", type=int, default=1000, help="max positional embedding index")
parser.add_argument("--no_cuda", action="store_true", help="Do not use CUDA even though CUA is available")
parser.add_argument("--work_dir", type=str, required=True, help="path to the work_dir")
parser.add_argument("--no_log", action="store_true", help="do not log the eval result")
parser.add_argument("--same_length", action="store_true", help="set same length attention with masking")
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
args = parser.parse_args()
assert args.ext_len >= 0, 'extended context length must be non-negative'
assert args.ext_len >= 0, "extended context length must be non-negative"
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
......@@ -84,17 +77,18 @@ def main():
corpus = TransfoXLCorpus.from_pretrained(args.model_name)
ntokens = len(corpus.vocab)
va_iter = corpus.get_iterator('valid', args.batch_size, args.tgt_len,
device=device, ext_len=args.ext_len)
te_iter = corpus.get_iterator('test', args.batch_size, args.tgt_len,
device=device, ext_len=args.ext_len)
va_iter = corpus.get_iterator("valid", args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len)
te_iter = corpus.get_iterator("test", args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len)
# Load a pre-trained model
model = TransfoXLLMHeadModel.from_pretrained(args.model_name)
model = model.to(device)
logger.info('Evaluating with bsz {} tgt_len {} ext_len {} mem_len {} clamp_len {}'.format(
args.batch_size, args.tgt_len, args.ext_len, args.mem_len, args.clamp_len))
logger.info(
"Evaluating with bsz {} tgt_len {} ext_len {} mem_len {} clamp_len {}".format(
args.batch_size, args.tgt_len, args.ext_len, args.mem_len, args.clamp_len
)
)
model.reset_length(args.tgt_len, args.ext_len, args.mem_len)
if args.clamp_len > 0:
......@@ -108,7 +102,7 @@ def main():
def evaluate(eval_iter):
# Turn on evaluation mode which disables dropout.
model.eval()
total_len, total_loss = 0, 0.
total_len, total_loss = 0, 0.0
start_time = time.time()
with torch.no_grad():
mems = None
......@@ -119,35 +113,34 @@ def main():
total_loss += seq_len * loss.item()
total_len += seq_len
total_time = time.time() - start_time
logger.info('Time : {:.2f}s, {:.2f}ms/segment'.format(
total_time, 1000 * total_time / (idx+1)))
logger.info("Time : {:.2f}s, {:.2f}ms/segment".format(total_time, 1000 * total_time / (idx + 1)))
return total_loss / total_len
# Run on test data.
if args.split == 'all':
if args.split == "all":
test_loss = evaluate(te_iter)
valid_loss = evaluate(va_iter)
elif args.split == 'valid':
elif args.split == "valid":
valid_loss = evaluate(va_iter)
test_loss = None
elif args.split == 'test':
elif args.split == "test":
test_loss = evaluate(te_iter)
valid_loss = None
def format_log(loss, split):
log_str = '| {0} loss {1:5.2f} | {0} ppl {2:9.3f} '.format(
split, loss, math.exp(loss))
log_str = "| {0} loss {1:5.2f} | {0} ppl {2:9.3f} ".format(split, loss, math.exp(loss))
return log_str
log_str = ''
log_str = ""
if valid_loss is not None:
log_str += format_log(valid_loss, 'valid')
log_str += format_log(valid_loss, "valid")
if test_loss is not None:
log_str += format_log(test_loss, 'test')
log_str += format_log(test_loss, "test")
logger.info('=' * 100)
logger.info("=" * 100)
logger.info(log_str)
logger.info('=' * 100)
logger.info("=" * 100)
if __name__ == '__main__':
if __name__ == "__main__":
main()
This diff is collapsed.
......@@ -17,18 +17,20 @@
import bisect
import copy
from collections import defaultdict
import numpy as np
import numpy as np
from torch.utils.data.sampler import BatchSampler, Sampler
from utils import logger
def _quantize(x, bins):
bins = copy.deepcopy(bins)
bins = sorted(bins)
quantized = list(map(lambda y: bisect.bisect_right(bins, y), x))
return quantized
def create_lengths_groups(lengths, k=0):
bins = np.arange(start=3, stop=k, step=4).tolist() if k > 0 else [10]
groups = _quantize(lengths, bins)
......@@ -39,6 +41,7 @@ def create_lengths_groups(lengths, k=0):
logger.info("Count of instances per bin: {}".format(counts))
return groups
class GroupedBatchSampler(BatchSampler):
"""
Wraps another sampler to yield a mini-batch of indices.
......@@ -53,11 +56,11 @@ class GroupedBatchSampler(BatchSampler):
0, i.e. they must be in the range [0, num_groups).
batch_size (int): Size of mini-batch.
"""
def __init__(self, sampler, group_ids, batch_size):
if not isinstance(sampler, Sampler):
raise ValueError(
"sampler should be an instance of "
"torch.utils.data.Sampler, but got sampler={}".format(sampler)
"sampler should be an instance of " "torch.utils.data.Sampler, but got sampler={}".format(sampler)
)
self.sampler = sampler
self.group_ids = group_ids
......@@ -73,7 +76,7 @@ class GroupedBatchSampler(BatchSampler):
buffer_per_group[group_id].append(idx)
samples_per_group[group_id].append(idx)
if len(buffer_per_group[group_id]) == self.batch_size:
yield buffer_per_group[group_id] #TODO
yield buffer_per_group[group_id] # TODO
num_batches += 1
del buffer_per_group[group_id]
assert len(buffer_per_group[group_id]) < self.batch_size
......@@ -90,8 +93,8 @@ class GroupedBatchSampler(BatchSampler):
for group_id, idxs in sorted(buffer_per_group.items(), key=lambda x: x[0]):
batch_idx.extend(idxs)
if len(batch_idx) >= self.batch_size:
yield batch_idx[:self.batch_size]
batch_idx = batch_idx[self.batch_size:]
yield batch_idx[: self.batch_size]
batch_idx = batch_idx[self.batch_size :]
num_remaining -= 1
if len(batch_idx) > 0:
yield batch_idx
......
......@@ -15,12 +15,13 @@
""" Dataset to distilled models
adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
"""
import numpy as np
import torch
from torch.utils.data import Dataset
import numpy as np
from utils import logger
class LmSeqsDataset(Dataset):
"""Custom Dataset wrapping language modeling sequences.
......@@ -32,9 +33,7 @@ class LmSeqsDataset(Dataset):
data: `List[np.array[int]]
"""
def __init__(self,
params,
data):
def __init__(self, params, data):
self.params = params
self.token_ids = np.array(data)
......@@ -65,17 +64,17 @@ class LmSeqsDataset(Dataset):
"""
max_len = self.params.max_model_input_size
indices = self.lengths > max_len
logger.info(f'Splitting {sum(indices)} too long sequences.')
logger.info(f"Splitting {sum(indices)} too long sequences.")
def divide_chunks(l, n):
return [l[i:i + n] for i in range(0, len(l), n)]
return [l[i : i + n] for i in range(0, len(l), n)]
new_tok_ids = []
new_lengths = []
if self.params.mlm:
cls_id, sep_id = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token']
cls_id, sep_id = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"]
else:
cls_id, sep_id = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token']
cls_id, sep_id = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"]
for seq_, len_ in zip(self.token_ids, self.lengths):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
......@@ -84,7 +83,7 @@ class LmSeqsDataset(Dataset):
new_lengths.append(len_)
else:
sub_seqs = []
for sub_s in divide_chunks(seq_, max_len-2):
for sub_s in divide_chunks(seq_, max_len - 2):
if sub_s[0] != cls_id:
sub_s = np.insert(sub_s, 0, cls_id)
if sub_s[-1] != sep_id:
......@@ -108,7 +107,7 @@ class LmSeqsDataset(Dataset):
self.token_ids = self.token_ids[indices]
self.lengths = self.lengths[indices]
new_size = len(self)
logger.info(f'Remove {init_size - new_size} too short (<=11 tokens) sequences.')
logger.info(f"Remove {init_size - new_size} too short (<=11 tokens) sequences.")
def print_statistics(self):
"""
......@@ -116,7 +115,7 @@ class LmSeqsDataset(Dataset):
"""
if not self.params.is_master:
return
logger.info(f'{len(self)} sequences')
logger.info(f"{len(self)} sequences")
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
......@@ -125,8 +124,7 @@ class LmSeqsDataset(Dataset):
# nb_unkown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unkown} unknown tokens (covering {100*nb_unkown/data_len:.2f}% of the data)')
def batch_sequences(self,
batch):
def batch_sequences(self, batch):
"""
Do the padding and transform into torch.tensor.
"""
......@@ -139,10 +137,10 @@ class LmSeqsDataset(Dataset):
# Pad token ids
if self.params.mlm:
pad_idx = self.params.special_tok_ids['pad_token']
pad_idx = self.params.special_tok_ids["pad_token"]
else:
pad_idx = self.params.special_tok_ids['unk_token']
tk_ = [list(t.astype(int)) + [pad_idx]*(max_seq_len_-len(t)) for t in token_ids]
pad_idx = self.params.special_tok_ids["unk_token"]
tk_ = [list(t.astype(int)) + [pad_idx] * (max_seq_len_ - len(t)) for t in token_ids]
assert len(tk_) == len(token_ids)
assert all(len(t) == max_seq_len_ for t in tk_)
......
......@@ -16,75 +16,75 @@
Preprocessing script before distillation.
"""
import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, RobertaTokenizer, GPT2Tokenizer
import logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
from transformers import BertTokenizer, GPT2Tokenizer, RobertaTokenizer
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
logger = logging.getLogger(__name__)
def main():
parser = argparse.ArgumentParser(description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).")
parser.add_argument('--file_path', type=str, default='data/dump.txt',
help='The path to the data.')
parser.add_argument('--tokenizer_type', type=str, default='bert', choices=['bert', 'roberta', 'gpt2'])
parser.add_argument('--tokenizer_name', type=str, default='bert-base-uncased',
help="The tokenizer to use.")
parser.add_argument('--dump_file', type=str, default='data/dump',
help='The dump file prefix.')
parser = argparse.ArgumentParser(
description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)."
)
parser.add_argument("--file_path", type=str, default="data/dump.txt", help="The path to the data.")
parser.add_argument("--tokenizer_type", type=str, default="bert", choices=["bert", "roberta", "gpt2"])
parser.add_argument("--tokenizer_name", type=str, default="bert-base-uncased", help="The tokenizer to use.")
parser.add_argument("--dump_file", type=str, default="data/dump", help="The dump file prefix.")
args = parser.parse_args()
logger.info(f'Loading Tokenizer ({args.tokenizer_name})')
if args.tokenizer_type == 'bert':
logger.info(f"Loading Tokenizer ({args.tokenizer_name})")
if args.tokenizer_type == "bert":
tokenizer = BertTokenizer.from_pretrained(args.tokenizer_name)
bos = tokenizer.special_tokens_map['cls_token'] # `[CLS]`
sep = tokenizer.special_tokens_map['sep_token'] # `[SEP]`
elif args.tokenizer_type == 'roberta':
bos = tokenizer.special_tokens_map["cls_token"] # `[CLS]`
sep = tokenizer.special_tokens_map["sep_token"] # `[SEP]`
elif args.tokenizer_type == "roberta":
tokenizer = RobertaTokenizer.from_pretrained(args.tokenizer_name)
bos = tokenizer.special_tokens_map['cls_token'] # `<s>`
sep = tokenizer.special_tokens_map['sep_token'] # `</s>`
elif args.tokenizer_type == 'gpt2':
bos = tokenizer.special_tokens_map["cls_token"] # `<s>`
sep = tokenizer.special_tokens_map["sep_token"] # `</s>`
elif args.tokenizer_type == "gpt2":
tokenizer = GPT2Tokenizer.from_pretrained(args.tokenizer_name)
bos = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>`
sep = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>`
bos = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>`
sep = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>`
logger.info(f'Loading text from {args.file_path}')
with open(args.file_path, 'r', encoding='utf8') as fp:
logger.info(f"Loading text from {args.file_path}")
with open(args.file_path, "r", encoding="utf8") as fp:
data = fp.readlines()
logger.info(f'Start encoding')
logger.info(f'{len(data)} examples to process.')
logger.info(f"Start encoding")
logger.info(f"{len(data)} examples to process.")
rslt = []
iter = 0
interval = 10000
start = time.time()
for text in data:
text = f'{bos} {text.strip()} {sep}'
text = f"{bos} {text.strip()} {sep}"
token_ids = tokenizer.encode(text, add_special_tokens=False)
rslt.append(token_ids)
iter += 1
if iter % interval == 0:
end = time.time()
logger.info(f'{iter} examples processed. - {(end-start)/interval:.2f}s/expl')
logger.info(f"{iter} examples processed. - {(end-start)/interval:.2f}s/expl")
start = time.time()
logger.info('Finished binarization')
logger.info(f'{len(data)} examples processed.')
logger.info("Finished binarization")
logger.info(f"{len(data)} examples processed.")
dp_file = f'{args.dump_file}.{args.tokenizer_name}.pickle'
dp_file = f"{args.dump_file}.{args.tokenizer_name}.pickle"
rslt_ = [np.uint16(d) for d in rslt]
random.shuffle(rslt_)
logger.info(f'Dump to {dp_file}')
with open(dp_file, 'wb') as handle:
logger.info(f"Dump to {dp_file}")
with open(dp_file, "wb") as handle:
pickle.dump(rslt_, handle, protocol=pickle.HIGHEST_PROTOCOL)
......
......@@ -16,74 +16,87 @@
Preprocessing script before training the distilled model.
Specific to RoBERTa -> DistilRoBERTa and GPT2 -> DistilGPT2.
"""
from transformers import BertForMaskedLM, RobertaForMaskedLM, GPT2LMHeadModel
import torch
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned Distillation")
import torch
from transformers import GPT2LMHeadModel, RobertaForMaskedLM
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned Distillation"
)
parser.add_argument("--model_type", default="roberta", choices=["roberta", "gpt2"])
parser.add_argument("--model_name", default='roberta-large', type=str)
parser.add_argument("--dump_checkpoint", default='serialization_dir/tf_roberta_048131723.pth', type=str)
parser.add_argument("--vocab_transform", action='store_true')
parser.add_argument("--model_name", default="roberta-large", type=str)
parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_roberta_048131723.pth", type=str)
parser.add_argument("--vocab_transform", action="store_true")
args = parser.parse_args()
if args.model_type == 'roberta':
if args.model_type == "roberta":
model = RobertaForMaskedLM.from_pretrained(args.model_name)
prefix = 'roberta'
elif args.model_type == 'gpt2':
prefix = "roberta"
elif args.model_type == "gpt2":
model = GPT2LMHeadModel.from_pretrained(args.model_name)
prefix = 'transformer'
prefix = "transformer"
state_dict = model.state_dict()
compressed_sd = {}
### Embeddings ###
if args.model_type == 'gpt2':
for param_name in ['wte.weight', 'wpe.weight']:
compressed_sd[f'{prefix}.{param_name}'] = state_dict[f'{prefix}.{param_name}']
# Embeddings #
if args.model_type == "gpt2":
for param_name in ["wte.weight", "wpe.weight"]:
compressed_sd[f"{prefix}.{param_name}"] = state_dict[f"{prefix}.{param_name}"]
else:
for w in ['word_embeddings', 'position_embeddings', 'token_type_embeddings']:
param_name = f'{prefix}.embeddings.{w}.weight'
for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]:
param_name = f"{prefix}.embeddings.{w}.weight"
compressed_sd[param_name] = state_dict[param_name]
for w in ['weight', 'bias']:
param_name = f'{prefix}.embeddings.LayerNorm.{w}'
for w in ["weight", "bias"]:
param_name = f"{prefix}.embeddings.LayerNorm.{w}"
compressed_sd[param_name] = state_dict[param_name]
### Transformer Blocks ###
# Transformer Blocks #
std_idx = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
if args.model_type == 'gpt2':
for layer in ['ln_1', 'attn.c_attn', 'attn.c_proj', 'ln_2', 'mlp.c_fc', 'mlp.c_proj']:
for w in ['weight', 'bias']:
compressed_sd[f'{prefix}.h.{std_idx}.{layer}.{w}'] = \
state_dict[f'{prefix}.h.{teacher_idx}.{layer}.{w}']
compressed_sd[f'{prefix}.h.{std_idx}.attn.bias'] = state_dict[f'{prefix}.h.{teacher_idx}.attn.bias']
if args.model_type == "gpt2":
for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]:
for w in ["weight", "bias"]:
compressed_sd[f"{prefix}.h.{std_idx}.{layer}.{w}"] = state_dict[
f"{prefix}.h.{teacher_idx}.{layer}.{w}"
]
compressed_sd[f"{prefix}.h.{std_idx}.attn.bias"] = state_dict[f"{prefix}.h.{teacher_idx}.attn.bias"]
else:
for layer in ['attention.self.query', 'attention.self.key', 'attention.self.value',
'attention.output.dense', 'attention.output.LayerNorm',
'intermediate.dense', 'output.dense', 'output.LayerNorm']:
for w in ['weight', 'bias']:
compressed_sd[f'{prefix}.encoder.layer.{std_idx}.{layer}.{w}'] = \
state_dict[f'{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}']
for layer in [
"attention.self.query",
"attention.self.key",
"attention.self.value",
"attention.output.dense",
"attention.output.LayerNorm",
"intermediate.dense",
"output.dense",
"output.LayerNorm",
]:
for w in ["weight", "bias"]:
compressed_sd[f"{prefix}.encoder.layer.{std_idx}.{layer}.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}"
]
std_idx += 1
### Language Modeling Head ###s
if args.model_type == 'roberta':
for layer in ['lm_head.decoder.weight', 'lm_head.bias']:
compressed_sd[f'{layer}'] = state_dict[f'{layer}']
# Language Modeling Head ###s
if args.model_type == "roberta":
for layer in ["lm_head.decoder.weight", "lm_head.bias"]:
compressed_sd[f"{layer}"] = state_dict[f"{layer}"]
if args.vocab_transform:
for w in ['weight', 'bias']:
compressed_sd[f'lm_head.dense.{w}'] = state_dict[f'lm_head.dense.{w}']
compressed_sd[f'lm_head.layer_norm.{w}'] = state_dict[f'lm_head.layer_norm.{w}']
elif args.model_type == 'gpt2':
for w in ['weight', 'bias']:
compressed_sd[f'{prefix}.ln_f.{w}'] = state_dict[f'{prefix}.ln_f.{w}']
compressed_sd[f'lm_head.weight'] = state_dict[f'lm_head.weight']
for w in ["weight", "bias"]:
compressed_sd[f"lm_head.dense.{w}"] = state_dict[f"lm_head.dense.{w}"]
compressed_sd[f"lm_head.layer_norm.{w}"] = state_dict[f"lm_head.layer_norm.{w}"]
elif args.model_type == "gpt2":
for w in ["weight", "bias"]:
compressed_sd[f"{prefix}.ln_f.{w}"] = state_dict[f"{prefix}.ln_f.{w}"]
compressed_sd[f"lm_head.weight"] = state_dict[f"lm_head.weight"]
print(f'N layers selected for distillation: {std_idx}')
print(f'Number of params transfered for distillation: {len(compressed_sd.keys())}')
print(f"N layers selected for distillation: {std_idx}")
print(f"Number of params transfered for distillation: {len(compressed_sd.keys())}")
print(f'Save transfered checkpoint to {args.dump_checkpoint}.')
print(f"Save transfered checkpoint to {args.dump_checkpoint}.")
torch.save(compressed_sd, args.dump_checkpoint)
......@@ -16,67 +16,77 @@
Preprocessing script before training DistilBERT.
Specific to BERT -> DistilBERT.
"""
from transformers import BertForMaskedLM, RobertaForMaskedLM
import torch
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned Distillation")
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned Distillation"
)
parser.add_argument("--model_type", default="bert", choices=["bert"])
parser.add_argument("--model_name", default='bert-base-uncased', type=str)
parser.add_argument("--dump_checkpoint", default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str)
parser.add_argument("--vocab_transform", action='store_true')
parser.add_argument("--model_name", default="bert-base-uncased", type=str)
parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str)
parser.add_argument("--vocab_transform", action="store_true")
args = parser.parse_args()
if args.model_type == 'bert':
if args.model_type == "bert":
model = BertForMaskedLM.from_pretrained(args.model_name)
prefix = 'bert'
prefix = "bert"
else:
raise ValueError(f'args.model_type should be "bert".')
state_dict = model.state_dict()
compressed_sd = {}
for w in ['word_embeddings', 'position_embeddings']:
compressed_sd[f'distilbert.embeddings.{w}.weight'] = \
state_dict[f'{prefix}.embeddings.{w}.weight']
for w in ['weight', 'bias']:
compressed_sd[f'distilbert.embeddings.LayerNorm.{w}'] = \
state_dict[f'{prefix}.embeddings.LayerNorm.{w}']
for w in ["word_embeddings", "position_embeddings"]:
compressed_sd[f"distilbert.embeddings.{w}.weight"] = state_dict[f"{prefix}.embeddings.{w}.weight"]
for w in ["weight", "bias"]:
compressed_sd[f"distilbert.embeddings.LayerNorm.{w}"] = state_dict[f"{prefix}.embeddings.LayerNorm.{w}"]
std_idx = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
for w in ['weight', 'bias']:
compressed_sd[f'distilbert.transformer.layer.{std_idx}.attention.q_lin.{w}'] = \
state_dict[f'{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}']
compressed_sd[f'distilbert.transformer.layer.{std_idx}.attention.k_lin.{w}'] = \
state_dict[f'{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}']
compressed_sd[f'distilbert.transformer.layer.{std_idx}.attention.v_lin.{w}'] = \
state_dict[f'{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}']
for w in ["weight", "bias"]:
compressed_sd[f"distilbert.transformer.layer.{std_idx}.attention.q_lin.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"
]
compressed_sd[f"distilbert.transformer.layer.{std_idx}.attention.k_lin.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"
]
compressed_sd[f"distilbert.transformer.layer.{std_idx}.attention.v_lin.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}"
]
compressed_sd[f'distilbert.transformer.layer.{std_idx}.attention.out_lin.{w}'] = \
state_dict[f'{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}']
compressed_sd[f'distilbert.transformer.layer.{std_idx}.sa_layer_norm.{w}'] = \
state_dict[f'{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}']
compressed_sd[f"distilbert.transformer.layer.{std_idx}.attention.out_lin.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}"
]
compressed_sd[f"distilbert.transformer.layer.{std_idx}.sa_layer_norm.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}"
]
compressed_sd[f'distilbert.transformer.layer.{std_idx}.ffn.lin1.{w}'] = \
state_dict[f'{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}']
compressed_sd[f'distilbert.transformer.layer.{std_idx}.ffn.lin2.{w}'] = \
state_dict[f'{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}']
compressed_sd[f'distilbert.transformer.layer.{std_idx}.output_layer_norm.{w}'] = \
state_dict[f'{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}']
compressed_sd[f"distilbert.transformer.layer.{std_idx}.ffn.lin1.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}"
]
compressed_sd[f"distilbert.transformer.layer.{std_idx}.ffn.lin2.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}"
]
compressed_sd[f"distilbert.transformer.layer.{std_idx}.output_layer_norm.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}"
]
std_idx += 1
compressed_sd[f'vocab_projector.weight'] = state_dict[f'cls.predictions.decoder.weight']
compressed_sd[f'vocab_projector.bias'] = state_dict[f'cls.predictions.bias']
compressed_sd[f"vocab_projector.weight"] = state_dict[f"cls.predictions.decoder.weight"]
compressed_sd[f"vocab_projector.bias"] = state_dict[f"cls.predictions.bias"]
if args.vocab_transform:
for w in ['weight', 'bias']:
compressed_sd[f'vocab_transform.{w}'] = state_dict[f'cls.predictions.transform.dense.{w}']
compressed_sd[f'vocab_layer_norm.{w}'] = state_dict[f'cls.predictions.transform.LayerNorm.{w}']
for w in ["weight", "bias"]:
compressed_sd[f"vocab_transform.{w}"] = state_dict[f"cls.predictions.transform.dense.{w}"]
compressed_sd[f"vocab_layer_norm.{w}"] = state_dict[f"cls.predictions.transform.LayerNorm.{w}"]
print(f'N layers selected for distillation: {std_idx}')
print(f'Number of params transfered for distillation: {len(compressed_sd.keys())}')
print(f"N layers selected for distillation: {std_idx}")
print(f"Number of params transfered for distillation: {len(compressed_sd.keys())}")
print(f'Save transfered checkpoint to {args.dump_checkpoint}.')
print(f"Save transfered checkpoint to {args.dump_checkpoint}.")
torch.save(compressed_sd, args.dump_checkpoint)
......@@ -15,37 +15,42 @@
"""
Preprocessing script before training the distilled model.
"""
from collections import Counter
import argparse
import pickle
import logging
import pickle
from collections import Counter
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
logger = logging.getLogger(__name__)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)")
parser.add_argument("--data_file", type=str, default="data/dump.bert-base-uncased.pickle",
help="The binarized dataset.")
parser.add_argument("--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle",
help="The dump file.")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)"
)
parser.add_argument(
"--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset."
)
parser.add_argument(
"--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file."
)
parser.add_argument("--vocab_size", default=30522, type=int)
args = parser.parse_args()
logger.info(f'Loading data from {args.data_file}')
with open(args.data_file, 'rb') as fp:
logger.info(f"Loading data from {args.data_file}")
with open(args.data_file, "rb") as fp:
data = pickle.load(fp)
logger.info('Counting occurences for MLM.')
logger.info("Counting occurences for MLM.")
counter = Counter()
for tk_ids in data:
counter.update(tk_ids)
counts = [0]*args.vocab_size
counts = [0] * args.vocab_size
for k, v in counter.items():
counts[k] = v
logger.info(f'Dump to {args.token_counts_dump}')
with open(args.token_counts_dump, 'wb') as handle:
logger.info(f"Dump to {args.token_counts_dump}")
with open(args.token_counts_dump, "wb") as handle:
pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
This diff is collapsed.
......@@ -15,17 +15,21 @@
""" Utils to train DistilBERT
adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
"""
import git
import json
import logging
import os
import socket
import torch
import git
import numpy as np
import torch
import logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
......@@ -35,12 +39,12 @@ def git_log(folder_path: str):
"""
repo = git.Repo(search_parent_directories=True)
repo_infos = {
'repo_id': str(repo),
'repo_sha': str(repo.head.object.hexsha),
'repo_branch': str(repo.active_branch)
"repo_id": str(repo),
"repo_sha": str(repo.head.object.hexsha),
"repo_branch": str(repo.active_branch),
}
with open(os.path.join(folder_path, 'git_log.json'), 'w') as f:
with open(os.path.join(folder_path, "git_log.json"), "w") as f:
json.dump(repo_infos, f, indent=4)
......@@ -57,21 +61,21 @@ def init_gpu_params(params):
assert torch.cuda.is_available()
logger.info('Initializing GPUs')
logger.info("Initializing GPUs")
if params.n_gpu > 1:
assert params.local_rank != -1
params.world_size = int(os.environ['WORLD_SIZE'])
params.n_gpu_per_node = int(os.environ['N_GPU_NODE'])
params.global_rank = int(os.environ['RANK'])
params.world_size = int(os.environ["WORLD_SIZE"])
params.n_gpu_per_node = int(os.environ["N_GPU_NODE"])
params.global_rank = int(os.environ["RANK"])
# number of nodes / node ID
params.n_nodes = params.world_size // params.n_gpu_per_node
params.node_id = params.global_rank // params.n_gpu_per_node
params.multi_gpu = True
assert params.n_nodes == int(os.environ['N_NODES'])
assert params.node_id == int(os.environ['NODE_RANK'])
assert params.n_nodes == int(os.environ["N_NODES"])
assert params.node_id == int(os.environ["NODE_RANK"])
# local job (single GPU)
else:
......@@ -114,8 +118,7 @@ def init_gpu_params(params):
if params.multi_gpu:
logger.info("Initializing PyTorch distributed")
torch.distributed.init_process_group(
init_method='env://',
backend='nccl',
init_method="env://", backend="nccl",
)
......
This diff is collapsed.
......@@ -17,25 +17,16 @@
import json
import os
from collections import Counter
from PIL import Image
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from torch.utils.data import Dataset
POOLING_BREAKDOWN = {
1: (1, 1),
2: (2, 1),
3: (3, 1),
4: (2, 2),
5: (5, 1),
6: (3, 2),
7: (7, 1),
8: (4, 2),
9: (3, 3)
}
POOLING_BREAKDOWN = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)}
class ImageEncoder(nn.Module):
......@@ -54,7 +45,6 @@ class ImageEncoder(nn.Module):
return out # BxNx2048
class JsonlDataset(Dataset):
def __init__(self, data_path, tokenizer, transforms, labels, max_seq_length):
self.data = [json.loads(l) for l in open(data_path)]
......@@ -72,7 +62,7 @@ class JsonlDataset(Dataset):
def __getitem__(self, index):
sentence = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"], add_special_tokens=True))
start_token, sentence, end_token = sentence[0], sentence[1:-1], sentence[-1]
sentence = sentence[:self.max_seq_length]
sentence = sentence[: self.max_seq_length]
label = torch.zeros(self.n_classes)
label[[self.labels.index(tgt) for tgt in self.data[index]["label"]]] = 1
......@@ -80,8 +70,13 @@ class JsonlDataset(Dataset):
image = Image.open(os.path.join(self.data_dir, self.data[index]["img"])).convert("RGB")
image = self.transforms(image)
return {"image_start_token": start_token, "image_end_token": end_token,
"sentence": sentence, "image": image, "label": label}
return {
"image_start_token": start_token,
"image_end_token": end_token,
"sentence": sentence,
"image": image,
"label": label,
}
def get_label_frequencies(self):
label_freqs = Counter()
......@@ -110,10 +105,31 @@ def collate_fn(batch):
def get_mmimdb_labels():
return ['Crime', 'Drama', 'Thriller', 'Action', 'Comedy', 'Romance',
'Documentary', 'Short', 'Mystery', 'History', 'Family', 'Adventure',
'Fantasy', 'Sci-Fi', 'Western', 'Horror', 'Sport', 'War', 'Music',
'Musical', 'Animation', 'Biography', 'Film-Noir']
return [
"Crime",
"Drama",
"Thriller",
"Action",
"Comedy",
"Romance",
"Documentary",
"Short",
"Mystery",
"History",
"Family",
"Adventure",
"Fantasy",
"Sci-Fi",
"Western",
"Horror",
"Sport",
"War",
"Music",
"Musical",
"Animation",
"Biography",
"Film-Noir",
]
def get_image_transforms():
......@@ -122,9 +138,6 @@ def get_image_transforms():
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.46777044, 0.44531429, 0.40661017],
std=[0.12221994, 0.12145835, 0.14380469],
),
transforms.Normalize(mean=[0.46777044, 0.44531429, 0.40661017], std=[0.12221994, 0.12145835, 0.14380469],),
]
)
import torch
class ClassificationHead(torch.nn.Module):
"""Classification Head for transformer encoders"""
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment