Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
51690699
"optimization.py" did not exist on "852e4b3c000c99433dc94bdaf1e0612dabaaa5d8"
Commit
51690699
authored
Jan 30, 2019
by
Matej Svejda
Browse files
make examples consistent, revert error in num_train_steps calculation
parent
9c6a48c8
Changes
5
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
21 additions
and
17 deletions
+21
-17
examples/run_classifier.py
examples/run_classifier.py
+3
-3
examples/run_lm_finetuning.py
examples/run_lm_finetuning.py
+9
-5
examples/run_squad.py
examples/run_squad.py
+3
-3
examples/run_squad2.py
examples/run_squad2.py
+3
-3
examples/run_swag.py
examples/run_swag.py
+3
-3
No files found.
examples/run_classifier.py
View file @
51690699
...
...
@@ -411,7 +411,7 @@ def main():
raise
ValueError
(
"Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
.
format
(
args
.
gradient_accumulation_steps
))
args
.
train_batch_size
=
int
(
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
)
args
.
train_batch_size
=
args
.
train_batch_size
/
/
args
.
gradient_accumulation_steps
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
...
...
@@ -441,8 +441,8 @@ def main():
num_train_steps
=
None
if
args
.
do_train
:
train_examples
=
processor
.
get_train_examples
(
args
.
data_dir
)
num_train_steps
=
int
(
len
(
train_examples
)
/
args
.
train_batch_size
*
args
.
num_train_epochs
)
num_train_steps
=
len
(
train_examples
)
/
/
args
.
train_batch_size
//
args
.
gradient_accumulation_steps
*
args
.
num_train_epochs
# Prepare model
model
=
BertForSequenceClassification
.
from_pretrained
(
args
.
bert_model
,
...
...
examples/run_lm_finetuning.py
View file @
51690699
...
...
@@ -497,7 +497,7 @@ def main():
raise
ValueError
(
"Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
.
format
(
args
.
gradient_accumulation_steps
))
args
.
train_batch_size
=
int
(
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
)
args
.
train_batch_size
=
args
.
train_batch_size
/
/
args
.
gradient_accumulation_steps
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
...
...
@@ -520,8 +520,8 @@ def main():
print
(
"Loading Train Dataset"
,
args
.
train_file
)
train_dataset
=
BERTDataset
(
args
.
train_file
,
tokenizer
,
seq_len
=
args
.
max_seq_length
,
corpus_lines
=
None
,
on_memory
=
args
.
on_memory
)
num_train_steps
=
int
(
len
(
train_dataset
)
/
args
.
train_batch_size
*
args
.
num_train_epochs
)
num_train_steps
=
len
(
train_dataset
)
/
/
args
.
train_batch_size
//
args
.
gradient_accumulation_steps
*
args
.
num_train_epochs
# Prepare model
model
=
BertForPreTraining
.
from_pretrained
(
args
.
bert_model
)
...
...
@@ -544,6 +544,10 @@ def main():
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.01
},
{
'params'
:
[
p
for
n
,
p
in
param_optimizer
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
]
t_total
=
num_train_steps
if
args
.
local_rank
!=
-
1
:
t_total
=
t_total
//
torch
.
distributed
.
get_world_size
()
if
args
.
fp16
:
try
:
from
apex.optimizers
import
FP16_Optimizer
...
...
@@ -564,7 +568,7 @@ def main():
optimizer
=
BertAdam
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
warmup
=
args
.
warmup_proportion
,
t_total
=
num_train_steps
)
t_total
=
t_total
)
global_step
=
0
if
args
.
do_train
:
...
...
@@ -604,7 +608,7 @@ def main():
if
args
.
fp16
:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step
=
args
.
learning_rate
*
warmup_linear
(
global_step
/
num_train_steps
,
args
.
warmup_proportion
)
lr_this_step
=
args
.
learning_rate
*
warmup_linear
(
global_step
/
t_total
,
args
.
warmup_proportion
)
for
param_group
in
optimizer
.
param_groups
:
param_group
[
'lr'
]
=
lr_this_step
optimizer
.
step
()
...
...
examples/run_squad.py
View file @
51690699
...
...
@@ -757,7 +757,7 @@ def main():
raise
ValueError
(
"Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
.
format
(
args
.
gradient_accumulation_steps
))
args
.
train_batch_size
=
int
(
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
)
args
.
train_batch_size
=
args
.
train_batch_size
/
/
args
.
gradient_accumulation_steps
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
...
...
@@ -788,8 +788,8 @@ def main():
if
args
.
do_train
:
train_examples
=
read_squad_examples
(
input_file
=
args
.
train_file
,
is_training
=
True
)
num_train_steps
=
int
(
len
(
train_examples
)
/
args
.
train_batch_size
*
args
.
num_train_epochs
)
num_train_steps
=
len
(
train_examples
)
/
/
args
.
train_batch_size
//
args
.
gradient_accumulation_steps
*
args
.
num_train_epochs
# Prepare model
model
=
BertForQuestionAnswering
.
from_pretrained
(
args
.
bert_model
,
...
...
examples/run_squad2.py
View file @
51690699
...
...
@@ -850,7 +850,7 @@ def main():
raise
ValueError
(
"Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
.
format
(
args
.
gradient_accumulation_steps
))
args
.
train_batch_size
=
int
(
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
)
args
.
train_batch_size
=
args
.
train_batch_size
/
/
args
.
gradient_accumulation_steps
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
...
...
@@ -881,8 +881,8 @@ def main():
if
args
.
do_train
:
train_examples
=
read_squad_examples
(
input_file
=
args
.
train_file
,
is_training
=
True
)
num_train_steps
=
int
(
len
(
train_examples
)
/
args
.
train_batch_size
*
args
.
num_train_epochs
)
num_train_steps
=
len
(
train_examples
)
/
/
args
.
train_batch_size
//
args
.
gradient_accumulation_steps
*
args
.
num_train_epochs
# Prepare model
model
=
BertForQuestionAnswering
.
from_pretrained
(
args
.
bert_model
,
...
...
examples/run_swag.py
View file @
51690699
...
...
@@ -331,7 +331,7 @@ def main():
raise
ValueError
(
"Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
.
format
(
args
.
gradient_accumulation_steps
))
args
.
train_batch_size
=
int
(
args
.
train_batch_size
/
args
.
gradient_accumulation_steps
)
args
.
train_batch_size
=
args
.
train_batch_size
/
/
args
.
gradient_accumulation_steps
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
...
...
@@ -352,8 +352,8 @@ def main():
num_train_steps
=
None
if
args
.
do_train
:
train_examples
=
read_swag_examples
(
os
.
path
.
join
(
args
.
data_dir
,
'train.csv'
),
is_training
=
True
)
num_train_steps
=
int
(
len
(
train_examples
)
/
args
.
train_batch_size
*
args
.
num_train_epochs
)
num_train_steps
=
len
(
train_examples
)
/
/
args
.
train_batch_size
//
args
.
gradient_accumulation_steps
*
args
.
num_train_epochs
# Prepare model
model
=
BertForMultipleChoice
.
from_pretrained
(
args
.
bert_model
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment