Unverified Commit 506e7c63 authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Fix various imports (#22281)

* Fix various imports

* Fix copies

* Fix import
parent 053c2153
......@@ -6009,16 +6009,6 @@ if TYPE_CHECKING:
tf_top_k_top_p_filtering,
)
from .keras_callbacks import KerasMetricCallback, PushToHubCallback
from .modeling_tf_layoutlm import (
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMForMaskedLM,
TFLayoutLMForQuestionAnswering,
TFLayoutLMForSequenceClassification,
TFLayoutLMForTokenClassification,
TFLayoutLMMainLayer,
TFLayoutLMModel,
TFLayoutLMPreTrainedModel,
)
from .modeling_tf_utils import TFPreTrainedModel, TFSequenceSummary, TFSharedEmbeddings, shape_list
# TensorFlow model imports
......@@ -6272,6 +6262,16 @@ if TYPE_CHECKING:
TFHubertModel,
TFHubertPreTrainedModel,
)
from .models.layoutlm import (
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMForMaskedLM,
TFLayoutLMForQuestionAnswering,
TFLayoutLMForSequenceClassification,
TFLayoutLMForTokenClassification,
TFLayoutLMMainLayer,
TFLayoutLMModel,
TFLayoutLMPreTrainedModel,
)
from .models.layoutlmv3 import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMv3ForQuestionAnswering,
......
......@@ -167,7 +167,7 @@ class ConvertCommand(BaseTransformersCLICommand):
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output)
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_pytorch_checkpoint_to_pytorch import (
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
......
......@@ -24,7 +24,12 @@ import torch
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import Data2VecTextConfig, Data2VecTextForMaskedLM, Data2VecTextForSequenceClassification
from transformers import (
Data2VecTextConfig,
Data2VecTextForMaskedLM,
Data2VecTextForSequenceClassification,
Data2VecTextModel,
)
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
......@@ -35,7 +40,6 @@ from transformers.models.bert.modeling_bert import (
# IMPORTANT: In order for this script to run, please make sure to download the dictionary: `dict.txt` from wget https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz
# File copied from https://github.com/pytorch/fairseq/blob/main/examples/data2vec/models/data2vec_text.py
from transformers.models.data2vec.data2vec_text import Data2VecTextModel
from transformers.utils import logging
......
......@@ -19,7 +19,7 @@ from pathlib import Path
import torch
from torch.serialization import default_restore_location
from .transformers import BertConfig, DPRConfig, DPRContextEncoder, DPRQuestionEncoder, DPRReader
from transformers import BertConfig, DPRConfig, DPRContextEncoder, DPRQuestionEncoder, DPRReader
CheckpointState = collections.namedtuple(
......
......@@ -41,7 +41,7 @@ else:
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str.py import MgpstrProcessor
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
......
......@@ -25,7 +25,7 @@ from .base import ChunkPipeline
if TYPE_CHECKING:
from pyctcdecode import BeamSearchDecoderCTC
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ..feature_extraction_sequence_utils import SequenceFeatureExtractor
logger = logging.get_logger(__name__)
......
......@@ -125,58 +125,6 @@ class PushToHubCallback(metaclass=DummyObject):
requires_backends(self, ["tf"])
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFLayoutLMForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMMainLayer(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
......@@ -1456,6 +1404,58 @@ class TFHubertPreTrainedModel(metaclass=DummyObject):
requires_backends(self, ["tf"])
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFLayoutLMForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMForQuestionAnswering(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMMainLayer(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFLayoutLMPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST = None
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment