Unverified Commit 4fc9f9ef authored by Thomas Wolf's avatar Thomas Wolf Committed by GitHub
Browse files

Merge pull request #910 from huggingface/auto_models

Adding AutoTokenizer and AutoModel classes that automatically detect architecture - Clean up tokenizers
parents 3a126e73 d43dc48b
......@@ -17,16 +17,16 @@ xlm_start_docstring = """
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlmTokenizer', 'xlm-mlm-en-2048')
import torch
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlmTokenizer', 'xlm-mlm-en-2048')
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
>>> text_2 = "Jim Henson was a puppeteer"
>>> indexed_tokens_1 = tokenizer.encode(text_1)
>>> indexed_tokens_2 = tokenizer.encode(text_2)
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
text_1 = "Who was Jim Henson ?"
text_2 = "Jim Henson was a puppeteer"
indexed_tokens_1 = tokenizer.encode(text_1)
indexed_tokens_2 = tokenizer.encode(text_2)
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
"""
# A lot of models share the same param doc. Use a decorator
......@@ -76,11 +76,11 @@ def xlmTokenizer(*args, **kwargs):
Default: None
Example:
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlmTokenizer', 'xlm-mlm-en-2048')
import torch
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlmTokenizer', 'xlm-mlm-en-2048')
>>> text = "Who was Jim Henson ?"
>>> indexed_tokens = tokenizer.encode(tokenized_text)
text = "Who was Jim Henson ?"
indexed_tokens = tokenizer.encode(tokenized_text)
"""
tokenizer = XLMTokenizer.from_pretrained(*args, **kwargs)
return tokenizer
......@@ -91,11 +91,11 @@ def xlmTokenizer(*args, **kwargs):
def xlmModel(*args, **kwargs):
"""
# Load xlmModel
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'xlmModel', 'xlm-mlm-en-2048')
>>> model.eval()
model = torch.hub.load('huggingface/pytorch-transformers', 'xlmModel', 'xlm-mlm-en-2048')
model.eval()
# Predict hidden states features for each layer
>>> with torch.no_grad():
with torch.no_grad():
hidden_states_1, mems = model(tokens_tensor_1)
hidden_states_2, mems = model(tokens_tensor_2, past=mems)
"""
......@@ -108,26 +108,26 @@ def xlmModel(*args, **kwargs):
def xlmLMHeadModel(*args, **kwargs):
"""
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
>>> text_2 = "Jim Henson was a puppeteer"
>>> indexed_tokens_1 = tokenizer.encode(text_1)
>>> indexed_tokens_2 = tokenizer.encode(text_2)
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
text_1 = "Who was Jim Henson ?"
text_2 = "Jim Henson was a puppeteer"
indexed_tokens_1 = tokenizer.encode(text_1)
indexed_tokens_2 = tokenizer.encode(text_2)
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load xlnetLMHeadModel
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetLMHeadModel', 'xlm-mlm-en-2048')
>>> model.eval()
model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetLMHeadModel', 'xlm-mlm-en-2048')
model.eval()
# Predict hidden states features for each layer
>>> with torch.no_grad():
with torch.no_grad():
predictions_1, mems = model(tokens_tensor_1)
predictions_2, mems = model(tokens_tensor_2, mems=mems)
# Get the predicted last token
>>> predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
>>> predicted_token = tokenizer.decode([predicted_index])
>>> assert predicted_token == ' who'
predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
predicted_token = tokenizer.decode([predicted_index])
assert predicted_token == ' who'
"""
model = XLMWithLMHeadModel.from_pretrained(*args, **kwargs)
return model
......@@ -142,25 +142,25 @@ def xlmLMHeadModel(*args, **kwargs):
# Example:
# # Load the tokenizer
# >>> import torch
# >>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlm-mlm-en-2048')
# import torch
# tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlm-mlm-en-2048')
# # Prepare tokenized input
# >>> text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
# >>> text2 = "Who was Jim Henson ? Jim Henson was a mysterious young man"
# >>> tokenized_text1 = tokenizer.tokenize(text1)
# >>> tokenized_text2 = tokenizer.tokenize(text2)
# >>> indexed_tokens1 = tokenizer.convert_tokens_to_ids(tokenized_text1)
# >>> indexed_tokens2 = tokenizer.convert_tokens_to_ids(tokenized_text2)
# >>> tokens_tensor = torch.tensor([[indexed_tokens1, indexed_tokens2]])
# >>> mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
# text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
# text2 = "Who was Jim Henson ? Jim Henson was a mysterious young man"
# tokenized_text1 = tokenizer.tokenize(text1)
# tokenized_text2 = tokenizer.tokenize(text2)
# indexed_tokens1 = tokenizer.convert_tokens_to_ids(tokenized_text1)
# indexed_tokens2 = tokenizer.convert_tokens_to_ids(tokenized_text2)
# tokens_tensor = torch.tensor([[indexed_tokens1, indexed_tokens2]])
# mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
# # Load xlnetForSequenceClassification
# >>> model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetForSequenceClassification', 'xlm-mlm-en-2048')
# >>> model.eval()
# model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetForSequenceClassification', 'xlm-mlm-en-2048')
# model.eval()
# # Predict sequence classes logits
# >>> with torch.no_grad():
# with torch.no_grad():
# lm_logits, mems = model(tokens_tensor)
# """
# model = XLNetForSequenceClassification.from_pretrained(*args, **kwargs)
......
......@@ -53,11 +53,11 @@ def xlnetTokenizer(*args, **kwargs):
Default: None
Example:
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
import torch
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
>>> text = "Who was Jim Henson ?"
>>> indexed_tokens = tokenizer.encode(tokenized_text)
text = "Who was Jim Henson ?"
indexed_tokens = tokenizer.encode(tokenized_text)
"""
tokenizer = XLNetTokenizer.from_pretrained(*args, **kwargs)
return tokenizer
......@@ -72,23 +72,23 @@ def xlnetModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
import torch
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
>>> text_2 = "Jim Henson was a puppeteer"
>>> indexed_tokens_1 = tokenizer.encode(text_1)
>>> indexed_tokens_2 = tokenizer.encode(text_2)
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
text_1 = "Who was Jim Henson ?"
text_2 = "Jim Henson was a puppeteer"
indexed_tokens_1 = tokenizer.encode(text_1)
indexed_tokens_2 = tokenizer.encode(text_2)
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load xlnetModel
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetModel', 'xlnet-large-cased')
>>> model.eval()
model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetModel', 'xlnet-large-cased')
model.eval()
# Predict hidden states features for each layer
>>> with torch.no_grad():
with torch.no_grad():
hidden_states_1, mems = model(tokens_tensor_1)
hidden_states_2, mems = model(tokens_tensor_2, past=mems)
"""
......@@ -106,30 +106,30 @@ def xlnetLMHeadModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
import torch
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
>>> text_2 = "Jim Henson was a puppeteer"
>>> indexed_tokens_1 = tokenizer.encode(text_1)
>>> indexed_tokens_2 = tokenizer.encode(text_2)
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
text_1 = "Who was Jim Henson ?"
text_2 = "Jim Henson was a puppeteer"
indexed_tokens_1 = tokenizer.encode(text_1)
indexed_tokens_2 = tokenizer.encode(text_2)
tokens_tensor_1 = torch.tensor([indexed_tokens_1])
tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load xlnetLMHeadModel
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetLMHeadModel', 'xlnet-large-cased')
>>> model.eval()
model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetLMHeadModel', 'xlnet-large-cased')
model.eval()
# Predict hidden states features for each layer
>>> with torch.no_grad():
with torch.no_grad():
predictions_1, mems = model(tokens_tensor_1)
predictions_2, mems = model(tokens_tensor_2, mems=mems)
# Get the predicted last token
>>> predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
>>> predicted_token = tokenizer.decode([predicted_index])
>>> assert predicted_token == ' who'
predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
predicted_token = tokenizer.decode([predicted_index])
assert predicted_token == ' who'
"""
model = XLNetLMHeadModel.from_pretrained(*args, **kwargs)
return model
......@@ -144,25 +144,25 @@ def xlnetLMHeadModel(*args, **kwargs):
# Example:
# # Load the tokenizer
# >>> import torch
# >>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
# import torch
# tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
# # Prepare tokenized input
# >>> text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
# >>> text2 = "Who was Jim Henson ? Jim Henson was a mysterious young man"
# >>> tokenized_text1 = tokenizer.tokenize(text1)
# >>> tokenized_text2 = tokenizer.tokenize(text2)
# >>> indexed_tokens1 = tokenizer.convert_tokens_to_ids(tokenized_text1)
# >>> indexed_tokens2 = tokenizer.convert_tokens_to_ids(tokenized_text2)
# >>> tokens_tensor = torch.tensor([[indexed_tokens1, indexed_tokens2]])
# >>> mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
# text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
# text2 = "Who was Jim Henson ? Jim Henson was a mysterious young man"
# tokenized_text1 = tokenizer.tokenize(text1)
# tokenized_text2 = tokenizer.tokenize(text2)
# indexed_tokens1 = tokenizer.convert_tokens_to_ids(tokenized_text1)
# indexed_tokens2 = tokenizer.convert_tokens_to_ids(tokenized_text2)
# tokens_tensor = torch.tensor([[indexed_tokens1, indexed_tokens2]])
# mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
# # Load xlnetForSequenceClassification
# >>> model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetForSequenceClassification', 'xlnet-large-cased')
# >>> model.eval()
# model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetForSequenceClassification', 'xlnet-large-cased')
# model.eval()
# # Predict sequence classes logits
# >>> with torch.no_grad():
# with torch.no_grad():
# lm_logits, mems = model(tokens_tensor)
# """
# model = XLNetForSequenceClassification.from_pretrained(*args, **kwargs)
......
__version__ = "1.0.0"
from .tokenization_auto import AutoTokenizer
from .tokenization_bert import BertTokenizer, BasicTokenizer, WordpieceTokenizer
from .tokenization_openai import OpenAIGPTTokenizer
from .tokenization_transfo_xl import (TransfoXLTokenizer, TransfoXLCorpus)
from .tokenization_gpt2 import GPT2Tokenizer
from .tokenization_xlnet import XLNetTokenizer, SPIECE_UNDERLINE
from .tokenization_xlm import XLMTokenizer
from .tokenization_utils import (PreTrainedTokenizer, clean_up_tokenization)
from .tokenization_utils import (PreTrainedTokenizer)
from .modeling_auto import (AutoConfig, AutoModel)
from .modeling_bert import (BertConfig, BertPreTrainedModel, BertModel, BertForPreTraining,
BertForMaskedLM, BertForNextSentencePrediction,
......@@ -39,4 +42,4 @@ from .modeling_utils import (WEIGHTS_NAME, CONFIG_NAME, TF_WEIGHTS_NAME,
from .optimization import (AdamW, ConstantLRSchedule, WarmupConstantSchedule, WarmupCosineSchedule,
WarmupCosineWithHardRestartsSchedule, WarmupLinearSchedule)
from .file_utils import (PYTORCH_PRETRAINED_BERT_CACHE, cached_path)
from .file_utils import (PYTORCH_TRANSFORMERS_CACHE, PYTORCH_PRETRAINED_BERT_CACHE, cached_path)
......@@ -20,7 +20,7 @@ import argparse
import torch
import numpy as np
import tensorflow as tf
from pytorch_pretrained_bert.modeling import BertModel
from pytorch_transformers.modeling import BertModel
def convert_pytorch_checkpoint_to_tf(model:BertModel, ckpt_dir:str, model_name:str):
......
......@@ -38,10 +38,13 @@ except ImportError:
try:
from pathlib import Path
PYTORCH_PRETRAINED_BERT_CACHE = Path(
os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path))
os.getenv('PYTORCH_TRANSFORMERS_CACHE', os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path)))
except (AttributeError, ImportError):
PYTORCH_PRETRAINED_BERT_CACHE = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE',
default_cache_path)
PYTORCH_PRETRAINED_BERT_CACHE = os.getenv('PYTORCH_TRANSFORMERS_CACHE',
os.getenv('PYTORCH_PRETRAINED_BERT_CACHE',
default_cache_path))
PYTORCH_TRANSFORMERS_CACHE = PYTORCH_PRETRAINED_BERT_CACHE # Kept for backward compatibility
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
......@@ -70,7 +73,7 @@ def filename_to_url(filename, cache_dir=None):
Raise ``EnvironmentError`` if `filename` or its stored metadata do not exist.
"""
if cache_dir is None:
cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
cache_dir = PYTORCH_TRANSFORMERS_CACHE
if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
......@@ -98,7 +101,7 @@ def cached_path(url_or_filename, cache_dir=None):
make sure the file exists and then return the path.
"""
if cache_dir is None:
cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
cache_dir = PYTORCH_TRANSFORMERS_CACHE
if sys.version_info[0] == 3 and isinstance(url_or_filename, Path):
url_or_filename = str(url_or_filename)
if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
......@@ -187,7 +190,7 @@ def get_from_cache(url, cache_dir=None):
If it's not there, download it. Then return the path to the cached file.
"""
if cache_dir is None:
cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
cache_dir = PYTORCH_TRANSFORMERS_CACHE
if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
if sys.version_info[0] == 2 and not isinstance(cache_dir, str):
......
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Auto Model class. """
from __future__ import absolute_import, division, print_function, unicode_literals
import logging
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss, MSELoss
from torch.nn.parameter import Parameter
from .modeling_bert import BertConfig, BertModel
from .modeling_openai import OpenAIGPTConfig, OpenAIGPTModel
from .modeling_gpt2 import GPT2Config, GPT2Model
from .modeling_transfo_xl import TransfoXLConfig, TransfoXLModel
from .modeling_xlnet import XLNetConfig, XLNetModel
from .modeling_xlm import XLMConfig, XLMModel
from .modeling_utils import PreTrainedModel, SequenceSummary
logger = logging.getLogger(__name__)
class AutoConfig(object):
r""":class:`~pytorch_transformers.AutoConfig` is a generic configuration class
that will be instantiated as one of the configuration classes of the library
when created with the `AutoConfig.from_pretrained(pretrained_model_name_or_path)`
class method.
The `from_pretrained()` method take care of returning the correct model class instance
using pattern matching on the `pretrained_model_name_or_path` string.
The base model class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order):
- contains `bert`: BertConfig (Bert model)
- contains `openai-gpt`: OpenAIGPTConfig (OpenAI GPT model)
- contains `gpt2`: GPT2Config (OpenAI GPT-2 model)
- contains `transfo-xl`: TransfoXLConfig (Transformer-XL model)
- contains `xlnet`: XLNetConfig (XLNet model)
- contains `xlm`: XLMConfig (XLM model)
This class cannot be instantiated using `__init__()` (throw an error).
"""
def __init__(self):
raise EnvironmentError("AutoConfig is designed to be instantiated "
"using the `AutoConfig.from_pretrained(pretrained_model_name_or_path)` method.")
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
r""" Instantiate a one of the configuration classes of the library
from a pre-trained model configuration.
The configuration class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order):
- contains `bert`: BertConfig (Bert model)
- contains `openai-gpt`: OpenAIGPTConfig (OpenAI GPT model)
- contains `gpt2`: GPT2Config (OpenAI GPT-2 model)
- contains `transfo-xl`: TransfoXLConfig (Transformer-XL model)
- contains `xlnet`: XLNetConfig (XLNet model)
- contains `xlm`: XLMConfig (XLM model)
Params:
**pretrained_model_name_or_path**: either:
- a string with the `shortcut name` of a pre-trained model configuration to load from cache
or download and cache if not already stored in cache (e.g. 'bert-base-uncased').
- a path to a `directory` containing a configuration file saved
using the `save_pretrained(save_directory)` method.
- a path or url to a saved configuration `file`.
**cache_dir**: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
configuration should be cached if the standard cache should not be used.
**return_unused_kwargs**: (`optional`) bool:
- If False, then this function returns just the final configuration object.
- If True, then this functions returns a tuple `(config, unused_kwargs)` where `unused_kwargs`
is a dictionary consisting of the key/value pairs whose keys are not configuration attributes:
ie the part of kwargs which has not been used to update `config` and is otherwise ignored.
**kwargs**: (`optional`) dict:
Dictionary of key/value pairs with which to update the configuration object after loading.
- The values in kwargs of any keys which are configuration attributes will be used
to override the loaded values.
- Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
by the `return_unused_kwargs` keyword parameter.
Examples::
config = AutoConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache.
config = AutoConfig.from_pretrained('./test/bert_saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
config = AutoConfig.from_pretrained('./test/bert_saved_model/my_configuration.json')
config = AutoConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False)
assert config.output_attention == True
config, unused_kwargs = AutoConfig.from_pretrained('bert-base-uncased', output_attention=True,
foo=False, return_unused_kwargs=True)
assert config.output_attention == True
assert unused_kwargs == {'foo': False}
"""
if 'bert' in pretrained_model_name_or_path:
return BertConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
elif 'openai-gpt' in pretrained_model_name_or_path:
return OpenAIGPTConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
elif 'gpt2' in pretrained_model_name_or_path:
return GPT2Config.from_pretrained(pretrained_model_name_or_path, **kwargs)
elif 'transfo-xl' in pretrained_model_name_or_path:
return TransfoXLConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
elif 'xlnet' in pretrained_model_name_or_path:
return XLNetConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
elif 'xlm' in pretrained_model_name_or_path:
return XLMConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
raise ValueError("Unrecognized model identifier in {}. Should contains one of "
"'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
"'xlm'".format(pretrained_model_name_or_path))
class AutoModel(object):
r"""
:class:`~pytorch_transformers.AutoModel` is a generic model class
that will be instantiated as one of the base model classes of the library
when created with the `AutoModel.from_pretrained(pretrained_model_name_or_path)`
class method.
The `from_pretrained()` method take care of returning the correct model class instance
using pattern matching on the `pretrained_model_name_or_path` string.
The base model class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order):
- contains `bert`: BertConfig (Bert model)
- contains `openai-gpt`: OpenAIGPTConfig (OpenAI GPT model)
- contains `gpt2`: GPT2Config (OpenAI GPT-2 model)
- contains `transfo-xl`: TransfoXLConfig (Transformer-XL model)
- contains `xlnet`: XLNetConfig (XLNet model)
- contains `xlm`: XLMConfig (XLM model)
This class cannot be instantiated using `__init__()` (throw an error).
"""
def __init__(self):
raise EnvironmentError("AutoModel is designed to be instantiated "
"using the `AutoModel.from_pretrained(pretrained_model_name_or_path)` method.")
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r""" Instantiate a one of the base model classes of the library
from a pre-trained model configuration.
The base model class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order):
- contains `bert`: BertConfig (Bert model)
- contains `openai-gpt`: OpenAIGPTConfig (OpenAI GPT model)
- contains `gpt2`: GPT2Config (OpenAI GPT-2 model)
- contains `transfo-xl`: TransfoXLConfig (Transformer-XL model)
- contains `xlnet`: XLNetConfig (XLNet model)
- contains `xlm`: XLMConfig (XLM model)
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
To train the model, you should first set it back in training mode with `model.train()`
Params:
**pretrained_model_name_or_path**: either:
- a string with the `shortcut name` of a pre-trained model to load from cache
or download and cache if not already stored in cache (e.g. 'bert-base-uncased').
- a path to a `directory` containing a configuration file saved
using the `save_pretrained(save_directory)` method.
- a path or url to a tensorflow index checkpoint `file` (e.g. `./tf_model/model.ckpt.index`).
In this case, ``from_tf`` should be set to True and a configuration object should be
provided as `config` argument. This loading option is slower than converting the TensorFlow
checkpoint in a PyTorch model using the provided conversion scripts and loading
the PyTorch model afterwards.
**model_args**: (`optional`) Sequence:
All remaning positional arguments will be passed to the underlying model's __init__ function
**config**: an optional configuration for the model to use instead of an automatically loaded configuation.
Configuration can be automatically loaded when:
- the model is a model provided by the library (loaded with a `shortcut name` of a pre-trained model), or
- the model was saved using the `save_pretrained(save_directory)` (loaded by suppling the save directory).
**state_dict**: an optional state dictionnary for the model to use instead of a state dictionary loaded
from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
In this case though, you should check if using `save_pretrained(dir)` and `from_pretrained(save_directory)` is not
a simpler option.
**cache_dir**: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
configuration should be cached if the standard cache should not be used.
**output_loading_info**: (`optional`) boolean:
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
**kwargs**: (`optional`) dict:
Dictionary of key, values to update the configuration object after loading.
Can be used to override selected configuration parameters. E.g. ``output_attention=True``.
- If a configuration is provided with `config`, **kwargs will be directly passed
to the underlying model's __init__ method.
- If a configuration is not provided, **kwargs will be first passed to the pretrained
model configuration class loading function (`PretrainedConfig.from_pretrained`).
Each key of **kwargs that corresponds to a configuration attribute
will be used to override said attribute with the supplied **kwargs value.
Remaining keys that do not correspond to any configuration attribute will
be passed to the underlying model's __init__ function.
Examples::
model = AutoModel.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache.
model = AutoModel.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
model = AutoModel.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading
assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = AutoModel.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
if 'bert' in pretrained_model_name_or_path:
return BertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'openai-gpt' in pretrained_model_name_or_path:
return OpenAIGPTModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'gpt2' in pretrained_model_name_or_path:
return GPT2Model.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'transfo-xl' in pretrained_model_name_or_path:
return TransfoXLModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'xlnet' in pretrained_model_name_or_path:
return XLNetModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'xlm' in pretrained_model_name_or_path:
return XLMModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
raise ValueError("Unrecognized model identifier in {}. Should contains one of "
"'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
"'xlm'".format(pretrained_model_name_or_path))
......@@ -643,12 +643,12 @@ class BertModel(BertPreTrainedModel):
Examples::
>>> config = BertConfig.from_pretrained('bert-base-uncased')
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertModel(config)
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids)
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
def __init__(self, config):
......@@ -754,13 +754,13 @@ class BertForPreTraining(BertPreTrainedModel):
Examples::
>>> config = BertConfig.from_pretrained('bert-base-uncased')
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>>
>>> model = BertForPreTraining(config)
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids)
>>> prediction_scores, seq_relationship_scores = outputs[:2]
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForPreTraining(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
prediction_scores, seq_relationship_scores = outputs[:2]
"""
def __init__(self, config):
......@@ -824,13 +824,13 @@ class BertForMaskedLM(BertPreTrainedModel):
Examples::
>>> config = BertConfig.from_pretrained('bert-base-uncased')
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>>
>>> model = BertForMaskedLM(config)
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, masked_lm_labels=input_ids)
>>> loss, prediction_scores = outputs[:2]
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForMaskedLM(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids, masked_lm_labels=input_ids)
loss, prediction_scores = outputs[:2]
"""
def __init__(self, config):
......@@ -891,13 +891,13 @@ class BertForNextSentencePrediction(BertPreTrainedModel):
Examples::
>>> config = BertConfig.from_pretrained('bert-base-uncased')
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>>
>>> model = BertForNextSentencePrediction(config)
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids)
>>> seq_relationship_scores = outputs[0]
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForNextSentencePrediction(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
seq_relationship_scores = outputs[0]
"""
def __init__(self, config):
......@@ -951,14 +951,14 @@ class BertForSequenceClassification(BertPreTrainedModel):
Examples::
>>> config = BertConfig.from_pretrained('bert-base-uncased')
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>>
>>> model = BertForSequenceClassification(config)
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, labels=labels)
>>> loss, logits = outputs[:2]
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, logits = outputs[:2]
"""
def __init__(self, config):
......@@ -1057,15 +1057,15 @@ class BertForMultipleChoice(BertPreTrainedModel):
Examples::
>>> config = BertConfig.from_pretrained('bert-base-uncased')
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>>
>>> model = BertForMultipleChoice(config)
>>> choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
>>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
>>> labels = torch.tensor(1).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, labels=labels)
>>> loss, classification_scores = outputs[:2]
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForMultipleChoice(config)
choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
labels = torch.tensor(1).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, classification_scores = outputs[:2]
"""
def __init__(self, config):
......@@ -1127,14 +1127,14 @@ class BertForTokenClassification(BertPreTrainedModel):
Examples::
>>> config = BertConfig.from_pretrained('bert-base-uncased')
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>>
>>> model = BertForTokenClassification(config)
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, labels=labels)
>>> loss, scores = outputs[:2]
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForTokenClassification(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, scores = outputs[:2]
"""
def __init__(self, config):
......@@ -1203,15 +1203,15 @@ class BertForQuestionAnswering(BertPreTrainedModel):
Examples::
>>> config = BertConfig.from_pretrained('bert-base-uncased')
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>>
>>> model = BertForQuestionAnswering(config)
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
>>> loss, start_scores, end_scores = outputs[:2]
config = BertConfig.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForQuestionAnswering(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
loss, start_scores, end_scores = outputs[:2]
"""
def __init__(self, config):
......
......@@ -137,7 +137,7 @@ class GPT2Config(PretrainedConfig):
initializer_range=0.02,
num_labels=1,
summary_type='token_ids',
summary_type='cls_index',
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
......@@ -433,12 +433,12 @@ class GPT2Model(GPT2PreTrainedModel):
Examples::
>>> config = GPT2Config.from_pretrained('gpt2')
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
>>> model = GPT2Model(config)
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids)
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
config = GPT2Config.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2Model(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
def __init__(self, config):
......@@ -567,12 +567,12 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
Examples::
>>> config = GPT2Config.from_pretrained('gpt2')
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
>>> model = GPT2LMHeadModel(config)
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, labels=input_ids)
>>> loss, logits = outputs[:2]
config = GPT2Config.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=input_ids)
loss, logits = outputs[:2]
"""
def __init__(self, config):
......@@ -683,14 +683,14 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
Examples::
>>> config = GPT2Config.from_pretrained('gpt2')
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
>>> model = GPT2DoubleHeadsModel(config)
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
>>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
>>> mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, mc_token_ids)
>>> lm_prediction_scores, mc_prediction_scores = outputs[:2]
config = GPT2Config.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2DoubleHeadsModel(config)
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, mc_token_ids)
lm_prediction_scores, mc_prediction_scores = outputs[:2]
"""
def __init__(self, config):
......
......@@ -171,7 +171,7 @@ class OpenAIGPTConfig(PretrainedConfig):
predict_special_tokens=True,
num_labels=1,
summary_type='token_ids',
summary_type='cls_index',
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
......@@ -439,12 +439,12 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
Examples::
>>> config = OpenAIGPTConfig.from_pretrained('openai-gpt')
>>> tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
>>> model = OpenAIGPTModel(config)
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids)
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
config = OpenAIGPTConfig.from_pretrained('openai-gpt')
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
model = OpenAIGPTModel(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
def __init__(self, config):
......@@ -558,12 +558,12 @@ class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
Examples::
>>> config = OpenAIGPTConfig.from_pretrained('openai-gpt')
>>> tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
>>> model = OpenAIGPTLMHeadModel(config)
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, labels=input_ids)
>>> loss, logits = outputs[:2]
config = OpenAIGPTConfig.from_pretrained('openai-gpt')
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
model = OpenAIGPTLMHeadModel(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=input_ids)
loss, logits = outputs[:2]
"""
def __init__(self, config):
......@@ -665,14 +665,14 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
Examples::
>>> config = OpenAIGPTConfig.from_pretrained('openai-gpt')
>>> tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
>>> model = OpenAIGPTDoubleHeadsModel(config)
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
>>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
>>> mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, mc_token_ids)
>>> lm_prediction_scores, mc_prediction_scores = outputs[:2]
config = OpenAIGPTConfig.from_pretrained('openai-gpt')
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
model = OpenAIGPTDoubleHeadsModel(config)
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] # Assume you've added [CLS] to the vocabulary
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
mc_token_ids = torch.tensor([-1, -1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, mc_token_ids)
lm_prediction_scores, mc_prediction_scores = outputs[:2]
"""
def __init__(self, config):
......
......@@ -968,12 +968,12 @@ class TransfoXLModel(TransfoXLPreTrainedModel):
Examples::
>>> config = TransfoXLConfig.from_pretrained('transfo-xl-wt103')
>>> tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
>>> model = TransfoXLModel(config)
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids)
>>> last_hidden_states, mems = outputs[:2]
config = TransfoXLConfig.from_pretrained('transfo-xl-wt103')
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
model = TransfoXLModel(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states, mems = outputs[:2]
"""
def __init__(self, config):
......@@ -1284,12 +1284,12 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
Examples::
>>> config = TransfoXLConfig.from_pretrained('transfo-xl-wt103')
>>> tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
>>> model = TransfoXLLMHeadModel(config)
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids)
>>> prediction_scores, mems = outputs[:2]
config = TransfoXLConfig.from_pretrained('transfo-xl-wt103')
tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
model = TransfoXLLMHeadModel(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
prediction_scores, mems = outputs[:2]
"""
def __init__(self, config):
......
This diff is collapsed.
......@@ -472,12 +472,12 @@ class XLMModel(XLMPreTrainedModel):
Examples::
>>> config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
>>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
>>> model = XLMModel(config)
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids)
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMModel(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
ATTRIBUTES = ['encoder', 'eos_index', 'pad_index', # 'with_output',
......@@ -745,12 +745,12 @@ class XLMWithLMHeadModel(XLMPreTrainedModel):
Examples::
>>> config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
>>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
>>> model = XLMWithLMHeadModel(config)
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids)
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMWithLMHeadModel(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
def __init__(self, config):
......@@ -805,14 +805,14 @@ class XLMForSequenceClassification(XLMPreTrainedModel):
Examples::
>>> config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
>>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
>>>
>>> model = XLMForSequenceClassification(config)
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, labels=labels)
>>> loss, logits = outputs[:2]
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMForSequenceClassification(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, logits = outputs[:2]
"""
def __init__(self, config):
......@@ -885,15 +885,15 @@ class XLMForQuestionAnswering(XLMPreTrainedModel):
Examples::
>>> config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
>>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
>>>
>>> model = XLMForQuestionAnswering(config)
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
>>> loss, start_scores, end_scores = outputs[:2]
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMForQuestionAnswering(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
loss, start_scores, end_scores = outputs[:2]
"""
def __init__(self, config):
......
......@@ -712,12 +712,12 @@ class XLNetModel(XLNetPreTrainedModel):
Examples::
>>> config = XLNetConfig.from_pretrained('xlnet-large-cased')
>>> tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
>>> model = XLNetModel(config)
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids)
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
config = XLNetConfig.from_pretrained('xlnet-large-cased')
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLNetModel(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
def __init__(self, config):
......@@ -1019,17 +1019,17 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
Examples::
>>> config = XLNetConfig.from_pretrained('xlnet-large-cased')
>>> tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
>>> model = XLNetLMHeadModel(config)
>>> # We show how to setup inputs to predict a next token using a bi-directional context.
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>")).unsqueeze(0) # We will predict the masked token
>>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
>>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
>>> target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float) # Shape [1, 1, seq_length] => let's predict one token
>>> target_mapping[0, 0, -1] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
>>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping)
>>> next_token_logits = outputs[0] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
config = XLNetConfig.from_pretrained('xlnet-large-cased')
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLNetLMHeadModel(config)
# We show how to setup inputs to predict a next token using a bi-directional context.
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is very <mask>")).unsqueeze(0) # We will predict the masked token
perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
target_mapping = torch.zeros((1, 1, input_ids.shape[1]), dtype=torch.float) # Shape [1, 1, seq_length] => let's predict one token
target_mapping[0, 0, -1] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping)
next_token_logits = outputs[0] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
"""
def __init__(self, config):
......@@ -1100,14 +1100,14 @@ class XLNetForSequenceClassification(XLNetPreTrainedModel):
Examples::
>>> config = XLNetConfig.from_pretrained('xlnet-large-cased')
>>> tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
>>>
>>> model = XLNetForSequenceClassification(config)
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, labels=labels)
>>> loss, logits = outputs[:2]
config = XLNetConfig.from_pretrained('xlnet-large-cased')
tokenizer = XLNetTokenizer.from_pretrained('xlnet-large-cased')
model = XLNetForSequenceClassification(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, logits = outputs[:2]
"""
def __init__(self, config):
......@@ -1200,15 +1200,15 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel):
Examples::
>>> config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
>>> tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
>>>
>>> model = XLMForQuestionAnswering(config)
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
>>> loss, start_scores, end_scores = outputs[:2]
config = XLMConfig.from_pretrained('xlm-mlm-en-2048')
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
model = XLMForQuestionAnswering(config)
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
loss, start_scores, end_scores = outputs[:2]
"""
def __init__(self, config):
......
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import shutil
import pytest
import logging
from pytorch_transformers import AutoConfig, BertConfig, AutoModel, BertModel
from pytorch_transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP
from .modeling_common_test import (CommonTestCases, ConfigTester, ids_tensor)
class AutoModelTest(unittest.TestCase):
def test_model_from_pretrained(self):
logging.basicConfig(level=logging.INFO)
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
config = AutoConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, BertConfig)
model = AutoModel.from_pretrained(model_name)
model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True)
self.assertIsNotNone(model)
self.assertIsInstance(model, BertModel)
for value in loading_info.values():
self.assertEqual(len(value), 0)
if __name__ == "__main__":
unittest.main()
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import shutil
import pytest
import logging
from pytorch_transformers import AutoTokenizer, BertTokenizer, AutoTokenizer, GPT2Tokenizer
from pytorch_transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP
from pytorch_transformers.modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
class AutoTokenizerTest(unittest.TestCase):
def test_tokenizer_from_pretrained(self):
logging.basicConfig(level=logging.INFO)
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
tokenizer = AutoTokenizer.from_pretrained(model_name)
self.assertIsNotNone(tokenizer)
self.assertIsInstance(tokenizer, BertTokenizer)
self.assertGreater(len(tokenizer), 0)
for model_name in list(GPT2_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
tokenizer = AutoTokenizer.from_pretrained(model_name)
self.assertIsNotNone(tokenizer)
self.assertIsInstance(tokenizer, GPT2Tokenizer)
self.assertGreater(len(tokenizer), 0)
if __name__ == "__main__":
unittest.main()
......@@ -24,30 +24,37 @@ from pytorch_transformers.tokenization_bert import (BasicTokenizer,
_is_control, _is_punctuation,
_is_whitespace, VOCAB_FILES_NAMES)
from .tokenization_tests_commons import create_and_check_tokenizer_commons, TemporaryDirectory
from .tokenization_tests_commons import CommonTestCases
class TokenizationTest(unittest.TestCase):
class BertTokenizationTest(CommonTestCases.CommonTokenizerTester):
tokenizer_class = BertTokenizer
def setUp(self):
super(BertTokenizationTest, self).setUp()
def test_full_tokenizer(self):
vocab_tokens = [
"[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
"##ing", ",", "low", "lowest",
]
with TemporaryDirectory() as tmpdirname:
vocab_file = os.path.join(tmpdirname, VOCAB_FILES_NAMES['vocab_file'])
with open(vocab_file, "w", encoding='utf-8') as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'])
with open(self.vocab_file, "w", encoding='utf-8') as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
input_text = u"UNwant\u00E9d,running"
output_text = u"unwanted, running"
def get_tokenizer(self):
return BertTokenizer.from_pretrained(self.tmpdirname)
create_and_check_tokenizer_commons(self, input_text, output_text, BertTokenizer, tmpdirname)
def get_input_output_texts(self):
input_text = u"UNwant\u00E9d,running"
output_text = u"unwanted, running"
return input_text, output_text
tokenizer = BertTokenizer(vocab_file)
def test_full_tokenizer(self):
tokenizer = BertTokenizer(self.vocab_file)
tokens = tokenizer.tokenize(u"UNwant\u00E9d,running")
self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [7, 4, 5, 10, 8, 9])
tokens = tokenizer.tokenize(u"UNwant\u00E9d,running")
self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [7, 4, 5, 10, 8, 9])
def test_chinese(self):
tokenizer = BasicTokenizer()
......
......@@ -20,42 +20,49 @@ import json
from pytorch_transformers.tokenization_gpt2 import GPT2Tokenizer, VOCAB_FILES_NAMES
from .tokenization_tests_commons import create_and_check_tokenizer_commons, TemporaryDirectory
from .tokenization_tests_commons import CommonTestCases
class GPT2TokenizationTest(unittest.TestCase):
class GPT2TokenizationTest(CommonTestCases.CommonTokenizerTester):
def test_full_tokenizer(self):
""" Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt """
tokenizer_class = GPT2Tokenizer
def setUp(self):
super(GPT2TokenizationTest, self).setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n",
"lo", "low", "er",
"low", "lowest", "newer", "wider", "<unk>"]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "l o", "lo w", "e r", ""]
special_tokens_map = {"unk_token": "<unk>"}
with TemporaryDirectory() as tmpdirname:
vocab_file = os.path.join(tmpdirname, VOCAB_FILES_NAMES['vocab_file'])
merges_file = os.path.join(tmpdirname, VOCAB_FILES_NAMES['merges_file'])
with open(vocab_file, "w") as fp:
fp.write(json.dumps(vocab_tokens))
with open(merges_file, "w") as fp:
fp.write("\n".join(merges))
input_text = u"lower newer"
output_text = u"lower<unk>newer"
create_and_check_tokenizer_commons(self, input_text, output_text, GPT2Tokenizer, tmpdirname, **special_tokens_map)
tokenizer = GPT2Tokenizer(vocab_file, merges_file, **special_tokens_map)
text = "lower"
bpe_tokens = ["low", "er"]
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + [tokenizer.unk_token]
input_bpe_tokens = [13, 12, 17]
self.assertListEqual(
tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
self.special_tokens_map = {"unk_token": "<unk>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'])
with open(self.vocab_file, "w") as fp:
fp.write(json.dumps(vocab_tokens))
with open(self.merges_file, "w") as fp:
fp.write("\n".join(merges))
def get_tokenizer(self):
return GPT2Tokenizer.from_pretrained(self.tmpdirname, **self.special_tokens_map)
def get_input_output_texts(self):
input_text = u"lower newer"
output_text = u"lower<unk>newer"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = GPT2Tokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map)
text = "lower"
bpe_tokens = ["low", "er"]
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + [tokenizer.unk_token]
input_bpe_tokens = [13, 12, 17]
self.assertListEqual(
tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
if __name__ == '__main__':
......
......@@ -20,13 +20,17 @@ import json
from pytorch_transformers.tokenization_openai import OpenAIGPTTokenizer, VOCAB_FILES_NAMES
from .tokenization_tests_commons import create_and_check_tokenizer_commons, TemporaryDirectory
from .tokenization_tests_commons import CommonTestCases
class OpenAIGPTTokenizationTest(unittest.TestCase):
class OpenAIGPTTokenizationTest(CommonTestCases.CommonTokenizerTester):
def test_full_tokenizer(self):
""" Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt """
tokenizer_class = OpenAIGPTTokenizer
def setUp(self):
super(OpenAIGPTTokenizationTest, self).setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n",
"w</w>", "r</w>", "t</w>",
"lo", "low", "er</w>",
......@@ -34,30 +38,34 @@ class OpenAIGPTTokenizationTest(unittest.TestCase):
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "l o", "lo w", "e r</w>", ""]
with TemporaryDirectory() as tmpdirname:
vocab_file = os.path.join(tmpdirname, VOCAB_FILES_NAMES['vocab_file'])
merges_file = os.path.join(tmpdirname, VOCAB_FILES_NAMES['merges_file'])
with open(vocab_file, "w") as fp:
fp.write(json.dumps(vocab_tokens))
with open(merges_file, "w") as fp:
fp.write("\n".join(merges))
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'])
with open(self.vocab_file, "w") as fp:
fp.write(json.dumps(vocab_tokens))
with open(self.merges_file, "w") as fp:
fp.write("\n".join(merges))
input_text = u"lower newer"
output_text = u"lower newer"
def get_tokenizer(self):
return OpenAIGPTTokenizer.from_pretrained(self.tmpdirname)
create_and_check_tokenizer_commons(self, input_text, output_text, OpenAIGPTTokenizer, tmpdirname)
def get_input_output_texts(self):
input_text = u"lower newer"
output_text = u"lower newer"
return input_text, output_text
tokenizer = OpenAIGPTTokenizer(vocab_file, merges_file)
text = "lower"
bpe_tokens = ["low", "er</w>"]
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, bpe_tokens)
def test_full_tokenizer(self):
tokenizer = OpenAIGPTTokenizer(self.vocab_file, self.merges_file)
text = "lower"
bpe_tokens = ["low", "er</w>"]
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + ["<unk>"]
input_bpe_tokens = [14, 15, 20]
self.assertListEqual(
tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
input_tokens = tokens + ["<unk>"]
input_bpe_tokens = [14, 15, 20]
self.assertListEqual(
tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
if __name__ == '__main__':
......
......@@ -19,6 +19,7 @@ import sys
from io import open
import tempfile
import shutil
import unittest
if sys.version_info[0] == 2:
import cPickle as pickle
......@@ -36,113 +37,124 @@ else:
unicode = str
def create_and_check_save_and_load_tokenizer(tester, tokenizer_class, *inputs, **kwargs):
tokenizer = tokenizer_class.from_pretrained(*inputs, **kwargs)
class CommonTestCases:
before_tokens = tokenizer.encode(u"He is very happy, UNwant\u00E9d,running")
class CommonTokenizerTester(unittest.TestCase):
with TemporaryDirectory() as tmpdirname:
tokenizer.save_pretrained(tmpdirname)
tokenizer = tokenizer.from_pretrained(tmpdirname)
tokenizer_class = None
after_tokens = tokenizer.encode(u"He is very happy, UNwant\u00E9d,running")
tester.assertListEqual(before_tokens, after_tokens)
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
def create_and_check_pickle_tokenizer(tester, tokenizer_class, *inputs, **kwargs):
tokenizer = tokenizer_class.from_pretrained(*inputs, **kwargs)
tester.assertIsNotNone(tokenizer)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
text = u"Munich and Berlin are nice cities"
subwords = tokenizer.tokenize(text)
def get_tokenizer(self):
raise NotImplementedError
with TemporaryDirectory() as tmpdirname:
def get_input_output_texts(self):
raise NotImplementedError
filename = os.path.join(tmpdirname, u"tokenizer.bin")
pickle.dump(tokenizer, open(filename, "wb"))
def test_save_and_load_tokenizer(self):
tokenizer = self.get_tokenizer()
tokenizer_new = pickle.load(open(filename, "rb"))
before_tokens = tokenizer.encode(u"He is very happy, UNwant\u00E9d,running")
subwords_loaded = tokenizer_new.tokenize(text)
with TemporaryDirectory() as tmpdirname:
tokenizer.save_pretrained(tmpdirname)
tokenizer = tokenizer.from_pretrained(tmpdirname)
tester.assertListEqual(subwords, subwords_loaded)
after_tokens = tokenizer.encode(u"He is very happy, UNwant\u00E9d,running")
self.assertListEqual(before_tokens, after_tokens)
def test_pickle_tokenizer(self):
tokenizer = self.get_tokenizer()
self.assertIsNotNone(tokenizer)
def create_and_check_add_tokens_tokenizer(tester, tokenizer_class, *inputs, **kwargs):
tokenizer = tokenizer_class.from_pretrained(*inputs, **kwargs)
text = u"Munich and Berlin are nice cities"
subwords = tokenizer.tokenize(text)
vocab_size = tokenizer.vocab_size
all_size = len(tokenizer)
with TemporaryDirectory() as tmpdirname:
tester.assertNotEqual(vocab_size, 0)
tester.assertEqual(vocab_size, all_size)
filename = os.path.join(tmpdirname, u"tokenizer.bin")
pickle.dump(tokenizer, open(filename, "wb"))
new_toks = ["aaaaabbbbbb", "cccccccccdddddddd"]
added_toks = tokenizer.add_tokens(new_toks)
vocab_size_2 = tokenizer.vocab_size
all_size_2 = len(tokenizer)
tokenizer_new = pickle.load(open(filename, "rb"))
tester.assertNotEqual(vocab_size_2, 0)
tester.assertEqual(vocab_size, vocab_size_2)
tester.assertEqual(added_toks, len(new_toks))
tester.assertEqual(all_size_2, all_size + len(new_toks))
subwords_loaded = tokenizer_new.tokenize(text)
tokens = tokenizer.encode("aaaaabbbbbb low cccccccccdddddddd l")
tester.assertGreaterEqual(len(tokens), 4)
tester.assertGreater(tokens[0], tokenizer.vocab_size - 1)
tester.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
self.assertListEqual(subwords, subwords_loaded)
new_toks_2 = {'eos_token': ">>>>|||<||<<|<<",
'pad_token': "<<<<<|||>|>>>>|>"}
added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
vocab_size_3 = tokenizer.vocab_size
all_size_3 = len(tokenizer)
tester.assertNotEqual(vocab_size_3, 0)
tester.assertEqual(vocab_size, vocab_size_3)
tester.assertEqual(added_toks_2, len(new_toks_2))
tester.assertEqual(all_size_3, all_size_2 + len(new_toks_2))
def test_add_tokens_tokenizer(self):
tokenizer = self.get_tokenizer()
tokens = tokenizer.encode(">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l")
vocab_size = tokenizer.vocab_size
all_size = len(tokenizer)
tester.assertGreaterEqual(len(tokens), 6)
tester.assertGreater(tokens[0], tokenizer.vocab_size - 1)
tester.assertGreater(tokens[0], tokens[1])
tester.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
tester.assertGreater(tokens[-2], tokens[-3])
tester.assertEqual(tokens[0], tokenizer.convert_tokens_to_ids(tokenizer.eos_token))
tester.assertEqual(tokens[-2], tokenizer.convert_tokens_to_ids(tokenizer.pad_token))
self.assertNotEqual(vocab_size, 0)
self.assertEqual(vocab_size, all_size)
new_toks = ["aaaaabbbbbb", "cccccccccdddddddd"]
added_toks = tokenizer.add_tokens(new_toks)
vocab_size_2 = tokenizer.vocab_size
all_size_2 = len(tokenizer)
def create_and_check_required_methods_tokenizer(tester, input_text, output_text, tokenizer_class, *inputs, **kwargs):
tokenizer = tokenizer_class.from_pretrained(*inputs, **kwargs)
self.assertNotEqual(vocab_size_2, 0)
self.assertEqual(vocab_size, vocab_size_2)
self.assertEqual(added_toks, len(new_toks))
self.assertEqual(all_size_2, all_size + len(new_toks))
tokens = tokenizer.tokenize(input_text)
ids = tokenizer.convert_tokens_to_ids(tokens)
ids_2 = tokenizer.encode(input_text)
tester.assertListEqual(ids, ids_2)
tokens = tokenizer.encode("aaaaabbbbbb low cccccccccdddddddd l")
self.assertGreaterEqual(len(tokens), 4)
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
tokens_2 = tokenizer.convert_ids_to_tokens(ids)
text_2 = tokenizer.decode(ids)
new_toks_2 = {'eos_token': ">>>>|||<||<<|<<",
'pad_token': "<<<<<|||>|>>>>|>"}
added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
vocab_size_3 = tokenizer.vocab_size
all_size_3 = len(tokenizer)
tester.assertEqual(text_2, output_text)
self.assertNotEqual(vocab_size_3, 0)
self.assertEqual(vocab_size, vocab_size_3)
self.assertEqual(added_toks_2, len(new_toks_2))
self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))
tester.assertNotEqual(len(tokens_2), 0)
tester.assertIsInstance(text_2, (str, unicode))
tokens = tokenizer.encode(">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l")
self.assertGreaterEqual(len(tokens), 6)
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
self.assertGreater(tokens[0], tokens[1])
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
self.assertGreater(tokens[-2], tokens[-3])
self.assertEqual(tokens[0], tokenizer.convert_tokens_to_ids(tokenizer.eos_token))
self.assertEqual(tokens[-2], tokenizer.convert_tokens_to_ids(tokenizer.pad_token))
def create_and_check_pretrained_model_lists(tester, input_text, output_text, tokenizer_class, *inputs, **kwargs):
weights_list = list(tokenizer_class.max_model_input_sizes.keys())
weights_lists_2 = []
for file_id, map_list in tokenizer_class.pretrained_vocab_files_map.items():
weights_lists_2.append(list(map_list.keys()))
for weights_list_2 in weights_lists_2:
tester.assertListEqual(weights_list, weights_list_2)
def test_required_methods_tokenizer(self):
tokenizer = self.get_tokenizer()
input_text, output_text = self.get_input_output_texts()
tokens = tokenizer.tokenize(input_text)
ids = tokenizer.convert_tokens_to_ids(tokens)
ids_2 = tokenizer.encode(input_text)
self.assertListEqual(ids, ids_2)
def create_and_check_tokenizer_commons(tester, input_text, output_text, tokenizer_class, *inputs, **kwargs):
create_and_check_pretrained_model_lists(tester, input_text, output_text, tokenizer_class, *inputs, **kwargs)
create_and_check_required_methods_tokenizer(tester, input_text, output_text, tokenizer_class, *inputs, **kwargs)
create_and_check_add_tokens_tokenizer(tester, tokenizer_class, *inputs, **kwargs)
create_and_check_save_and_load_tokenizer(tester, tokenizer_class, *inputs, **kwargs)
create_and_check_pickle_tokenizer(tester, tokenizer_class, *inputs, **kwargs)
tokens_2 = tokenizer.convert_ids_to_tokens(ids)
text_2 = tokenizer.decode(ids)
self.assertEqual(text_2, output_text)
self.assertNotEqual(len(tokens_2), 0)
self.assertIsInstance(text_2, (str, unicode))
def test_pretrained_model_lists(self):
weights_list = list(self.tokenizer_class.max_model_input_sizes.keys())
weights_lists_2 = []
for file_id, map_list in self.tokenizer_class.pretrained_vocab_files_map.items():
weights_lists_2.append(list(map_list.keys()))
for weights_list_2 in weights_lists_2:
self.assertListEqual(weights_list, weights_list_2)
......@@ -20,32 +20,39 @@ from io import open
from pytorch_transformers.tokenization_transfo_xl import TransfoXLTokenizer, VOCAB_FILES_NAMES
from.tokenization_tests_commons import create_and_check_tokenizer_commons, TemporaryDirectory
from.tokenization_tests_commons import CommonTestCases
class TransfoXLTokenizationTest(unittest.TestCase):
class TransfoXLTokenizationTest(CommonTestCases.CommonTokenizerTester):
tokenizer_class = TransfoXLTokenizer
def setUp(self):
super(TransfoXLTokenizationTest, self).setUp()
def test_full_tokenizer(self):
vocab_tokens = [
"<unk>", "[CLS]", "[SEP]", "want", "unwanted", "wa", "un",
"running", ",", "low", "l",
]
with TemporaryDirectory() as tmpdirname:
vocab_file = os.path.join(tmpdirname, VOCAB_FILES_NAMES['vocab_file'])
with open(vocab_file, "w", encoding='utf-8') as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'])
with open(self.vocab_file, "w", encoding='utf-8') as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
input_text = u"<unk> UNwanted , running"
output_text = u"<unk> unwanted, running"
def get_tokenizer(self):
return TransfoXLTokenizer.from_pretrained(self.tmpdirname, lower_case=True)
create_and_check_tokenizer_commons(self, input_text, output_text, TransfoXLTokenizer, tmpdirname, lower_case=True)
def get_input_output_texts(self):
input_text = u"<unk> UNwanted , running"
output_text = u"<unk> unwanted, running"
return input_text, output_text
tokenizer = TransfoXLTokenizer(vocab_file=vocab_file, lower_case=True)
def test_full_tokenizer(self):
tokenizer = TransfoXLTokenizer(vocab_file=self.vocab_file, lower_case=True)
tokens = tokenizer.tokenize(u"<unk> UNwanted , running")
self.assertListEqual(tokens, ["<unk>", "unwanted", ",", "running"])
tokens = tokenizer.tokenize(u"<unk> UNwanted , running")
self.assertListEqual(tokens, ["<unk>", "unwanted", ",", "running"])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens), [0, 4, 8, 7])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens), [0, 4, 8, 7])
def test_full_tokenizer_lower(self):
tokenizer = TransfoXLTokenizer(lower_case=True)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment