Unverified Commit 4e0f583e authored by Robot Jelly's avatar Robot Jelly Committed by GitHub
Browse files

TF - variable naming for Distilbert model (unpack_inputs decorator) (#16384)



* variable naming for Distilbert model

* adding unpack inputs at top

* make style/quality
Co-authored-by: default avatarmatt <rocketknight1@gmail.com>
parent 3a0f1684
......@@ -40,8 +40,8 @@ from ...modeling_tf_utils import (
TFSequenceClassificationLoss,
TFTokenClassificationLoss,
get_initializer,
input_processing,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import shape_list
from ...utils import (
......@@ -361,6 +361,7 @@ class TFDistilBertMainLayer(tf.keras.layers.Layer):
def _prune_heads(self, heads_to_prune):
raise NotImplementedError
@unpack_inputs
def call(
self,
input_ids=None,
......@@ -373,55 +374,39 @@ class TFDistilBertMainLayer(tf.keras.layers.Layer):
training=False,
**kwargs,
):
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
kwargs_call=kwargs,
)
if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None:
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif inputs["input_ids"] is not None:
input_shape = shape_list(inputs["input_ids"])
elif inputs["inputs_embeds"] is not None:
input_shape = shape_list(inputs["inputs_embeds"])[:-1]
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs["attention_mask"] is None:
inputs["attention_mask"] = tf.ones(input_shape) # (bs, seq_length)
if attention_mask is None:
attention_mask = tf.ones(input_shape) # (bs, seq_length)
inputs["attention_mask"] = tf.cast(inputs["attention_mask"], dtype=tf.float32)
attention_mask = tf.cast(attention_mask, dtype=tf.float32)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if inputs["head_mask"] is not None:
if head_mask is not None:
raise NotImplementedError
else:
inputs["head_mask"] = [None] * self.num_hidden_layers
head_mask = [None] * self.num_hidden_layers
embedding_output = self.embeddings(
inputs["input_ids"], inputs_embeds=inputs["inputs_embeds"]
) # (bs, seq_length, dim)
embedding_output = self.embeddings(input_ids, inputs_embeds=inputs_embeds) # (bs, seq_length, dim)
tfmr_output = self.transformer(
embedding_output,
inputs["attention_mask"],
inputs["head_mask"],
inputs["output_attentions"],
inputs["output_hidden_states"],
inputs["return_dict"],
training=inputs["training"],
attention_mask,
head_mask,
output_attentions,
output_hidden_states,
return_dict,
training=training,
)
return tfmr_output # last-layer hidden-state, (all hidden_states), (all attentions)
......@@ -540,6 +525,7 @@ class TFDistilBertModel(TFDistilBertPreTrainedModel):
super().__init__(config, *inputs, **kwargs)
self.distilbert = TFDistilBertMainLayer(config, name="distilbert") # Embeddings
@unpack_inputs
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
......@@ -559,9 +545,7 @@ class TFDistilBertModel(TFDistilBertPreTrainedModel):
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
inputs = input_processing(
func=self.call,
config=self.config,
outputs = self.distilbert(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
......@@ -570,17 +554,6 @@ class TFDistilBertModel(TFDistilBertPreTrainedModel):
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
kwargs_call=kwargs,
)
outputs = self.distilbert(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
return outputs
......@@ -655,6 +628,7 @@ class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel, TFMaskedLanguageModel
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.vocab_projector.name
@unpack_inputs
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
......@@ -681,9 +655,7 @@ class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel, TFMaskedLanguageModel
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
inputs = input_processing(
func=self.call,
config=self.config,
distilbert_output = self.distilbert(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
......@@ -691,19 +663,7 @@ class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel, TFMaskedLanguageModel
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
training=training,
kwargs_call=kwargs,
)
distilbert_output = self.distilbert(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
hidden_states = distilbert_output[0] # (bs, seq_length, dim)
prediction_logits = self.vocab_transform(hidden_states) # (bs, seq_length, dim)
......@@ -711,9 +671,9 @@ class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel, TFMaskedLanguageModel
prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim)
prediction_logits = self.vocab_projector(prediction_logits)
loss = None if inputs["labels"] is None else self.hf_compute_loss(inputs["labels"], prediction_logits)
loss = None if labels is None else self.hf_compute_loss(labels, prediction_logits)
if not inputs["return_dict"]:
if not return_dict:
output = (prediction_logits,) + distilbert_output[1:]
return ((loss,) + output) if loss is not None else output
......@@ -756,6 +716,7 @@ class TFDistilBertForSequenceClassification(TFDistilBertPreTrainedModel, TFSeque
)
self.dropout = tf.keras.layers.Dropout(config.seq_classif_dropout)
@unpack_inputs
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
......@@ -782,9 +743,7 @@ class TFDistilBertForSequenceClassification(TFDistilBertPreTrainedModel, TFSeque
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
inputs = input_processing(
func=self.call,
config=self.config,
distilbert_output = self.distilbert(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
......@@ -792,29 +751,17 @@ class TFDistilBertForSequenceClassification(TFDistilBertPreTrainedModel, TFSeque
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
training=training,
kwargs_call=kwargs,
)
distilbert_output = self.distilbert(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
hidden_state = distilbert_output[0] # (bs, seq_len, dim)
pooled_output = hidden_state[:, 0] # (bs, dim)
pooled_output = self.pre_classifier(pooled_output) # (bs, dim)
pooled_output = self.dropout(pooled_output, training=inputs["training"]) # (bs, dim)
pooled_output = self.dropout(pooled_output, training=training) # (bs, dim)
logits = self.classifier(pooled_output) # (bs, dim)
loss = None if inputs["labels"] is None else self.hf_compute_loss(inputs["labels"], logits)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not inputs["return_dict"]:
if not return_dict:
output = (logits,) + distilbert_output[1:]
return ((loss,) + output) if loss is not None else output
......@@ -851,6 +798,7 @@ class TFDistilBertForTokenClassification(TFDistilBertPreTrainedModel, TFTokenCla
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
@unpack_inputs
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
......@@ -875,9 +823,7 @@ class TFDistilBertForTokenClassification(TFDistilBertPreTrainedModel, TFTokenCla
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
inputs = input_processing(
func=self.call,
config=self.config,
outputs = self.distilbert(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
......@@ -885,26 +831,14 @@ class TFDistilBertForTokenClassification(TFDistilBertPreTrainedModel, TFTokenCla
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
training=training,
kwargs_call=kwargs,
)
outputs = self.distilbert(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output, training=inputs["training"])
sequence_output = self.dropout(sequence_output, training=training)
logits = self.classifier(sequence_output)
loss = None if inputs["labels"] is None else self.hf_compute_loss(inputs["labels"], logits)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not inputs["return_dict"]:
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
......@@ -956,6 +890,7 @@ class TFDistilBertForMultipleChoice(TFDistilBertPreTrainedModel, TFMultipleChoic
"""
return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS)}
@unpack_inputs
@add_start_docstrings_to_model_forward(
DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
......@@ -983,57 +918,40 @@ class TFDistilBertForMultipleChoice(TFDistilBertPreTrainedModel, TFMultipleChoic
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
"""
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
training=training,
kwargs_call=kwargs,
)
if inputs["input_ids"] is not None:
num_choices = shape_list(inputs["input_ids"])[1]
seq_length = shape_list(inputs["input_ids"])[2]
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2]
else:
num_choices = shape_list(inputs["inputs_embeds"])[1]
seq_length = shape_list(inputs["inputs_embeds"])[2]
num_choices = shape_list(inputs_embeds)[1]
seq_length = shape_list(inputs_embeds)[2]
flat_input_ids = tf.reshape(inputs["input_ids"], (-1, seq_length)) if inputs["input_ids"] is not None else None
flat_attention_mask = (
tf.reshape(inputs["attention_mask"], (-1, seq_length)) if inputs["attention_mask"] is not None else None
)
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_inputs_embeds = (
tf.reshape(inputs["inputs_embeds"], (-1, seq_length, shape_list(inputs["inputs_embeds"])[3]))
if inputs["inputs_embeds"] is not None
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
if inputs_embeds is not None
else None
)
distilbert_output = self.distilbert(
flat_input_ids,
flat_attention_mask,
inputs["head_mask"],
head_mask,
flat_inputs_embeds,
inputs["output_attentions"],
inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
hidden_state = distilbert_output[0] # (bs, seq_len, dim)
pooled_output = hidden_state[:, 0] # (bs, dim)
pooled_output = self.pre_classifier(pooled_output) # (bs, dim)
pooled_output = self.dropout(pooled_output, training=inputs["training"]) # (bs, dim)
pooled_output = self.dropout(pooled_output, training=training) # (bs, dim)
logits = self.classifier(pooled_output)
reshaped_logits = tf.reshape(logits, (-1, num_choices))
loss = None if inputs["labels"] is None else self.hf_compute_loss(inputs["labels"], reshaped_logits)
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
if not inputs["return_dict"]:
if not return_dict:
output = (reshaped_logits,) + distilbert_output[1:]
return ((loss,) + output) if loss is not None else output
......@@ -1083,6 +1001,7 @@ class TFDistilBertForQuestionAnswering(TFDistilBertPreTrainedModel, TFQuestionAn
assert config.num_labels == 2, f"Incorrect number of labels {config.num_labels} instead of 2"
self.dropout = tf.keras.layers.Dropout(config.qa_dropout)
@unpack_inputs
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
......@@ -1114,9 +1033,7 @@ class TFDistilBertForQuestionAnswering(TFDistilBertPreTrainedModel, TFQuestionAn
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
inputs = input_processing(
func=self.call,
config=self.config,
distilbert_output = self.distilbert(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
......@@ -1124,35 +1041,22 @@ class TFDistilBertForQuestionAnswering(TFDistilBertPreTrainedModel, TFQuestionAn
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
start_positions=start_positions,
end_positions=end_positions,
training=training,
kwargs_call=kwargs,
)
distilbert_output = self.distilbert(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
hidden_states = distilbert_output[0] # (bs, max_query_len, dim)
hidden_states = self.dropout(hidden_states, training=inputs["training"]) # (bs, max_query_len, dim)
hidden_states = self.dropout(hidden_states, training=training) # (bs, max_query_len, dim)
logits = self.qa_outputs(hidden_states) # (bs, max_query_len, 2)
start_logits, end_logits = tf.split(logits, 2, axis=-1)
start_logits = tf.squeeze(start_logits, axis=-1)
end_logits = tf.squeeze(end_logits, axis=-1)
loss = None
if inputs["start_positions"] is not None and inputs["end_positions"] is not None:
labels = {"start_position": inputs["start_positions"]}
labels["end_position"] = inputs["end_positions"]
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions}
labels["end_position"] = end_positions
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
if not inputs["return_dict"]:
if not return_dict:
output = (start_logits, end_logits) + distilbert_output[1:]
return ((loss,) + output) if loss is not None else output
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment