Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
4d6dfbd3
Commit
4d6dfbd3
authored
Oct 02, 2019
by
VictorSanh
Committed by
Victor SANH
Oct 03, 2019
Browse files
update extract
parent
23edebc0
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
89 additions
and
0 deletions
+89
-0
examples/distillation/scripts/extract.py
examples/distillation/scripts/extract.py
+89
-0
No files found.
examples/distillation/scripts/extract.py
0 → 100644
View file @
4d6dfbd3
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocessing script before training the distilled model.
Specific to RoBERTa -> DistilRoBERTa and GPT2 -> DistilGPT2.
"""
from
transformers
import
BertForMaskedLM
,
RobertaForMaskedLM
,
GPT2LMHeadModel
import
torch
import
argparse
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
(
description
=
"Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned Distillation"
)
parser
.
add_argument
(
"--model_type"
,
default
=
"roberta"
,
choices
=
[
"roberta"
,
"gpt2"
])
parser
.
add_argument
(
"--model_name"
,
default
=
'roberta-large'
,
type
=
str
)
parser
.
add_argument
(
"--dump_checkpoint"
,
default
=
'serialization_dir/tf_roberta_048131723.pth'
,
type
=
str
)
parser
.
add_argument
(
"--vocab_transform"
,
action
=
'store_true'
)
args
=
parser
.
parse_args
()
if
args
.
model_type
==
'roberta'
:
model
=
RobertaForMaskedLM
.
from_pretrained
(
args
.
model_name
)
prefix
=
'roberta'
elif
args
.
model_type
==
'gpt2'
:
model
=
GPT2LMHeadModel
.
from_pretrained
(
args
.
model_name
)
prefix
=
'transformer'
state_dict
=
model
.
state_dict
()
compressed_sd
=
{}
### Embeddings ###
if
args
.
model_type
==
'gpt2'
:
for
param_name
in
[
'wte.weight'
,
'wpe.weight'
]:
compressed_sd
[
f
'
{
prefix
}
.
{
param_name
}
'
]
=
state_dict
[
f
'
{
prefix
}
.
{
param_name
}
'
]
else
:
for
w
in
[
'word_embeddings'
,
'position_embeddings'
,
'token_type_embeddings'
]:
param_name
=
f
'
{
prefix
}
.embeddings.
{
w
}
.weight'
compressed_sd
[
param_name
]
=
state_dict
[
param_name
]
for
w
in
[
'weight'
,
'bias'
]:
param_name
=
f
'
{
prefix
}
.embeddings.LayerNorm.
{
w
}
'
compressed_sd
[
param_name
]
=
state_dict
[
param_name
]
### Transformer Blocks ###
std_idx
=
0
for
teacher_idx
in
[
0
,
2
,
4
,
7
,
9
,
11
]:
if
args
.
model_type
==
'gpt2'
:
for
layer
in
[
'ln_1'
,
'attn.c_attn'
,
'attn.c_proj'
,
'ln_2'
,
'mlp.c_fc'
,
'mlp.c_proj'
]:
for
w
in
[
'weight'
,
'bias'
]:
compressed_sd
[
f
'
{
prefix
}
.h.
{
std_idx
}
.
{
layer
}
.
{
w
}
'
]
=
\
state_dict
[
f
'
{
prefix
}
.h.
{
teacher_idx
}
.
{
layer
}
.
{
w
}
'
]
compressed_sd
[
f
'
{
prefix
}
.h.
{
std_idx
}
.attn.bias'
]
=
state_dict
[
f
'
{
prefix
}
.h.
{
teacher_idx
}
.attn.bias'
]
else
:
for
layer
in
[
'attention.self.query'
,
'attention.self.key'
,
'attention.self.value'
,
'attention.output.dense'
,
'attention.output.LayerNorm'
,
'intermediate.dense'
,
'output.dense'
,
'output.LayerNorm'
]:
for
w
in
[
'weight'
,
'bias'
]:
compressed_sd
[
f
'
{
prefix
}
.encoder.layer.
{
std_idx
}
.
{
layer
}
.
{
w
}
'
]
=
\
state_dict
[
f
'
{
prefix
}
.encoder.layer.
{
teacher_idx
}
.
{
layer
}
.
{
w
}
'
]
std_idx
+=
1
### Language Modeling Head ###s
if
args
.
model_type
==
'roberta'
:
for
layer
in
[
'lm_head.decoder.weight'
,
'lm_head.bias'
]:
compressed_sd
[
f
'
{
layer
}
'
]
=
state_dict
[
f
'
{
layer
}
'
]
if
args
.
vocab_transform
:
for
w
in
[
'weight'
,
'bias'
]:
compressed_sd
[
f
'lm_head.dense.
{
w
}
'
]
=
state_dict
[
f
'lm_head.dense.
{
w
}
'
]
compressed_sd
[
f
'lm_head.layer_norm.
{
w
}
'
]
=
state_dict
[
f
'lm_head.layer_norm.
{
w
}
'
]
elif
args
.
model_type
==
'gpt2'
:
for
w
in
[
'weight'
,
'bias'
]:
compressed_sd
[
f
'
{
prefix
}
.ln_f.
{
w
}
'
]
=
state_dict
[
f
'
{
prefix
}
.ln_f.
{
w
}
'
]
compressed_sd
[
f
'lm_head.weight'
]
=
state_dict
[
f
'lm_head.weight'
]
print
(
f
'N layers selected for distillation:
{
std_idx
}
'
)
print
(
f
'Number of params transfered for distillation:
{
len
(
compressed_sd
.
keys
())
}
'
)
print
(
f
'Save transfered checkpoint to
{
args
.
dump_checkpoint
}
.'
)
torch
.
save
(
compressed_sd
,
args
.
dump_checkpoint
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment