Unverified Commit 4bfe75bd authored by Michael Benayoun's avatar Michael Benayoun Committed by GitHub
Browse files

M2M100 support for ONNX export (#15193)

* Add M2M100 support for ONNX export

* Delete useless imports

* Add M2M100 to tests

* Fix protobuf issue
parent d1a29078
......@@ -55,6 +55,7 @@ Ready-made configurations include the following architectures:
- GPT Neo
- I-BERT
- LayoutLM
- M2M100
- Marian
- mBART
- OpenAI GPT-2
......
......@@ -21,7 +21,7 @@ from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_availab
_import_structure = {
"configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config"],
"configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"],
"tokenization_m2m_100": ["M2M100Tokenizer"],
}
......@@ -36,7 +36,7 @@ if is_torch_available():
if TYPE_CHECKING:
from .configuration_m2m_100 import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, M2M100Config
from .configuration_m2m_100 import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, M2M100Config, M2M100OnnxConfig
from .tokenization_m2m_100 import M2M100Tokenizer
if is_torch_available():
......
......@@ -13,8 +13,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
""" M2M100 model configuration"""
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxSeq2SeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
......@@ -153,3 +159,126 @@ class M2M100Config(PretrainedConfig):
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
class M2M100OnnxConfig(OnnxSeq2SeqConfigWithPast):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
]
)
if self.use_past:
common_inputs["decoder_input_ids"] = {0: "batch"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
return common_inputs
# Copied from BartOnnxConfig._generate_dummy_inputs_for_sequence_classification_and_question_answering
# A better name would be _generate_dummy_inputs_for_encoder_and_decoder because sequence classification and question
# answering are not supported for M2M100, but this name is preserved to be able to check that the copy matches what
# was done for BART so that it can be updated if need be.
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(
batch_size, fixed_dimension=OnnxConfig.DEFAULT_FIXED_BATCH, num_token_to_add=0
)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
seq_length = compute_effective_axis_dimension(
seq_length, fixed_dimension=OnnxConfig.DEFAULT_FIXED_SEQUENCE, num_token_to_add=token_to_add
)
# Generate dummy inputs according to compute batch and sequence
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
return common_inputs
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig._generate_dummy_inputs_for_default_and_seq2seq_lm
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair, framework
)
# Generate decoder inputs
decoder_seq_length = seq_length if not self.use_past else 1
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, decoder_seq_length, is_pair, framework
)
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
common_inputs = dict(**encoder_inputs, **decoder_inputs)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, encoder_seq_length = common_inputs["input_ids"].shape
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
encoder_shape = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
decoder_past_length = decoder_seq_length + 3
decoder_shape = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
common_inputs["decoder_attention_mask"] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
)
common_inputs["past_key_values"] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
num_encoder_layers, num_decoder_layers = self.num_layers
min_num_layers = min(num_encoder_layers, num_decoder_layers)
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(min_num_layers):
common_inputs["past_key_values"].append(
(
torch.zeros(decoder_shape),
torch.zeros(decoder_shape),
torch.zeros(encoder_shape),
torch.zeros(encoder_shape),
)
)
# TODO: test this.
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(min_num_layers, max_num_layers):
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
return common_inputs
generate_dummy_inputs = _generate_dummy_inputs_for_default_and_seq2seq_lm
......@@ -117,21 +117,34 @@ def export_pytorch(
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if parse(torch.__version__) <= parse("1.10.99"):
if parse(torch.__version__) < parse("1.10"):
# export can work with named args but the dict containing named args
# has to be the last element of the args tuple.
try:
onnx_export(
model,
(model_inputs,),
f=output.as_posix(),
input_names=list(config.inputs.keys()),
output_names=onnx_outputs,
dynamic_axes={name: axes for name, axes in chain(config.inputs.items(), config.outputs.items())},
dynamic_axes={
name: axes for name, axes in chain(config.inputs.items(), config.outputs.items())
},
do_constant_folding=True,
use_external_data_format=config.use_external_data_format(model.num_parameters()),
enable_onnx_checker=True,
opset_version=opset,
)
except RuntimeError as err:
message = str(err)
if (
message
== "Exporting model exceed maximum protobuf size of 2GB. Please call torch.onnx.export without setting use_external_data_format parameter."
):
message = "Exporting model exceed maximum protobuf size of 2GB. Please call torch.onnx.export without setting use_external_data_format parameter or try with torch 1.10+."
raise RuntimeError(message)
else:
raise err
else:
onnx_export(
model,
......
......@@ -12,6 +12,7 @@ from ..models.gpt2 import GPT2OnnxConfig
from ..models.gpt_neo import GPTNeoOnnxConfig
from ..models.ibert import IBertOnnxConfig
from ..models.layoutlm import LayoutLMOnnxConfig
from ..models.m2m_100 import M2M100OnnxConfig
from ..models.marian import MarianOnnxConfig
from ..models.mbart import MBartOnnxConfig
from ..models.roberta import RobertaOnnxConfig
......@@ -184,6 +185,9 @@ class FeaturesManager:
"causal-lm-with-past",
onnx_config_cls=MarianOnnxConfig,
),
"m2m-100": supported_features_mapping(
"default", "default-with-past", "seq2seq-lm", "seq2seq-lm-with-past", onnx_config_cls=M2M100OnnxConfig
),
"roberta": supported_features_mapping(
"default",
"masked-lm",
......
......@@ -190,6 +190,7 @@ PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS = {
("mbart", "sshleifer/tiny-mbart"),
("t5", "t5-small"),
("marian", "Helsinki-NLP/opus-mt-en-de"),
("m2m-100", "facebook/m2m100_418M"),
}
TENSORFLOW_EXPORT_DEFAULT_MODELS = {
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment