Unverified Commit 4973d2a0 authored by NielsRogge's avatar NielsRogge Committed by GitHub
Browse files

Add Audio Spectogram Transformer (#19981)



* First draft

* Make conversion script work

* Add id2label mapping, run code quality

* Fix copies

* Add first draft of feature extractor

* Update conversion script to use feature extractor

* Make more tests pass

* Add docs

* update input_features to input_values + pad by default to max length

* Fix doc tests

* Add feature extractor tests

* Add proper padding/truncation to feature extractor

* Add support for conversion of all audioset checkpoints

* Improve docs and extend conversion script

* Fix README

* Rename spectogram to spectrogram

* Fix copies

* Add integration test

* Remove dummy conv

* Update to ast

* Update organization

* Fix init

* Rename model to AST

* Add require_torchaudio annotator

* Move import of ASTFeatureExtractor under a is_speech_available

* Fix rebase

* Add pipeline config

* Update name of classifier head

* Rename time_dimension and frequency_dimension for clarity

* Remove print statement

* Fix pipeline test

* Fix pipeline test

* Fix index table

* Fix init

* Fix conversion script

* Rename to ForAudioClassification

* Fix index table
Co-authored-by: default avatarNiels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
parent 1e3f17b5
...@@ -350,6 +350,30 @@ def load_tf_weights_in_albert(*args, **kwargs): ...@@ -350,6 +350,30 @@ def load_tf_weights_in_albert(*args, **kwargs):
requires_backends(load_tf_weights_in_albert, ["torch"]) requires_backends(load_tf_weights_in_albert, ["torch"])
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ASTForAudioClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ASTModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class ASTPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING = None MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING = None
......
...@@ -3,6 +3,13 @@ ...@@ -3,6 +3,13 @@
from ..utils import DummyObject, requires_backends from ..utils import DummyObject, requires_backends
class ASTFeatureExtractor(metaclass=DummyObject):
_backends = ["speech"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["speech"])
class MCTCTFeatureExtractor(metaclass=DummyObject): class MCTCTFeatureExtractor(metaclass=DummyObject):
_backends = ["speech"] _backends = ["speech"]
......
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import random
import unittest
import numpy as np
from transformers import ASTFeatureExtractor
from transformers.testing_utils import require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
global_rng = random.Random()
if is_torch_available():
import torch
def floats_list(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
values = []
for batch_idx in range(shape[0]):
values.append([])
for _ in range(shape[1]):
values[-1].append(rng.random() * scale)
return values
class ASTFeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
min_seq_length=400,
max_seq_length=2000,
feature_size=1,
padding_value=0.0,
sampling_rate=16000,
return_attention_mask=True,
do_normalize=True,
):
self.parent = parent
self.batch_size = batch_size
self.min_seq_length = min_seq_length
self.max_seq_length = max_seq_length
self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
self.feature_size = feature_size
self.padding_value = padding_value
self.sampling_rate = sampling_rate
self.return_attention_mask = return_attention_mask
self.do_normalize = do_normalize
def prepare_feat_extract_dict(self):
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def prepare_inputs_for_common(self, equal_length=False, numpify=False):
def _flatten(list_of_lists):
return list(itertools.chain(*list_of_lists))
if equal_length:
speech_inputs = floats_list((self.batch_size, self.max_seq_length))
else:
# make sure that inputs increase in size
speech_inputs = [
_flatten(floats_list((x, self.feature_size)))
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
]
if numpify:
speech_inputs = [np.asarray(x) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class ASTFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
feature_extraction_class = ASTFeatureExtractor
def setUp(self):
self.feat_extract_tester = ASTFeatureExtractionTester(self)
def test_call(self):
# Tests that all call wrap to encode_plus and batch_encode_plus
feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
# create three inputs of length 800, 1000, and 1200
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
# Test not batched input
encoded_sequences_1 = feat_extract(speech_inputs[0], return_tensors="np").input_values
encoded_sequences_2 = feat_extract(np_speech_inputs[0], return_tensors="np").input_values
self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))
# Test batched
encoded_sequences_1 = feat_extract(speech_inputs, padding=True, return_tensors="np").input_values
encoded_sequences_2 = feat_extract(np_speech_inputs, padding=True, return_tensors="np").input_values
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
@require_torch
def test_double_precision_pad(self):
import torch
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
np_speech_inputs = np.random.rand(100).astype(np.float64)
py_speech_inputs = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
np_processed = feature_extractor.pad([{"input_values": inputs}], return_tensors="np")
self.assertTrue(np_processed.input_values.dtype == np.float32)
pt_processed = feature_extractor.pad([{"input_values": inputs}], return_tensors="pt")
self.assertTrue(pt_processed.input_values.dtype == torch.float32)
def _load_datasamples(self, num_samples):
from datasets import load_dataset
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
@require_torch
def test_integration(self):
# fmt: off
EXPECTED_INPUT_VALUES = torch.tensor(
[-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776,
-1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133,
-1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936,
-0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869]
)
# fmt: on
input_speech = self._load_datasamples(1)
feaure_extractor = ASTFeatureExtractor()
input_values = feaure_extractor(input_speech, return_tensors="pt").input_values
self.assertTrue(torch.allclose(input_values[0, 0, :30], EXPECTED_INPUT_VALUES, atol=1e-4))
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Audio Spectrogram Transformer (AST) model. """
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ASTConfig
from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_torchaudio_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
if is_torch_available():
import torch
from torch import nn
from transformers import ASTForAudioClassification, ASTModel
from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_torchaudio_available():
import torchaudio
from transformers import ASTFeatureExtractor
class ASTModelTester:
def __init__(
self,
parent,
batch_size=13,
patch_size=2,
max_length=24,
num_mel_bins=16,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_sequence_label_size=10,
initializer_range=0.02,
scope=None,
frequency_stride=2,
time_stride=2,
):
self.parent = parent
self.batch_size = batch_size
self.patch_size = patch_size
self.max_length = max_length
self.num_mel_bins = num_mel_bins
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.scope = scope
self.frequency_stride = frequency_stride
self.time_stride = time_stride
# in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
frequency_out_dimension = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1
time_out_dimension = (self.max_length - self.patch_size) // self.time_stride + 1
num_patches = frequency_out_dimension * time_out_dimension
self.seq_length = num_patches + 2
def prepare_config_and_inputs(self):
input_values = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
config = self.get_config()
return config, input_values, labels
def get_config(self):
return ASTConfig(
patch_size=self.patch_size,
max_length=self.max_length,
num_mel_bins=self.num_mel_bins,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
is_decoder=False,
initializer_range=self.initializer_range,
frequency_stride=self.frequency_stride,
time_stride=self.time_stride,
)
def create_and_check_model(self, config, input_values, labels):
model = ASTModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_values)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_values,
labels,
) = config_and_inputs
inputs_dict = {"input_values": input_values}
return config, inputs_dict
@require_torch
class ASTModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as AST does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(
ASTModel,
ASTForAudioClassification,
)
if is_torch_available()
else ()
)
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = ASTModelTester(self)
self.config_tester = ConfigTester(self, config_class=ASTConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="AST does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ASTModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on some audio from AudioSet
def prepare_audio():
filepath = hf_hub_download(
repo_id="nielsr/audio-spectogram-transformer-checkpoint", filename="sample_audio.flac", repo_type="dataset"
)
audio, sampling_rate = torchaudio.load(filepath)
return audio, sampling_rate
@require_torch
@require_torchaudio
class ASTModelIntegrationTest(unittest.TestCase):
@cached_property
def default_feature_extractor(self):
return (
ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593")
if is_torchaudio_available()
else None
)
@slow
def test_inference_audio_classification(self):
feature_extractor = self.default_feature_extractor
model = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593").to(torch_device)
feature_extractor = self.default_feature_extractor
audio, sampling_rate = prepare_audio()
audio = audio.squeeze().numpy()
inputs = feature_extractor(audio, sampling_rate=sampling_rate, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 527))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([-0.8760, -7.0042, -8.6602]).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
...@@ -155,6 +155,12 @@ def get_tiny_feature_extractor_from_checkpoint(checkpoint, tiny_config, feature_ ...@@ -155,6 +155,12 @@ def get_tiny_feature_extractor_from_checkpoint(checkpoint, tiny_config, feature_
if hasattr(tiny_config, "image_size") and feature_extractor: if hasattr(tiny_config, "image_size") and feature_extractor:
feature_extractor = feature_extractor.__class__(size=tiny_config.image_size, crop_size=tiny_config.image_size) feature_extractor = feature_extractor.__class__(size=tiny_config.image_size, crop_size=tiny_config.image_size)
# Audio Spectogram Transformer specific.
if feature_extractor.__class__.__name__ == "ASTFeatureExtractor":
feature_extractor = feature_extractor.__class__(
max_length=tiny_config.max_length, num_mel_bins=tiny_config.num_mel_bins
)
# Speech2TextModel specific. # Speech2TextModel specific.
if hasattr(tiny_config, "input_feat_per_channel") and feature_extractor: if hasattr(tiny_config, "input_feat_per_channel") and feature_extractor:
feature_extractor = feature_extractor.__class__( feature_extractor = feature_extractor.__class__(
......
...@@ -91,6 +91,7 @@ if is_torch_available(): ...@@ -91,6 +91,7 @@ if is_torch_available():
from test_module.custom_modeling import CustomModel, NoSuperInitModel from test_module.custom_modeling import CustomModel, NoSuperInitModel
from transformers import ( from transformers import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING,
MODEL_FOR_AUDIO_XVECTOR_MAPPING, MODEL_FOR_AUDIO_XVECTOR_MAPPING,
MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING, MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
MODEL_FOR_CAUSAL_LM_MAPPING, MODEL_FOR_CAUSAL_LM_MAPPING,
...@@ -223,6 +224,7 @@ class ModelTesterMixin: ...@@ -223,6 +224,7 @@ class ModelTesterMixin:
*get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING), *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING),
*get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING), *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
*get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING), *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING),
*get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING),
]: ]:
inputs_dict["labels"] = torch.zeros( inputs_dict["labels"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device self.model_tester.batch_size, dtype=torch.long, device=torch_device
......
...@@ -18,6 +18,7 @@ src/transformers/generation/utils.py ...@@ -18,6 +18,7 @@ src/transformers/generation/utils.py
src/transformers/models/albert/configuration_albert.py src/transformers/models/albert/configuration_albert.py
src/transformers/models/albert/modeling_albert.py src/transformers/models/albert/modeling_albert.py
src/transformers/models/albert/modeling_tf_albert.py src/transformers/models/albert/modeling_tf_albert.py
src/transformers/models/audio_spectogram_transformer/modeling_audio_spectogram_transformer.py
src/transformers/models/bart/configuration_bart.py src/transformers/models/bart/configuration_bart.py
src/transformers/models/bart/modeling_bart.py src/transformers/models/bart/modeling_bart.py
src/transformers/models/beit/configuration_beit.py src/transformers/models/beit/configuration_beit.py
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment