Commit 47f0e3cf authored by thomwolf's avatar thomwolf
Browse files

cleaning up configuration classes

parent 7296f101
......@@ -592,14 +592,14 @@ class TransfoXLModel(TransfoXLPreTrainedModel):
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.n_token = config.n_token
self.n_token = config.vocab_size
self.d_embed = config.d_embed
self.d_model = config.d_model
self.n_head = config.n_head
self.d_head = config.d_head
self.word_emb = AdaptiveEmbedding(config.n_token, config.d_embed, config.d_model, config.cutoffs,
self.word_emb = AdaptiveEmbedding(config.vocab_size, config.d_embed, config.d_model, config.cutoffs,
div_val=config.div_val)
self.drop = nn.Dropout(config.dropout)
......@@ -836,11 +836,11 @@ class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
self.sample_softmax = config.sample_softmax
# use sampled softmax
if config.sample_softmax > 0:
self.out_layer = nn.Linear(config.d_model, config.n_token)
self.sampler = LogUniformSampler(config.n_token, config.sample_softmax)
self.out_layer = nn.Linear(config.d_model, config.vocab_size)
self.sampler = LogUniformSampler(config.vocab_size, config.sample_softmax)
# use adaptive softmax (including standard softmax)
else:
self.crit = ProjectedAdaptiveLogSoftmax(config.n_token, config.d_embed, config.d_model,
self.crit = ProjectedAdaptiveLogSoftmax(config.vocab_size, config.d_embed, config.d_model,
config.cutoffs, div_val=config.div_val)
self.init_weights()
......
......@@ -609,7 +609,7 @@ class XLNetModel(XLNetPreTrainedModel):
self.clamp_len = config.clamp_len
self.n_layer = config.n_layer
self.word_embedding = nn.Embedding(config.n_token, config.d_model)
self.word_embedding = nn.Embedding(config.vocab_size, config.d_model)
self.mask_emb = nn.Parameter(torch.FloatTensor(1, 1, config.d_model))
self.layer = nn.ModuleList([XLNetLayer(config) for _ in range(config.n_layer)])
self.dropout = nn.Dropout(config.dropout)
......@@ -940,7 +940,7 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
self.same_length = config.same_length
self.transformer = XLNetModel(config)
self.lm_loss = nn.Linear(config.d_model, config.n_token, bias=True)
self.lm_loss = nn.Linear(config.d_model, config.vocab_size, bias=True)
self.init_weights()
......
......@@ -110,7 +110,7 @@ class AlbertModelTest(CommonTestCases.CommonModelTester):
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = AlbertConfig(
vocab_size_or_config_json_file=self.vocab_size,
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
......
......@@ -109,7 +109,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = BertConfig(
vocab_size_or_config_json_file=self.vocab_size,
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
......
......@@ -633,7 +633,7 @@ class CommonTestCases:
mc_token_ids = ids_tensor([self.batch_size, self.n_choices], self.seq_length)
config = self.config_class(
vocab_size_or_config_json_file=self.vocab_size,
vocab_size=self.vocab_size,
n_positions=self.n_positions,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
......
......@@ -114,7 +114,7 @@ class CTRLModelTest(CommonTestCases.CommonModelTester):
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = CTRLConfig(
vocab_size_or_config_json_file=self.vocab_size,
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
......
......@@ -105,7 +105,7 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = DistilBertConfig(
vocab_size_or_config_json_file=self.vocab_size,
vocab_size=self.vocab_size,
dim=self.hidden_size,
n_layers=self.num_hidden_layers,
n_heads=self.num_attention_heads,
......
......@@ -110,7 +110,7 @@ class GPT2ModelTest(CommonTestCases.CommonModelTester):
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = GPT2Config(
vocab_size_or_config_json_file=self.vocab_size,
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
......
......@@ -98,7 +98,7 @@ class OpenAIGPTModelTest(CommonTestCases.CommonModelTester):
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = OpenAIGPTConfig(
vocab_size_or_config_json_file=self.vocab_size,
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
......
......@@ -106,7 +106,7 @@ class RobertaModelTest(CommonTestCases.CommonModelTester):
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = RobertaConfig(
vocab_size_or_config_json_file=self.vocab_size,
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
......
......@@ -118,7 +118,7 @@ class TFAlbertModelTest(TFCommonTestCases.TFCommonModelTester):
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = AlbertConfig(
vocab_size_or_config_json_file=self.vocab_size,
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
......
......@@ -114,7 +114,7 @@ class TFBertModelTest(TFCommonTestCases.TFCommonModelTester):
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = BertConfig(
vocab_size_or_config_json_file=self.vocab_size,
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
......
......@@ -112,7 +112,7 @@ class TFCTRLModelTest(TFCommonTestCases.TFCommonModelTester):
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = CTRLConfig(
vocab_size_or_config_json_file=self.vocab_size,
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
......
......@@ -107,7 +107,7 @@ class TFDistilBertModelTest(TFCommonTestCases.TFCommonModelTester):
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = DistilBertConfig(
vocab_size_or_config_json_file=self.vocab_size,
vocab_size=self.vocab_size,
dim=self.hidden_size,
n_layers=self.num_hidden_layers,
n_heads=self.num_attention_heads,
......
......@@ -115,7 +115,7 @@ class TFGPT2ModelTest(TFCommonTestCases.TFCommonModelTester):
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = GPT2Config(
vocab_size_or_config_json_file=self.vocab_size,
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
......
......@@ -114,7 +114,7 @@ class TFOpenAIGPTModelTest(TFCommonTestCases.TFCommonModelTester):
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = OpenAIGPTConfig(
vocab_size_or_config_json_file=self.vocab_size,
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
......
......@@ -109,7 +109,7 @@ class TFRobertaModelTest(TFCommonTestCases.TFCommonModelTester):
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = RobertaConfig(
vocab_size_or_config_json_file=self.vocab_size,
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
......
......@@ -92,7 +92,7 @@ class TFTransfoXLModelTest(TFCommonTestCases.TFCommonModelTester):
lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = TransfoXLConfig(
vocab_size_or_config_json_file=self.vocab_size,
vocab_size=self.vocab_size,
mem_len=self.mem_len,
clamp_len=self.clamp_len,
cutoffs=self.cutoffs,
......
......@@ -125,7 +125,7 @@ class TFXLMModelTest(TFCommonTestCases.TFCommonModelTester):
is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)
config = XLMConfig(
vocab_size_or_config_json_file=self.vocab_size,
vocab_size=self.vocab_size,
n_special=self.n_special,
emb_dim=self.hidden_size,
n_layers=self.num_hidden_layers,
......
......@@ -64,7 +64,6 @@ class TFXLNetModelTest(TFCommonTestCases.TFCommonModelTester):
num_attention_heads=4,
d_inner=128,
num_hidden_layers=5,
max_position_embeddings=10,
type_sequence_label_size=2,
untie_r=True,
bi_data=False,
......@@ -88,7 +87,6 @@ class TFXLNetModelTest(TFCommonTestCases.TFCommonModelTester):
self.num_attention_heads = num_attention_heads
self.d_inner = d_inner
self.num_hidden_layers = num_hidden_layers
self.max_position_embeddings = max_position_embeddings
self.bi_data = bi_data
self.untie_r = untie_r
self.same_length = same_length
......@@ -122,13 +120,12 @@ class TFXLNetModelTest(TFCommonTestCases.TFCommonModelTester):
is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)
config = XLNetConfig(
vocab_size_or_config_json_file=self.vocab_size,
vocab_size=self.vocab_size,
d_model=self.hidden_size,
n_head=self.num_attention_heads,
d_inner=self.d_inner,
n_layer=self.num_hidden_layers,
untie_r=self.untie_r,
max_position_embeddings=self.max_position_embeddings,
mem_len=self.mem_len,
clamp_len=self.clamp_len,
same_length=self.same_length,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment