# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions
# that have already been generated and cached, not the remaining zero elements.
Tuple consists of (:obj:`last_hidden_state`, :obj:`optional`: `hidden_states`, :obj:`optional`:
Tuple consists of (:obj:`last_hidden_state`, :obj:`optional`: `hidden_states`, :obj:`optional`:
`attentions`) :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)` is a
`attentions`) :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)` is a
sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of
sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of
the decoder.
the decoder.
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
past_key_values (:obj:`tuple(tuple(jnp.ndarray))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
vectors than the model's internal embedding lookup matrix.
decoder_inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, target_sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`decoder_input_ids` you can choose to directly pass an embedded
representation. If :obj:`past_key_values` is used, optionally only the last :obj:`decoder_inputs_embeds`
have to be input (see :obj:`past_key_values`). This is useful if you want more control over how to convert
:obj:`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If :obj:`decoder_input_ids` and :obj:`decoder_inputs_embeds` are both unset, :obj:`decoder_inputs_embeds`
takes the value of :obj:`inputs_embeds`.
use_cache (:obj:`bool`, `optional`):
use_cache (:obj:`bool`, `optional`):
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
...
@@ -1242,7 +1269,7 @@ class FlaxT5Module(nn.Module):
...
@@ -1242,7 +1269,7 @@ class FlaxT5Module(nn.Module):
Example::
Example::
>>> from transformers import T5Tokenizer, T5Model
>>> from transformers import T5Tokenizer, FlaxT5Model