Unverified Commit 45e14038 authored by Arthur's avatar Arthur Committed by GitHub
Browse files

Add WhisperModel to transformers (#19166)



* simplify loop

* add featur extractor

* add model

* start conversion

* add dropout

* initial commit of test files

* copnversion for all models

* update processor for correct padding

* update feature extraction

* update integration test logits match

* fmnt: off for the logits

* on the fly mel bank

* small nit

* update test

* update tokenizer

* nit feature extraction

* update

* update tokenizer test

* adds logit processor and update tokenizer to get supress tokens

* style

* clean convert

* revert to original modeling tf utils

* Update

* update

* nit

* clean convert file

* update tests and nits

* quality

* slow generation test

* ffn_dim to allow customization

* update readme

* add to toctreee

* start fixing integration tests

* update tests and code

* fix feature extractor

* fix config tests common

* update code to fix tests

* fix feature exctractor

* nit feature extraction

* update test for new feature extractor

* style

* add absrtact

* large logits wioth custom decoder input ids

* wraap around is otrch available

* fix feature extractor

* correct logits for whisper small.en

* nit

* fix encoder_attentino_mask

* some fixes

* remove unnecessary inputs

* nits

* add normalizer file

* update etst tokenization

* fix attention mask not defined

* Add model to README

* Fix doc tests

* fix generate

* remove uncoder attention mask useless

* update test modeling whisper

* update condfig to add second non supress tokens

* nits on feature exrtactor

* nit for test tokenizers

* update etsts

* update tests

* update tokenization test

* fixup

* invalidated hf token. Clean convert openai to whisper

* fix logit tests

* fixup

* clean merge

* revert toc_tree changes

* remove useless LogitProcessor

* Update whisper .mdx

* update config file doc

* update configuration docstring

* update test tokenization

* update test tokenization

* update tokenization whisper
Added copied from where needed

* update feature extraction

* nit test name

* style

* quality

* remove get suppress tokens and update non_speech tokens global variables

* Update src/transformers/models/whisper/feature_extraction_whisper.py
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>

* clean modeling whisper and test
Removed the attention mask arguments that are deprecated

* fix large test

* Add multilingual audio test, and translate test

* style

* fix larg multilingual test

* nits

* Update docs/source/en/model_doc/whisper.mdx
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>

* add copied from for attention layer

* remove attention masks in doc

* add english normalizer

* update tokenization test

* remove copied from in whisper attention : no bias in k_proj only

* wrap around dependencies in english normalizer

* style

* correct import generation logits

* for now, wrap feature extractor with torch

* Update src/transformers/models/whisper/convert_openai_whisper_to_tfms.py
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/whisper/configuration_whisper.py
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/whisper.mdx
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* remove torch depencies for feature extraction and style

* fixup

* nit

* update logitds

* style

* nit

* nits and fix final tests

* add `is_more_itertools_available` to utils

* quality

* add begin supress tokens, supress tokens to generate args and config

* clean supressTokensLogitProcessor in generation logits

* Nit naming

* add supressTokensAtBegin

* udpate tests, supress tokens to None or correct values

* nit and style

* update RAG to fit test and generate_logit

* add copy pasted statment on english normalizer

* add arguments to config_common_kwargs

* Update src/transformers/generation_utils.py
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/generation_logits_process.py
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/whisper/configuration_whisper.py
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* revert changes based on reviews

* update doc and nits

* more nits

* last nits

* update test configuration common

* add BART name in decoder attention mask documentation

* Update src/transformers/models/whisper/modeling_whisper.py
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>

* style

* nit

* nit

* add english.json file to git

* nits on documentation

* nit

* nits

* last styling

* add main toctree file

* remove sentence piece dependency

* clean init file

* fix tokenizer that has no dependencies on sentencepiece

* update whisper init file, nit

* remove english.json file

* add get decoder prompt id

* revert changes and add forced logit processor

* nit

* clean normalizer

* remove protected

* update

* Update src/transformers/models/whisper/configuration_whisper.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* update based on review

* Update src/transformers/models/whisper/configuration_whisper.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add batched tests
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: default avatarNielsRogge <niels.rogge1@gmail.com>
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
parent 7598791c
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Feature extractor class for Whisper
"""
from typing import List, Optional, Union
import numpy as np
from numpy.fft import fft
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
logger = logging.get_logger(__name__)
class WhisperFeatureExtractor(SequenceFeatureExtractor):
r"""
Constructs a Whisper feature extractor.
This feature extractor inherits from [`WhisperFeatureExtractor`] which contains most of the main methods. Users
should refer to this superclass for more information regarding those methods.
This class extracts mel-filter bank features from raw speech using a custom numpy implementation of the `Short Time
Fourier Transform` which should match pytorch's `torch.stft` equivalent.
Args:
feature_size (`int`, defaults to 80):
The feature dimension of the extracted features.
sampling_rate (`int`, defaults to 16000):
The sampling rate at which the audio files should be digitalized expressed in Hertz per second (Hz).
hop_length (`int`, defaults to 160):
Length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients.
chunk_length (`int`, defaults to 30):
The maximum number of chuncks of `sampling_rate` samples used to trim and pad longer or shorter audio
sequences.
n_fft (`int`, defaults to 400):
Size of the Fourier transform.
padding_value (`float`, *optional*, defaults to 0.0):
Padding value used to pad the audio. Should correspond to silences.
"""
model_input_names = ["input_features"]
def __init__(
self,
feature_size=80,
sampling_rate=16000,
hop_length=160,
chunk_length=30,
n_fft=400,
padding_value=0.0,
**kwargs
):
super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
self.n_fft = n_fft
self.hop_length = hop_length
self.chunk_length = chunk_length
self.return_attention_mask = True
self.n_samples = chunk_length * sampling_rate
self.nb_max_frames = self.n_samples // hop_length
self.sampling_rate = sampling_rate
self.mel_filters = self.get_mel_filters(sampling_rate, n_fft, n_mels=feature_size)
def get_mel_filters(self, sr, n_fft, n_mels=128, dtype=np.float32):
# Initialize the weights
n_mels = int(n_mels)
weights = np.zeros((n_mels, int(1 + n_fft // 2)), dtype=dtype)
# Center freqs of each FFT bin
fftfreqs = np.fft.rfftfreq(n=n_fft, d=1.0 / sr)
# 'Center freqs' of mel bands - uniformly spaced between limits
min_mel = 0.0
max_mel = 45.245640471924965
mels = np.linspace(min_mel, max_mel, n_mels + 2)
mels = np.asanyarray(mels)
# Fill in the linear scale
f_min = 0.0
f_sp = 200.0 / 3
freqs = f_min + f_sp * mels
# And now the nonlinear scale
min_log_hz = 1000.0 # beginning of log region (Hz)
min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels)
logstep = np.log(6.4) / 27.0 # step size for log region
# If we have vector data, vectorize
log_t = mels >= min_log_mel
freqs[log_t] = min_log_hz * np.exp(logstep * (mels[log_t] - min_log_mel))
mel_f = freqs
fdiff = np.diff(mel_f)
ramps = np.subtract.outer(mel_f, fftfreqs)
for i in range(n_mels):
# lower and upper slopes for all bins
lower = -ramps[i] / fdiff[i]
upper = ramps[i + 2] / fdiff[i + 1]
# .. then intersect them with each other and zero
weights[i] = np.maximum(0, np.minimum(lower, upper))
# Slaney-style mel is scaled to be approx constant energy per channel
enorm = 2.0 / (mel_f[2 : n_mels + 2] - mel_f[:n_mels])
weights *= enorm[:, np.newaxis]
return weights
def fram_wave(self, waveform, center=True):
"""
Transform a raw waveform into a list of smaller waveforms. The window length defines how much of the signal is
contain in each frame (smalle waveform), while the hope length defines the step between the beginning of each
new frame.
Centering is done by reflecting the waveform which is first centered around `frame_idx * hop_length`.
"""
frames = []
for i in range(0, waveform.shape[0] + 1, self.hop_length):
half_window = (self.n_fft - 1) // 2 + 1
if center:
start = i - half_window if i > half_window else 0
end = i + half_window if i < waveform.shape[0] - half_window else waveform.shape[0]
frame = waveform[start:end]
if start == 0:
padd_width = (-i + half_window, 0)
frame = np.pad(frame, pad_width=padd_width, mode="reflect")
elif end == waveform.shape[0]:
padd_width = (0, (i - waveform.shape[0] + half_window))
frame = np.pad(frame, pad_width=padd_width, mode="reflect")
else:
frame = waveform[i : i + self.n_fft]
frame_width = frame.shape[0]
if frame_width < waveform.shape[0]:
frame = np.lib.pad(
frame, pad_width=(0, self.n_fft - frame_width), mode="constant", constant_values=0
)
frames.append(frame)
return np.stack(frames, 0)
def stft(self, frames, window):
"""
Calculates the complex Short-Time Fourier Transform (STFT) of the given framed signal. Should give the same
results as `torch.stft`.
"""
frame_size = frames.shape[1]
fft_size = self.n_fft
if fft_size is None:
fft_size = frame_size
if fft_size < frame_size:
raise ValueError("FFT size must greater or equal the frame size")
# number of FFT bins to store
num_fft_bins = (fft_size >> 1) + 1
data = np.empty((len(frames), num_fft_bins), dtype=np.complex64)
fft_signal = np.zeros(fft_size)
for f, frame in enumerate(frames):
if window is not None:
np.multiply(frame, window, out=fft_signal[:frame_size])
else:
fft_signal[:frame_size] = frame
data[f] = fft(fft_signal, axis=0)[:num_fft_bins]
return data.T
def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray:
"""
Compute the log-Mel spectrogram of the provided audio, gives similar results whisper's original torch
implementation with 1e-5 tolerance.
"""
window = np.hanning(self.n_fft + 1)[:-1]
frames = self.fram_wave(waveform)
stft = self.stft(frames, window=window)
magnitudes = np.abs(stft[:, :-1]) ** 2
filters = self.mel_filters
mel_spec = filters @ magnitudes
log_spec = np.log10(np.clip(mel_spec, a_min=1e-10, a_max=None))
log_spec = np.maximum(log_spec, log_spec.max() - 8.0)
log_spec = (log_spec + 4.0) / 4.0
return log_spec
def __call__(
self,
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
truncation: bool = True,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_attention_mask: Optional[bool] = None,
padding: Optional[str] = "max_length",
max_length: Optional[int] = None,
**kwargs
) -> BatchFeature:
"""
Main method to featurize and prepare for the model one or several sequence(s). sequences.
Args:
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
values, a list of numpy arrays or a list of list of float values.
truncation (`bool`, *optional*, default to `True`):
Activates truncation to cut input sequences longer than *max_length* to *max_length*.
pad_to_multiple_of (`int`, *optional*, defaults to None):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
>= 7.5 (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
return_attention_mask (`bool`, *optional*):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific feature_extractor's default.
[What are attention masks?](../glossary#attention-mask)
<Tip>
For WhisperTransoformer models, `attention_mask` should alwys be passed for batched inference, to avoid
subtle bugs.
</Tip>
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
sampling_rate (`int`, *optional*):
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors.
padding_value (`float`, defaults to 0.0):
The value that is used to fill the padding values / vectors.
"""
is_batched = bool(
isinstance(raw_speech, (list, tuple))
and (isinstance(raw_speech[0], np.ndarray) or isinstance(raw_speech[0], (tuple, list)))
)
if is_batched:
raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech]
elif not is_batched and not isinstance(raw_speech, np.ndarray):
raw_speech = np.asarray(raw_speech, dtype=np.float32)
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
raw_speech = raw_speech.astype(np.float32)
# always return batch
if not is_batched:
raw_speech = [np.asarray([raw_speech]).T]
batched_speech = BatchFeature({"input_features": raw_speech})
# convert into correct format for padding
padded_inputs = self.pad(
batched_speech,
padding=padding,
max_length=max_length if max_length else self.n_samples,
truncation=truncation,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=False,
**kwargs,
)
# make sure list is in array format
input_features = padded_inputs.get("input_features").transpose(2, 0, 1)
input_features = [self._np_extract_fbank_features(waveform) for waveform in input_features[0]]
if isinstance(input_features[0], List):
padded_inputs["input_features"] = [np.asarray(feature, dtype=np.float32) for feature in input_features]
else:
padded_inputs["input_features"] = input_features
if return_tensors is not None:
padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
return padded_inputs
This diff is collapsed.
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Speech processor class for Whisper
"""
from ...processing_utils import ProcessorMixin
class WhisperProcessor(ProcessorMixin):
r"""
Constructs a Whisper processor which wraps a Whisper feature extractor and a Whisper tokenizer into a single
processor.
[`WhisperProcessor`] offers all the functionalities of [`WhisperFeatureExtractor`] and [`WhisperTokenizer`]. See
the [`~WhisperProcessor.__call__`] and [`~WhisperProcessor.decode`] for more information.
Args:
feature_extractor (`WhisperFeatureExtractor`):
An instance of [`WhisperFeatureExtractor`]. The feature extractor is a required input.
tokenizer (`WhisperTokenizer`):
An instance of [`WhisperTokenizer`]. The tokenizer is a required input.
"""
feature_extractor_class = "WhisperFeatureExtractor"
tokenizer_class = "WhisperTokenizer"
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
self.current_processor = self.feature_extractor
self._in_target_context_manager = False
def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True):
forced_decoder_tokens = ""
if language is not None:
if f"<|{language}|>" not in self.tokenizer.additional_special_tokens:
raise ValueError(
f"{language} is not supported. The language should be one of the following: '<|en|>',"
" '<|zh|>', '<|de|>', '<|es|>', '<|ru|>', '<|ko|>', '<|fr|>', '<|ja|>', '<|pt|>', '<|tr|>',"
" '<|pl|>', '<|ca|>', '<|nl|>', '<|ar|>', '<|sv|>', '<|it|>', '<|id|>', '<|hi|>', '<|fi|>',"
" '<|vi|>', '<|iw|>', '<|uk|>', '<|el|>', '<|ms|>', '<|cs|>', '<|ro|>', '<|da|>', '<|hu|>',"
" '<|ta|>', '<|no|>', '<|th|>', '<|ur|>', '<|hr|>', '<|bg|>', '<|lt|>', '<|la|>', '<|mi|>',"
" '<|ml|>', '<|cy|>', '<|sk|>', '<|te|>', '<|fa|>', '<|lv|>', '<|bn|>', '<|sr|>', '<|az|>',"
" '<|sl|>', '<|kn|>', '<|et|>', '<|mk|>', '<|br|>', '<|eu|>', '<|is|>', '<|hy|>', '<|ne|>',"
" '<|mn|>', '<|bs|>', '<|kk|>', '<|sq|>', '<|sw|>', '<|gl|>', '<|mr|>', '<|pa|>', '<|si|>',"
" '<|km|>', '<|sn|>', '<|yo|>', '<|so|>', '<|af|>', '<|oc|>', '<|ka|>', '<|be|>', '<|tg|>',"
" '<|sd|>', '<|gu|>', '<|am|>', '<|yi|>', '<|lo|>', '<|uz|>', '<|fo|>', '<|ht|>', '<|ps|>',"
" '<|tk|>', '<|nn|>', '<|mt|>', '<|sa|>', '<|lb|>', '<|my|>', '<|bo|>', '<|tl|>', '<|mg|>',"
" '<|as|>', '<|tt|>', '<|haw|>', '<|ln|>', '<|ha|>', '<|ba|>', '<|jw|>', '<|su|>'"
)
forced_decoder_tokens += f"<|{language}|>"
if task is not None:
if f"<|{task}|>" not in self.tokenizer.additional_special_tokens:
raise ValueError(
f"'{task}' is not supported. The language should be in : {{'transcribe', 'translate'}}"
)
forced_decoder_tokens += f"<|{task}|>"
forced_decoder_tokens += "<|notimestamps|>" if no_timestamps else ""
ids = self.tokenizer.encode(forced_decoder_tokens)
forced_decoder_ids = [(rank + 1, token) for rank, token in enumerate(ids)]
return forced_decoder_ids
def __call__(self, *args, **kwargs):
"""
When used in normal mode, this method forwards all its arguments to WhisperFeatureExtractor's
[`~WhisperFeatureExtractor.__call__`] and returns its output. If used in the context
[`~WhisperProcessor.as_target_processor`] this method forwards all its arguments to WhisperTokenizer's
[`~WhisperTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more information.
"""
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*args, **kwargs)
audio = kwargs.pop("audio", None)
text = kwargs.pop("text", None)
if len(args) > 0:
audio = args[0]
args = args[1:]
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process.")
if audio is not None:
inputs = self.feature_extractor(audio, *args, **kwargs)
if text is not None:
encodings = self.tokenizer(text, **kwargs)
if text is None:
return inputs
elif audio is None:
return encodings
else:
inputs["labels"] = encodings["input_ids"]
return inputs
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to WhisperTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to WhisperTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for Whisper."""
import json
import os
from typing import List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
from .english_normalizer import EnglishTextNormalizer
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
"tokenizer_file": "tokenizer.json",
"merges_file": "merges.txt",
"normalizer_file": "normalizer.json",
}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/vocab.json",
},
"merges_file": {"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/merges_file.txt"},
"normalizer_file": {
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/normalizer.json"
},
}
MAX_MODEL_INPUT_SIZES = {
"openai/whisper-base": 448,
}
# Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
characters the bpe code barfs on.
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
tables between utf-8 bytes and unicode strings.
"""
bs = (
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
logger = logging.get_logger(__name__)
# Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs
def get_pairs(word):
"""
Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class WhisperTokenizer(PreTrainedTokenizer):
"""
Construct an Whisper tokenizer.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains some of the main methods. Users should refer to
the superclass for more information regarding such methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
normalizer_file (`str`, *optional*, defaults to `None`):
Path to the normalizer_file file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The end of sequence token.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word.
add_bos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial <|endoftext|> to the input. This allows to treat the leading word just as
any other word.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = MAX_MODEL_INPUT_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
merges_file,
normalizer_file=None,
errors="replace",
unk_token="<|endoftext|>",
bos_token="<|endoftext|>",
eos_token="<|endoftext|>",
pad_token=None,
add_prefix_space=False,
add_bos_token=False,
**kwargs
):
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
super().__init__(
errors=errors,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
add_prefix_space=add_prefix_space,
add_bos_token=add_bos_token,
**kwargs,
)
self.add_bos_token = add_bos_token
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
bpe_merges = merges_handle.read().split("\n")[1:-1]
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
self.add_prefix_space = add_prefix_space
if normalizer_file is not None:
with open(normalizer_file, encoding="utf-8") as vocab_handle:
self.english_spelling_normalizer = json.load(vocab_handle)
else:
self.english_spelling_normalizer = None
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
@property
def vocab_size(self) -> int:
return len(self.encoder)
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe with GPT2 -> Whisper
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
self.cache[token] = word
return word
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.build_inputs_with_special_tokens with GPT2 -> Whisper
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
if self.add_bos_token:
bos_token_ids = [self.bos_token_id]
else:
bos_token_ids = []
output = bos_token_ids + token_ids_0
if token_ids_1 is None:
return output
return output + bos_token_ids + token_ids_1
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_special_tokens_mask with GPT2 -> Whisper
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if not self.add_bos_token:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0))
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize with GPT2 -> Whisper
def _tokenize(self, text):
"""Tokenize a string."""
bpe_tokens = []
for token in re.findall(self.pat, text):
token = "".join(
self.byte_encoder[b] for b in token.encode("utf-8")
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
return bpe_tokens
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id with GPT2 -> Whisper
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index, self.decoder.get(self.unk_token_id))
def _normalize(self, text):
"""
Normalize a given string using the `EnglishTextNormalizer` class, which preforms commons transformation on
english text.
"""
normalizer = EnglishTextNormalizer(self.english_spelling_normalizer)
return normalizer(text)
def _decode(
self, token_ids: Union[int, List[int]], skip_special_tokens: bool = False, normalize: bool = False, **kwargs
) -> str:
self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False)
filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
sub_texts = []
current_sub_text = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(current_sub_text))
current_sub_text = []
sub_texts.append(token)
else:
current_sub_text.append(token)
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(current_sub_text))
text = "".join(sub_texts)
if normalize:
clean_text = self._normalize(text)
return clean_text
else:
return text
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string with GPT2 -> Whisper
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
text = "".join(tokens)
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
return text
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
normalizer_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["normalizer_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
index = 0
with open(merge_file, "w", encoding="utf-8") as writer:
writer.write("#version: 0.2\n")
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
if self.english_spelling_normalizer is not None:
with open(normalizer_file, "w", encoding="utf-8") as f:
f.write(
json.dumps(self.english_spelling_normalizer, indent=2, sort_keys=True, ensure_ascii=False) + "\n"
)
return vocab_file, merge_file, normalizer_file
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.prepare_for_tokenization with GPT2 -> Whisper
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
if is_split_into_words or add_prefix_space:
text = " " + text
return (text, kwargs)
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._build_conversation_input_ids with GPT2 -> Whisper
def _build_conversation_input_ids(self, conversation) -> List[int]:
input_ids = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id])
if len(input_ids) > self.model_max_length:
input_ids = input_ids[-self.model_max_length :]
return input_ids
......@@ -100,6 +100,7 @@ from .import_utils import (
is_ipex_available,
is_jumanpp_available,
is_librosa_available,
is_more_itertools_available,
is_ninja_available,
is_onnx_available,
is_pandas_available,
......
......@@ -5444,6 +5444,30 @@ class WavLMPreTrainedModel(metaclass=DummyObject):
requires_backends(self, ["torch"])
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class WhisperForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class WhisperModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class WhisperPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None
......
......@@ -456,6 +456,10 @@ def is_detectron2_available():
return _detectron2_available
def is_more_itertools_available():
return importlib.util.find_spec("more_itertools") is not None
def is_rjieba_available():
return importlib.util.find_spec("rjieba") is not None
......
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from transformers import is_speech_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import WhisperFeatureExtractor
if is_torch_available():
import torch
global_rng = random.Random()
def floats_list(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
values = []
for batch_idx in range(shape[0]):
values.append([])
for _ in range(shape[1]):
values[-1].append(rng.random() * scale)
return values
@require_torch
@require_torchaudio
class WhisperFeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
min_seq_length=400,
max_seq_length=2000,
feature_size=10,
hop_length=160,
chunk_length=8,
padding_value=0.0,
sampling_rate=4_000,
return_attention_mask=True,
do_normalize=True,
):
self.parent = parent
self.batch_size = batch_size
self.min_seq_length = min_seq_length
self.max_seq_length = max_seq_length
self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
self.padding_value = padding_value
self.sampling_rate = sampling_rate
self.return_attention_mask = return_attention_mask
self.do_normalize = do_normalize
self.feature_size = feature_size
self.chunk_length = chunk_length
self.hop_length = hop_length
def prepare_feat_extract_dict(self):
return {
"feature_size": self.feature_size,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def prepare_inputs_for_common(self, equal_length=False, numpify=False):
def _flatten(list_of_lists):
return list(itertools.chain(*list_of_lists))
if equal_length:
speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)]
else:
# make sure that inputs increase in size
speech_inputs = [
floats_list((x, self.feature_size))
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
]
if numpify:
speech_inputs = [np.asarray(x) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class WhisperFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
feature_extraction_class = WhisperFeatureExtractor if is_speech_available() else None
def setUp(self):
self.feat_extract_tester = WhisperFeatureExtractionTester(self)
def test_feat_extract_from_and_save_pretrained(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
saved_file = feat_extract_first.save_pretrained(tmpdirname)[0]
check_json_file_has_correct_format(saved_file)
feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname)
dict_first = feat_extract_first.to_dict()
dict_second = feat_extract_second.to_dict()
mel_1 = dict_first.pop("mel_filters")
mel_2 = dict_second.pop("mel_filters")
self.assertTrue(np.allclose(mel_1, mel_2))
self.assertEqual(dict_first, dict_second)
def test_feat_extract_to_json_file(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
json_file_path = os.path.join(tmpdirname, "feat_extract.json")
feat_extract_first.to_json_file(json_file_path)
feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path)
dict_first = feat_extract_first.to_dict()
dict_second = feat_extract_second.to_dict()
mel_1 = dict_first.pop("mel_filters")
mel_2 = dict_second.pop("mel_filters")
self.assertTrue(np.allclose(mel_1, mel_2))
self.assertEqual(dict_first, dict_second)
def test_call(self):
# Tests that all call wrap to encode_plus and batch_encode_plus
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
# create three inputs of length 800, 1000, and 1200
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
# Test feature size
input_features = feature_extractor(np_speech_inputs, padding="max_length", return_tensors="np").input_features
self.assertTrue(input_features.ndim == 3)
self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames)
self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size)
# Test not batched input
encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features
self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))
# Test batched
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
# Test truncation required
speech_inputs = [floats_list((1, x))[0] for x in range(200, (feature_extractor.n_samples + 500), 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
speech_inputs_truncated = [x[: feature_extractor.n_samples] for x in speech_inputs]
np_speech_inputs_truncated = [np.asarray(speech_input) for speech_input in speech_inputs_truncated]
encoded_sequences_1 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs_truncated, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
def test_double_precision_pad(self):
import torch
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
np_speech_inputs = np.random.rand(100, 32).astype(np.float64)
py_speech_inputs = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np")
self.assertTrue(np_processed.input_features.dtype == np.float32)
pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt")
self.assertTrue(pt_processed.input_features.dtype == torch.float32)
def _load_datasamples(self, num_samples):
from datasets import load_dataset
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def test_integration(self):
# fmt: off
EXPECTED_INPUT_FEATURES = torch.tensor(
[
0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951,
0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678,
0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554,
-0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854
]
)
# fmt: on
input_speech = self._load_datasamples(1)
feaure_extractor = WhisperFeatureExtractor()
input_features = feaure_extractor(input_speech, return_tensors="pt").input_features
self.assertTrue(torch.allclose(input_features[0, 0, :30], EXPECTED_INPUT_FEATURES, atol=1e-4))
This diff is collapsed.
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest
from transformers import WhisperTokenizer, is_speech_available
from transformers.testing_utils import require_sentencepiece, require_torch, require_torchaudio
from .test_feature_extraction_whisper import floats_list
if is_speech_available():
from transformers import WhisperFeatureExtractor, WhisperProcessor
@require_torch
@require_torchaudio
@require_sentencepiece
class WhisperProcessorTest(unittest.TestCase):
def setUp(self):
self.checkpoint = "openai/whisper-small.en"
self.tmpdirname = tempfile.mkdtemp()
def get_tokenizer(self, **kwargs):
return WhisperTokenizer.from_pretrained(self.checkpoint, **kwargs)
def get_feature_extractor(self, **kwargs):
return WhisperFeatureExtractor.from_pretrained(self.checkpoint, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def test_save_load_pretrained_default(self):
tokenizer = self.get_tokenizer()
feature_extractor = self.get_feature_extractor()
processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
processor.save_pretrained(self.tmpdirname)
processor = WhisperProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer, WhisperTokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
self.assertIsInstance(processor.feature_extractor, WhisperFeatureExtractor)
def test_save_load_pretrained_additional_features(self):
processor = WhisperProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)
processor = WhisperProcessor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, WhisperTokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor, WhisperFeatureExtractor)
def test_feature_extractor(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
raw_speech = floats_list((3, 1000))
input_feat_extract = feature_extractor(raw_speech, return_tensors="np")
input_processor = processor(raw_speech, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
input_str = "This is a test string"
encoded_processor = processor(text=input_str)
encoded_tok = tokenizer(input_str)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_tokenizer_decode(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.models.whisper import WhisperTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
EN_CODE = 50258
ES_CODE = 50256
class WhisperTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = WhisperTokenizer
test_rust_tokenizer = False
test_sentencepiece = False
def setUp(self):
super().setUp()
tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny")
tokenizer.pad_token_id = 50256
tokenizer.pad_token = "<|endoftext|>"
tokenizer.save_pretrained(self.tmpdirname)
def test_convert_token_and_id(self):
"""Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
token = "Where"
token_id = 14436
self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)
def test_get_vocab(self):
vocab_keys = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0], "!")
self.assertEqual(vocab_keys[1], '"')
self.assertEqual(vocab_keys[-1], "<|notimestamps|>")
self.assertEqual(len(vocab_keys), 50364)
def test_vocab_size(self):
self.assertEqual(self.get_tokenizer().vocab_size, 50257)
def test_full_tokenizer(self):
tokenizer = WhisperTokenizer.from_pretrained(self.tmpdirname)
tokens = tokenizer.tokenize("This is a test")
self.assertListEqual(tokens, ["This", "Ġis", "Ġa", "Ġ", "test"])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens),
[5723, 307, 257, 220, 31636],
)
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
self.assertListEqual(
tokens,
# fmt: off
['I', 'Ġwas', 'Ġborn', 'Ġin', 'Ġ9', '2000', ',', 'Ġand', 'Ġ', 'this', 'Ġis', 'Ġfals', 'é', '.'],
# fmt: on
)
ids = tokenizer.convert_tokens_to_ids(tokens)
self.assertListEqual(ids, [40, 390, 4232, 294, 1722, 25743, 11, 293, 220, 11176, 307, 16720, 526, 13])
back_tokens = tokenizer.convert_ids_to_tokens(ids)
self.assertListEqual(
back_tokens,
# fmt: off
['I', 'Ġwas', 'Ġborn', 'Ġin', 'Ġ9', '2000', ',', 'Ġand', 'Ġ', 'this', 'Ġis', 'Ġfals', 'é', '.'],
# fmt: on
)
def test_tokenizer_slow_store_full_signature(self):
pass
@slow
def test_tokenizer_integration(self):
# fmt: off
expected_encoding = {'input_ids': [[41762, 364, 357, 36234, 1900, 355, 12972, 13165, 354, 12, 35636, 364, 290, 12972, 13165, 354, 12, 5310, 13363, 12, 4835, 8, 3769, 2276, 12, 29983, 45619, 357, 13246, 51, 11, 402, 11571, 12, 17, 11, 5564, 13246, 38586, 11, 16276, 44, 11, 4307, 346, 33, 861, 11, 16276, 7934, 23029, 329, 12068, 15417, 28491, 357, 32572, 52, 8, 290, 12068, 15417, 16588, 357, 32572, 38, 8, 351, 625, 3933, 10, 2181, 13363, 4981, 287, 1802, 10, 8950, 290, 2769, 48817, 1799, 1022, 449, 897, 11, 9485, 15884, 354, 290, 309, 22854, 37535, 13], [13246, 51, 318, 3562, 284, 662, 12, 27432, 2769, 8406, 4154, 282, 24612, 422, 9642, 9608, 276, 2420, 416, 26913, 21143, 319, 1111, 1364, 290, 826, 4732, 287, 477, 11685, 13], [464, 2068, 7586, 21831, 18045, 625, 262, 16931, 3290, 13]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=expected_encoding, model_name="openai/whisper-tiny.en", padding=False
)
class SpeechToTextTokenizerMultilinguialTest(unittest.TestCase):
checkpoint_name = "openai/whisper-small.en"
transcript = (
"'<|startoftranscript|> <|en|> <|transcribe|> <|notimestamps|> Nor is Mr. Quilters manner less interesting"
" than his matter.<|endoftext|>'"
)
clean_transcript = " Nor is Mr. Quilters manner less interesting than his matter."
french_text = "Bonjour! Il me semble que Mrs Quilters n'était pas présente"
@classmethod
def setUpClass(cls):
cls.tokenizer: WhisperTokenizer = WhisperTokenizer.from_pretrained(cls.checkpoint_name)
return cls
def test_tokenizer_equivalence(self):
text = "다람쥐 헌 쳇바퀴에 타고파"
multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny", language="ko")
gpt2_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny.en")
gpt2_tokens = gpt2_tokenizer.encode(text)
multilingual_tokens = multilingual_tokenizer.encode(text)
assert gpt2_tokenizer.decode(gpt2_tokens) == text
assert multilingual_tokenizer.decode(multilingual_tokens) == text
assert len(gpt2_tokens) > len(multilingual_tokens)
# fmt: off
EXPECTED_ENG = [
46695, 97, 167, 252, 234, 168, 98, 238, 220, 169,
245, 234, 23821, 111, 229, 167, 108, 242, 169, 222,
112, 168, 245, 238, 220, 169, 225, 222, 166, 111,
254, 169, 234, 234
]
EXPECTED_MULTI = [
9835, 22855, 168, 98, 238, 13431, 234, 43517, 229, 47053,
169, 222, 19086, 19840, 1313, 17974
]
# fmt: on
self.assertListEqual(gpt2_tokens, EXPECTED_ENG)
self.assertListEqual(multilingual_tokens, EXPECTED_MULTI)
def test_tokenizer_special(self):
multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny.en")
text = "<|startoftranscript|>Hey! How are you feeling? J'ai l'impression que 郷さん est prêt<|endoftext|>"
multilingual_tokens = multilingual_tokenizer.encode(text)
# fmt: off
EXPECTED_MULTI = [
50257, 10814, 0, 1374, 389, 345, 4203, 30, 449, 6,
1872, 300, 6, 11011, 2234, 8358, 16268, 225, 115, 43357,
22174, 1556, 778, 25792, 83, 50256
]
# fmt: on
self.assertListEqual(multilingual_tokens, EXPECTED_MULTI)
self.assertEqual(text, multilingual_tokenizer.decode(multilingual_tokens))
transcript = multilingual_tokenizer.decode(multilingual_tokens, skip_special_tokens=True)
EXPECTED_JAP = "Hey! How are you feeling? J'ai l'impression que 郷さん est prêt"
self.assertEqual(transcript, EXPECTED_JAP)
def test_vocab_size(self):
self.assertEqual(self.tokenizer.vocab_size, 50257)
def test_tokenizer_decode_ignores_language_codes(self):
self.assertIn(ES_CODE, self.tokenizer.all_special_ids)
generated_ids = [ES_CODE, 4, 1601, 47, 7647, 2]
result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
expected_spanish = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
self.assertEqual(result, expected_spanish)
self.assertNotIn(self.tokenizer.eos_token, result)
def test_batch_encoding(self):
multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny.en")
batch = ["<|en|><|notimestamps|>", "<|en|><|notimestamps|>I am sure that"]
batch_output = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids
# fmt: off
EXPECTED_MULTI = [
[50258, 50362, 50256, 50256, 50256, 50256],
[50258, 50362, 40, 716, 1654, 326]
]
# fmt: on
self.assertListEqual(batch_output, EXPECTED_MULTI)
......@@ -84,6 +84,8 @@ config_common_kwargs = {
"sep_token_id": 9,
"decoder_start_token_id": 10,
"exponential_decay_length_penalty": (5, 1.01),
"suppress_tokens": [0, 1],
"begin_suppress_tokens": 2,
"task_specific_params": {"translation": "some_params"},
"problem_type": "regression",
}
......
......@@ -51,6 +51,8 @@ IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
"DeformableDetrEncoder", # Building part of bigger (tested) model.
"DeformableDetrDecoder", # Building part of bigger (tested) model.
"OPTDecoder", # Building part of bigger (tested) model.
"WhisperDecoder", # Building part of bigger (tested) model.
"WhisperEncoder", # Building part of bigger (tested) model.
"DecisionTransformerGPT2Model", # Building part of bigger (tested) model.
"SegformerDecodeHead", # Building part of bigger (tested) model.
"PLBartEncoder", # Building part of bigger (tested) model.
......
......@@ -96,4 +96,5 @@ src/transformers/models/wav2vec2/tokenization_wav2vec2.py
src/transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py
src/transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py
src/transformers/models/wavlm/modeling_wavlm.py
src/transformers/models/whisper/modeling_whisper.py
src/transformers/models/yolos/modeling_yolos.py
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment