Commit 438f2730 authored by altsoph's avatar altsoph Committed by Lysandre Debut
Browse files

Evaluation code fixed.

parent ae1d03fc
...@@ -86,6 +86,7 @@ class TextDataset(Dataset): ...@@ -86,6 +86,7 @@ class TextDataset(Dataset):
# Note that we are loosing the last truncated example here for the sake of simplicity (no padding) # Note that we are loosing the last truncated example here for the sake of simplicity (no padding)
# If your dataset is small, first you should loook for a bigger one :-) and second you # If your dataset is small, first you should loook for a bigger one :-) and second you
# can change this behavior by adding (model specific) padding. # can change this behavior by adding (model specific) padding.
self.examples.append(tokenizer.build_inputs_with_special_tokens(tokenized_text[-block_size:])) # DIRTY!
logger.info("Saving features into cached file %s", cached_features_file) logger.info("Saving features into cached file %s", cached_features_file)
with open(cached_features_file, 'wb') as handle: with open(cached_features_file, 'wb') as handle:
...@@ -309,10 +310,12 @@ def evaluate(args, model, tokenizer, prefix=""): ...@@ -309,10 +310,12 @@ def evaluate(args, model, tokenizer, prefix=""):
model.eval() model.eval()
for batch in tqdm(eval_dataloader, desc="Evaluating"): for batch in tqdm(eval_dataloader, desc="Evaluating"):
batch = batch.to(args.device) inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
inputs = inputs.to(args.device)
labels = labels.to(args.device)
with torch.no_grad(): with torch.no_grad():
outputs = model(batch, masked_lm_labels=batch) if args.mlm else model(batch, labels=batch) outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
lm_loss = outputs[0] lm_loss = outputs[0]
eval_loss += lm_loss.mean().item() eval_loss += lm_loss.mean().item()
nb_eval_steps += 1 nb_eval_steps += 1
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment