Commit 4374eaea authored by Lysandre's avatar Lysandre Committed by Lysandre Debut
Browse files

ALBERT for SQuAD

parent 70d99980
......@@ -43,7 +43,8 @@ from transformers import (WEIGHTS_NAME, BertConfig,
XLMTokenizer, XLNetConfig,
XLNetForQuestionAnswering,
XLNetTokenizer,
DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer,
AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer)
from transformers import AdamW, get_linear_schedule_with_warmup
......@@ -65,7 +66,8 @@ MODEL_CLASSES = {
'bert': (BertConfig, BertForQuestionAnswering, BertTokenizer),
'xlnet': (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
'distilbert': (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
'distilbert': (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer),
'albert': (AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer)
}
def set_seed(args):
......@@ -128,7 +130,7 @@ def train(args, train_dataset, model, tokenizer):
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
global_step = 1
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
......@@ -537,7 +539,7 @@ def main():
torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
model = model_class.from_pretrained(args.output_dir, force_download=True)
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model.to(args.device)
......@@ -555,7 +557,7 @@ def main():
for checkpoint in checkpoints:
# Reload the model
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
model = model_class.from_pretrained(checkpoint)
model = model_class.from_pretrained(checkpoint, force_download=True)
model.to(args.device)
# Evaluate
......
......@@ -108,6 +108,7 @@ if is_torch_available():
from .modeling_encoder_decoder import PreTrainedEncoderDecoder, Model2Model
from .modeling_albert import (AlbertModel, AlbertForMaskedLM, AlbertForSequenceClassification,
AlbertForQuestionAnswering,
load_tf_weights_in_albert, ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP)
# Optimization
......
......@@ -587,3 +587,94 @@ class AlbertForSequenceClassification(AlbertPreTrainedModel):
outputs = (loss,) + outputs
return outputs # (loss), logits, (hidden_states), (attentions)
@add_start_docstrings("""Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
the hidden-states output to compute `span start logits` and `span end logits`). """,
ALBERT_START_DOCSTRING, ALBERT_INPUTS_DOCSTRING)
class AlbertForQuestionAnswering(AlbertPreTrainedModel):
r"""
**start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`).
Position outside of the sequence are not taken into account for computing the loss.
**end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`).
Position outside of the sequence are not taken into account for computing the loss.
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
**start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
Span-start scores (before SoftMax).
**end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
Span-end scores (before SoftMax).
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
model = AlbertForQuestionAnswering.from_pretrained('albert-base-v2')
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
input_text = "[CLS] " + question + " [SEP] " + text + " [SEP]"
input_ids = tokenizer.encode(input_text)
token_type_ids = [0 if i <= input_ids.index(102) else 1 for i in range(len(input_ids))]
start_scores, end_scores = model(torch.tensor([input_ids]), token_type_ids=torch.tensor([token_type_ids]))
all_tokens = tokenizer.convert_ids_to_tokens(input_ids)
print(' '.join(all_tokens[torch.argmax(start_scores) : torch.argmax(end_scores)+1]))
# a nice puppet
"""
def __init__(self, config):
super(AlbertForQuestionAnswering, self).__init__(config)
self.num_labels = config.num_labels
self.albert = AlbertModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
start_positions=None, end_positions=None):
outputs = self.albert(input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
outputs = (start_logits, end_logits,) + outputs[2:]
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
outputs = (total_loss,) + outputs
return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment