Unverified Commit 42571f6e authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Make more test models smaller (#25005)

* Make more test models tiny

* Make more test models tiny

* More models

* More models
parent 8f1f0bf5
...@@ -133,7 +133,7 @@ class CTRLModelTester: ...@@ -133,7 +133,7 @@ class CTRLModelTester:
n_embd=self.hidden_size, n_embd=self.hidden_size,
n_layer=self.num_hidden_layers, n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads, n_head=self.num_attention_heads,
# intermediate_size=self.intermediate_size, dff=self.intermediate_size,
# hidden_act=self.hidden_act, # hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob, # hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob, # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
...@@ -243,10 +243,6 @@ class CTRLModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin ...@@ -243,10 +243,6 @@ class CTRLModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*config_and_inputs) self.model_tester.create_and_check_lm_head_model(*config_and_inputs)
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
@slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
......
...@@ -95,7 +95,7 @@ class TFCTRLModelTester(object): ...@@ -95,7 +95,7 @@ class TFCTRLModelTester(object):
n_embd=self.hidden_size, n_embd=self.hidden_size,
n_layer=self.num_hidden_layers, n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads, n_head=self.num_attention_heads,
# intermediate_size=self.intermediate_size, dff=self.intermediate_size,
# hidden_act=self.hidden_act, # hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob, # hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob, # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
......
...@@ -55,8 +55,8 @@ class CvtModelTester: ...@@ -55,8 +55,8 @@ class CvtModelTester:
batch_size=13, batch_size=13,
image_size=64, image_size=64,
num_channels=3, num_channels=3,
embed_dim=[16, 48, 96], embed_dim=[16, 32, 48],
num_heads=[1, 3, 6], num_heads=[1, 2, 3],
depth=[1, 2, 10], depth=[1, 2, 10],
patch_sizes=[7, 3, 3], patch_sizes=[7, 3, 3],
patch_stride=[4, 2, 2], patch_stride=[4, 2, 2],
...@@ -247,10 +247,6 @@ class CvtModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): ...@@ -247,10 +247,6 @@ class CvtModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs) self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
@slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
......
...@@ -45,8 +45,8 @@ class TFCvtModelTester: ...@@ -45,8 +45,8 @@ class TFCvtModelTester:
batch_size=13, batch_size=13,
image_size=64, image_size=64,
num_channels=3, num_channels=3,
embed_dim=[16, 48, 96], embed_dim=[16, 32, 48],
num_heads=[1, 3, 6], num_heads=[1, 2, 3],
depth=[1, 2, 10], depth=[1, 2, 10],
patch_sizes=[7, 3, 3], patch_sizes=[7, 3, 3],
patch_stride=[4, 2, 2], patch_stride=[4, 2, 2],
......
...@@ -19,7 +19,7 @@ import inspect ...@@ -19,7 +19,7 @@ import inspect
import math import math
import unittest import unittest
from transformers import DetaConfig, is_torch_available, is_torchvision_available, is_vision_available from transformers import DetaConfig, ResNetConfig, is_torch_available, is_torchvision_available, is_vision_available
from transformers.file_utils import cached_property from transformers.file_utils import cached_property
from transformers.testing_utils import require_torchvision, require_vision, slow, torch_device from transformers.testing_utils import require_torchvision, require_vision, slow, torch_device
...@@ -49,7 +49,7 @@ class DetaModelTester: ...@@ -49,7 +49,7 @@ class DetaModelTester:
batch_size=8, batch_size=8,
is_training=True, is_training=True,
use_labels=True, use_labels=True,
hidden_size=256, hidden_size=32,
num_hidden_layers=2, num_hidden_layers=2,
num_attention_heads=8, num_attention_heads=8,
intermediate_size=4, intermediate_size=4,
...@@ -118,6 +118,16 @@ class DetaModelTester: ...@@ -118,6 +118,16 @@ class DetaModelTester:
return config, pixel_values, pixel_mask, labels return config, pixel_values, pixel_mask, labels
def get_config(self): def get_config(self):
resnet_config = ResNetConfig(
num_channels=3,
embeddings_size=10,
hidden_sizes=[10, 20, 30, 40],
depths=[1, 1, 2, 1],
hidden_act="relu",
num_labels=3,
out_features=["stage2", "stage3", "stage4"],
out_indices=[2, 3, 4],
)
return DetaConfig( return DetaConfig(
d_model=self.hidden_size, d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers, encoder_layers=self.num_hidden_layers,
...@@ -134,6 +144,7 @@ class DetaModelTester: ...@@ -134,6 +144,7 @@ class DetaModelTester:
encoder_n_points=self.encoder_n_points, encoder_n_points=self.encoder_n_points,
decoder_n_points=self.decoder_n_points, decoder_n_points=self.decoder_n_points,
two_stage=self.two_stage, two_stage=self.two_stage,
backbone_config=resnet_config,
) )
def prepare_config_and_inputs_for_common(self): def prepare_config_and_inputs_for_common(self):
...@@ -423,10 +434,6 @@ class DetaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin ...@@ -423,10 +434,6 @@ class DetaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin
def test_tied_model_weights_key_ignore(self): def test_tied_model_weights_key_ignore(self):
pass pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
def test_initialization(self): def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
......
...@@ -62,6 +62,7 @@ class DPTModelTester: ...@@ -62,6 +62,7 @@ class DPTModelTester:
attention_probs_dropout_prob=0.1, attention_probs_dropout_prob=0.1,
initializer_range=0.02, initializer_range=0.02,
num_labels=3, num_labels=3,
neck_hidden_sizes=[16, 16, 32, 32],
is_hybrid=False, is_hybrid=False,
scope=None, scope=None,
): ):
...@@ -84,6 +85,7 @@ class DPTModelTester: ...@@ -84,6 +85,7 @@ class DPTModelTester:
self.num_labels = num_labels self.num_labels = num_labels
self.scope = scope self.scope = scope
self.is_hybrid = is_hybrid self.is_hybrid = is_hybrid
self.neck_hidden_sizes = neck_hidden_sizes
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2 num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1 self.seq_length = num_patches + 1
...@@ -105,6 +107,7 @@ class DPTModelTester: ...@@ -105,6 +107,7 @@ class DPTModelTester:
patch_size=self.patch_size, patch_size=self.patch_size,
num_channels=self.num_channels, num_channels=self.num_channels,
hidden_size=self.hidden_size, hidden_size=self.hidden_size,
fusion_hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers, num_hidden_layers=self.num_hidden_layers,
backbone_out_indices=self.backbone_out_indices, backbone_out_indices=self.backbone_out_indices,
num_attention_heads=self.num_attention_heads, num_attention_heads=self.num_attention_heads,
...@@ -115,6 +118,7 @@ class DPTModelTester: ...@@ -115,6 +118,7 @@ class DPTModelTester:
is_decoder=False, is_decoder=False,
initializer_range=self.initializer_range, initializer_range=self.initializer_range,
is_hybrid=self.is_hybrid, is_hybrid=self.is_hybrid,
neck_hidden_sizes=self.neck_hidden_sizes,
) )
def create_and_check_model(self, config, pixel_values, labels): def create_and_check_model(self, config, pixel_values, labels):
...@@ -275,10 +279,6 @@ class DPTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): ...@@ -275,10 +279,6 @@ class DPTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
msg=f"Parameter {name} of model {model_class} seems not properly initialized", msg=f"Parameter {name} of model {model_class} seems not properly initialized",
) )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
@slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
......
...@@ -62,7 +62,8 @@ class DPTModelTester: ...@@ -62,7 +62,8 @@ class DPTModelTester:
attention_probs_dropout_prob=0.1, attention_probs_dropout_prob=0.1,
initializer_range=0.02, initializer_range=0.02,
num_labels=3, num_labels=3,
backbone_featmap_shape=[1, 384, 24, 24], backbone_featmap_shape=[1, 32, 24, 24],
neck_hidden_sizes=[16, 16, 32, 32],
is_hybrid=True, is_hybrid=True,
scope=None, scope=None,
): ):
...@@ -86,6 +87,7 @@ class DPTModelTester: ...@@ -86,6 +87,7 @@ class DPTModelTester:
self.backbone_featmap_shape = backbone_featmap_shape self.backbone_featmap_shape = backbone_featmap_shape
self.scope = scope self.scope = scope
self.is_hybrid = is_hybrid self.is_hybrid = is_hybrid
self.neck_hidden_sizes = neck_hidden_sizes
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2 num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1 self.seq_length = num_patches + 1
...@@ -108,7 +110,7 @@ class DPTModelTester: ...@@ -108,7 +110,7 @@ class DPTModelTester:
"depths": [3, 4, 9], "depths": [3, 4, 9],
"out_features": ["stage1", "stage2", "stage3"], "out_features": ["stage1", "stage2", "stage3"],
"embedding_dynamic_padding": True, "embedding_dynamic_padding": True,
"hidden_sizes": [96, 192, 384, 768], "hidden_sizes": [16, 16, 32, 32],
"num_groups": 2, "num_groups": 2,
} }
...@@ -117,6 +119,7 @@ class DPTModelTester: ...@@ -117,6 +119,7 @@ class DPTModelTester:
patch_size=self.patch_size, patch_size=self.patch_size,
num_channels=self.num_channels, num_channels=self.num_channels,
hidden_size=self.hidden_size, hidden_size=self.hidden_size,
fusion_hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers, num_hidden_layers=self.num_hidden_layers,
backbone_out_indices=self.backbone_out_indices, backbone_out_indices=self.backbone_out_indices,
num_attention_heads=self.num_attention_heads, num_attention_heads=self.num_attention_heads,
...@@ -129,6 +132,7 @@ class DPTModelTester: ...@@ -129,6 +132,7 @@ class DPTModelTester:
is_hybrid=self.is_hybrid, is_hybrid=self.is_hybrid,
backbone_config=backbone_config, backbone_config=backbone_config,
backbone_featmap_shape=self.backbone_featmap_shape, backbone_featmap_shape=self.backbone_featmap_shape,
neck_hidden_sizes=self.neck_hidden_sizes,
) )
def create_and_check_model(self, config, pixel_values, labels): def create_and_check_model(self, config, pixel_values, labels):
...@@ -289,10 +293,6 @@ class DPTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): ...@@ -289,10 +293,6 @@ class DPTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
msg=f"Parameter {name} of model {model_class} seems not properly initialized", msg=f"Parameter {name} of model {model_class} seems not properly initialized",
) )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
@slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]:
......
...@@ -49,7 +49,7 @@ class EfficientNetModelTester: ...@@ -49,7 +49,7 @@ class EfficientNetModelTester:
num_channels=3, num_channels=3,
kernel_sizes=[3, 3, 5], kernel_sizes=[3, 3, 5],
in_channels=[32, 16, 24], in_channels=[32, 16, 24],
out_channels=[16, 24, 40], out_channels=[16, 24, 20],
strides=[1, 1, 2], strides=[1, 1, 2],
num_block_repeats=[1, 1, 2], num_block_repeats=[1, 1, 2],
expand_ratios=[1, 6, 6], expand_ratios=[1, 6, 6],
...@@ -223,10 +223,6 @@ class EfficientNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.Test ...@@ -223,10 +223,6 @@ class EfficientNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.Test
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs) self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
@slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
for model_name in EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
......
...@@ -77,16 +77,25 @@ class EncodecModelTester: ...@@ -77,16 +77,25 @@ class EncodecModelTester:
batch_size=12, batch_size=12,
num_channels=2, num_channels=2,
is_training=False, is_training=False,
num_hidden_layers=4,
intermediate_size=40, intermediate_size=40,
hidden_size=32,
num_filters=8,
num_residual_layers=1,
upsampling_ratios=[8, 4],
num_lstm_layers=1,
codebook_size=64,
): ):
self.parent = parent self.parent = parent
self.batch_size = batch_size self.batch_size = batch_size
self.num_channels = num_channels self.num_channels = num_channels
self.is_training = is_training self.is_training = is_training
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size self.intermediate_size = intermediate_size
self.hidden_size = hidden_size
self.num_filters = num_filters
self.num_residual_layers = num_residual_layers
self.upsampling_ratios = upsampling_ratios
self.num_lstm_layers = num_lstm_layers
self.codebook_size = codebook_size
def prepare_config_and_inputs(self): def prepare_config_and_inputs(self):
input_values = floats_tensor([self.batch_size, self.num_channels, self.intermediate_size], scale=1.0) input_values = floats_tensor([self.batch_size, self.num_channels, self.intermediate_size], scale=1.0)
...@@ -99,7 +108,16 @@ class EncodecModelTester: ...@@ -99,7 +108,16 @@ class EncodecModelTester:
return config, inputs_dict return config, inputs_dict
def get_config(self): def get_config(self):
return EncodecConfig(audio_channels=self.num_channels, chunk_in_sec=None) return EncodecConfig(
audio_channels=self.num_channels,
chunk_in_sec=None,
hidden_size=self.hidden_size,
num_filters=self.num_filters,
num_residual_layers=self.num_residual_layers,
upsampling_ratios=self.upsampling_ratios,
num_lstm_layers=self.num_lstm_layers,
codebook_size=self.codebook_size,
)
def create_and_check_model_forward(self, config, inputs_dict): def create_and_check_model_forward(self, config, inputs_dict):
model = EncodecModel(config=config).to(torch_device).eval() model = EncodecModel(config=config).to(torch_device).eval()
...@@ -397,10 +415,6 @@ class EncodecModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase) ...@@ -397,10 +415,6 @@ class EncodecModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase)
msg=f"Parameter {name} of model {model_class} seems not properly initialized", msg=f"Parameter {name} of model {model_class} seems not properly initialized",
) )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
def test_identity_shortcut(self): def test_identity_shortcut(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs() config, inputs_dict = self.model_tester.prepare_config_and_inputs()
config.use_conv_shortcut = False config.use_conv_shortcut = False
......
...@@ -279,10 +279,6 @@ class EsmModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): ...@@ -279,10 +279,6 @@ class EsmModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
def test_resize_tokens_embeddings(self): def test_resize_tokens_embeddings(self):
pass pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
@require_torch @require_torch
class EsmModelIntegrationTest(TestCasePlus): class EsmModelIntegrationTest(TestCasePlus):
......
...@@ -100,6 +100,28 @@ class EsmFoldModelTester: ...@@ -100,6 +100,28 @@ class EsmFoldModelTester:
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self): def get_config(self):
esmfold_config = {
"trunk": {
"num_blocks": 2,
"sequence_state_dim": 64,
"pairwise_state_dim": 16,
"sequence_head_width": 4,
"pairwise_head_width": 4,
"position_bins": 4,
"chunk_size": 16,
"structure_module": {
"ipa_dim": 16,
"num_angles": 7,
"num_blocks": 2,
"num_heads_ipa": 4,
"pairwise_dim": 16,
"resnet_dim": 16,
"sequence_dim": 48,
},
},
"fp16_esm": False,
"lddt_head_hid_dim": 16,
}
config = EsmConfig( config = EsmConfig(
vocab_size=33, vocab_size=33,
hidden_size=self.hidden_size, hidden_size=self.hidden_size,
...@@ -114,7 +136,7 @@ class EsmFoldModelTester: ...@@ -114,7 +136,7 @@ class EsmFoldModelTester:
type_vocab_size=self.type_vocab_size, type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range, initializer_range=self.initializer_range,
is_folding_model=True, is_folding_model=True,
esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False}, esmfold_config=esmfold_config,
) )
return config return config
...@@ -126,8 +148,8 @@ class EsmFoldModelTester: ...@@ -126,8 +148,8 @@ class EsmFoldModelTester:
result = model(input_ids) result = model(input_ids)
result = model(input_ids) result = model(input_ids)
self.parent.assertEqual(result.positions.shape, (8, self.batch_size, self.seq_length, 14, 3)) self.parent.assertEqual(result.positions.shape, (2, self.batch_size, self.seq_length, 14, 3))
self.parent.assertEqual(result.angles.shape, (8, self.batch_size, self.seq_length, 7, 2)) self.parent.assertEqual(result.angles.shape, (2, self.batch_size, self.seq_length, 7, 2))
def prepare_config_and_inputs_for_common(self): def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs() config_and_inputs = self.prepare_config_and_inputs()
...@@ -243,10 +265,6 @@ class EsmFoldModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase) ...@@ -243,10 +265,6 @@ class EsmFoldModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase)
def test_multi_gpu_data_parallel_forward(self): def test_multi_gpu_data_parallel_forward(self):
pass pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
@require_torch @require_torch
class EsmModelIntegrationTest(TestCasePlus): class EsmModelIntegrationTest(TestCasePlus):
......
...@@ -92,7 +92,7 @@ class FlavaImageModelTester: ...@@ -92,7 +92,7 @@ class FlavaImageModelTester:
num_channels=3, num_channels=3,
qkv_bias=True, qkv_bias=True,
mask_token=True, mask_token=True,
vocab_size=8192, vocab_size=99,
): ):
self.parent = parent self.parent = parent
self.batch_size = batch_size self.batch_size = batch_size
...@@ -321,10 +321,6 @@ class FlavaImageModelTest(ModelTesterMixin, unittest.TestCase): ...@@ -321,10 +321,6 @@ class FlavaImageModelTest(ModelTesterMixin, unittest.TestCase):
def test_save_load_fast_init_to_base(self): def test_save_load_fast_init_to_base(self):
pass pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
@slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
...@@ -341,7 +337,7 @@ class FlavaTextModelTester: ...@@ -341,7 +337,7 @@ class FlavaTextModelTester:
is_training=True, is_training=True,
use_input_mask=True, use_input_mask=True,
use_token_type_ids=True, use_token_type_ids=True,
vocab_size=30522, vocab_size=102,
type_vocab_size=2, type_vocab_size=2,
max_position_embeddings=512, max_position_embeddings=512,
position_embedding_type="absolute", position_embedding_type="absolute",
...@@ -476,10 +472,6 @@ class FlavaTextModelTest(ModelTesterMixin, unittest.TestCase): ...@@ -476,10 +472,6 @@ class FlavaTextModelTest(ModelTesterMixin, unittest.TestCase):
def test_save_load_fast_init_to_base(self): def test_save_load_fast_init_to_base(self):
pass pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
@slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
...@@ -632,10 +624,6 @@ class FlavaMultimodalModelTest(ModelTesterMixin, unittest.TestCase): ...@@ -632,10 +624,6 @@ class FlavaMultimodalModelTest(ModelTesterMixin, unittest.TestCase):
def test_save_load_fast_init_to_base(self): def test_save_load_fast_init_to_base(self):
pass pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
@slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
...@@ -644,11 +632,23 @@ class FlavaMultimodalModelTest(ModelTesterMixin, unittest.TestCase): ...@@ -644,11 +632,23 @@ class FlavaMultimodalModelTest(ModelTesterMixin, unittest.TestCase):
class FlavaImageCodebookTester: class FlavaImageCodebookTester:
def __init__(self, parent, batch_size=12, image_size=112, num_channels=3): def __init__(
self,
parent,
batch_size=12,
image_size=112,
num_channels=3,
hidden_size=32,
num_groups=2,
vocab_size=99,
):
self.parent = parent self.parent = parent
self.batch_size = batch_size self.batch_size = batch_size
self.image_size = image_size self.image_size = image_size
self.num_channels = num_channels self.num_channels = num_channels
self.hidden_size = hidden_size
self.num_groups = num_groups
self.vocab_size = vocab_size
def prepare_config_and_inputs(self): def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
...@@ -657,7 +657,9 @@ class FlavaImageCodebookTester: ...@@ -657,7 +657,9 @@ class FlavaImageCodebookTester:
return config, pixel_values return config, pixel_values
def get_config(self): def get_config(self):
return FlavaImageCodebookConfig() return FlavaImageCodebookConfig(
hidden_size=self.hidden_size, num_groups=self.num_groups, vocab_size=self.vocab_size
)
def create_and_check_model(self, config, pixel_values): def create_and_check_model(self, config, pixel_values):
model = FlavaImageCodebook(config=config) model = FlavaImageCodebook(config=config)
...@@ -743,10 +745,6 @@ class FlavaImageCodebookTest(ModelTesterMixin, unittest.TestCase): ...@@ -743,10 +745,6 @@ class FlavaImageCodebookTest(ModelTesterMixin, unittest.TestCase):
def test_save_load_fast_init_to_base(self): def test_save_load_fast_init_to_base(self):
pass pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
@slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
for model_name in FLAVA_CODEBOOK_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in FLAVA_CODEBOOK_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
...@@ -929,10 +927,6 @@ class FlavaModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): ...@@ -929,10 +927,6 @@ class FlavaModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
msg=f"Parameter {name} of model {model_class} seems not properly initialized", msg=f"Parameter {name} of model {model_class} seems not properly initialized",
) )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
def _create_and_check_torchscript(self, config, inputs_dict): def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript: if not self.test_torchscript:
return return
......
...@@ -203,7 +203,7 @@ class GitModelTester: ...@@ -203,7 +203,7 @@ class GitModelTester:
use_labels=True, use_labels=True,
vocab_size=99, vocab_size=99,
hidden_size=32, hidden_size=32,
num_hidden_layers=5, num_hidden_layers=4,
num_attention_heads=4, num_attention_heads=4,
intermediate_size=37, intermediate_size=37,
hidden_act="gelu", hidden_act="gelu",
...@@ -268,6 +268,10 @@ class GitModelTester: ...@@ -268,6 +268,10 @@ class GitModelTester:
"num_channels": self.num_channels, "num_channels": self.num_channels,
"image_size": self.image_size, "image_size": self.image_size,
"patch_size": self.patch_size, "patch_size": self.patch_size,
"hidden_size": self.hidden_size,
"projection_dim": 32,
"num_hidden_layers": self.num_hidden_layers,
"num_attention_heads": self.num_attention_heads,
}, },
vocab_size=self.vocab_size, vocab_size=self.vocab_size,
hidden_size=self.hidden_size, hidden_size=self.hidden_size,
...@@ -454,10 +458,6 @@ class GitModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, ...@@ -454,10 +458,6 @@ class GitModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin,
def test_greedy_generate_dict_outputs_use_cache(self): def test_greedy_generate_dict_outputs_use_cache(self):
pass pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
@require_torch @require_torch
@require_vision @require_vision
......
...@@ -38,7 +38,7 @@ class GPTSanJapaneseTester: ...@@ -38,7 +38,7 @@ class GPTSanJapaneseTester:
def __init__( def __init__(
self, self,
parent, parent,
vocab_size=36000, vocab_size=99,
batch_size=13, batch_size=13,
num_contexts=7, num_contexts=7,
# For common tests # For common tests
...@@ -182,10 +182,6 @@ class GPTSanJapaneseTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCas ...@@ -182,10 +182,6 @@ class GPTSanJapaneseTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCas
def test_model_parallelism(self): def test_model_parallelism(self):
super().test_model_parallelism() super().test_model_parallelism()
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
@require_torch @require_torch
class GPTSanJapaneseForConditionalGenerationTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): class GPTSanJapaneseForConditionalGenerationTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
...@@ -216,10 +212,6 @@ class GPTSanJapaneseForConditionalGenerationTest(ModelTesterMixin, GenerationTes ...@@ -216,10 +212,6 @@ class GPTSanJapaneseForConditionalGenerationTest(ModelTesterMixin, GenerationTes
def test_model_parallelism(self): def test_model_parallelism(self):
super().test_model_parallelism() super().test_model_parallelism()
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
@slow @slow
def test_logits(self): def test_logits(self):
model = GPTSanJapaneseForConditionalGeneration.from_pretrained("Tanrei/GPTSAN-japanese") model = GPTSanJapaneseForConditionalGeneration.from_pretrained("Tanrei/GPTSAN-japanese")
......
...@@ -42,22 +42,22 @@ class GraphormerModelTester: ...@@ -42,22 +42,22 @@ class GraphormerModelTester:
self, self,
parent, parent,
num_classes=1, num_classes=1,
num_atoms=512 * 9, num_atoms=32 * 9,
num_edges=512 * 3, num_edges=32 * 3,
num_in_degree=512, num_in_degree=32,
num_out_degree=512, num_out_degree=32,
num_spatial=512, num_spatial=32,
num_edge_dis=128, num_edge_dis=16,
multi_hop_max_dist=5, # sometimes is 20 multi_hop_max_dist=5, # sometimes is 20
spatial_pos_max=1024, spatial_pos_max=32,
edge_type="multi_hop", edge_type="multi_hop",
init_fn=None, init_fn=None,
max_nodes=512, max_nodes=32,
share_input_output_embed=False, share_input_output_embed=False,
num_hidden_layers=12, num_hidden_layers=2,
embedding_dim=768, embedding_dim=32,
ffn_embedding_dim=768, ffn_embedding_dim=32,
num_attention_heads=32, num_attention_heads=4,
dropout=0.1, dropout=0.1,
attention_dropout=0.1, attention_dropout=0.1,
activation_dropout=0.1, activation_dropout=0.1,
...@@ -470,10 +470,6 @@ class GraphormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCa ...@@ -470,10 +470,6 @@ class GraphormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCa
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_graph_classification(*config_and_inputs) self.model_tester.create_and_check_for_graph_classification(*config_and_inputs)
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
@slow @slow
def test_model_from_pretrained(self): def test_model_from_pretrained(self):
for model_name in GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
......
...@@ -67,10 +67,10 @@ class LevitModelTester: ...@@ -67,10 +67,10 @@ class LevitModelTester:
stride=2, stride=2,
padding=1, padding=1,
patch_size=16, patch_size=16,
hidden_sizes=[128, 256, 384], hidden_sizes=[16, 32, 48],
num_attention_heads=[4, 6, 8], num_attention_heads=[1, 2, 3],
depths=[2, 3, 4], depths=[2, 3, 4],
key_dim=[16, 16, 16], key_dim=[8, 8, 8],
drop_path_rate=0, drop_path_rate=0,
mlp_ratio=[2, 2, 2], mlp_ratio=[2, 2, 2],
attention_ratio=[2, 2, 2], attention_ratio=[2, 2, 2],
...@@ -282,10 +282,6 @@ class LevitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): ...@@ -282,10 +282,6 @@ class LevitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
check_hidden_states_output(inputs_dict, config, model_class) check_hidden_states_output(inputs_dict, config, model_class)
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
......
...@@ -54,6 +54,8 @@ class Mask2FormerModelTester: ...@@ -54,6 +54,8 @@ class Mask2FormerModelTester:
max_size=32 * 8, max_size=32 * 8,
num_labels=4, num_labels=4,
hidden_dim=64, hidden_dim=64,
num_attention_heads=4,
num_hidden_layers=2,
): ):
self.parent = parent self.parent = parent
self.batch_size = batch_size self.batch_size = batch_size
...@@ -66,6 +68,8 @@ class Mask2FormerModelTester: ...@@ -66,6 +68,8 @@ class Mask2FormerModelTester:
self.num_labels = num_labels self.num_labels = num_labels
self.hidden_dim = hidden_dim self.hidden_dim = hidden_dim
self.mask_feature_size = hidden_dim self.mask_feature_size = hidden_dim
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
def prepare_config_and_inputs(self): def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( pixel_values = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to(
...@@ -85,15 +89,25 @@ class Mask2FormerModelTester: ...@@ -85,15 +89,25 @@ class Mask2FormerModelTester:
def get_config(self): def get_config(self):
config = Mask2FormerConfig( config = Mask2FormerConfig(
hidden_size=self.hidden_dim, hidden_size=self.hidden_dim,
num_attention_heads=self.num_attention_heads,
num_hidden_layers=self.num_hidden_layers,
encoder_feedforward_dim=16,
dim_feedforward=32,
num_queries=self.num_queries,
num_labels=self.num_labels,
decoder_layers=2,
encoder_layers=2,
feature_size=16,
) )
config.num_queries = self.num_queries config.num_queries = self.num_queries
config.num_labels = self.num_labels config.num_labels = self.num_labels
config.backbone_config.embed_dim = 16
config.backbone_config.depths = [1, 1, 1, 1] config.backbone_config.depths = [1, 1, 1, 1]
config.backbone_config.hidden_size = 16
config.backbone_config.num_channels = self.num_channels config.backbone_config.num_channels = self.num_channels
config.backbone_config.num_heads = [1, 1, 2, 2]
config.encoder_feedforward_dim = 64
config.dim_feedforward = 128
config.hidden_dim = self.hidden_dim config.hidden_dim = self.hidden_dim
config.mask_feature_size = self.hidden_dim config.mask_feature_size = self.hidden_dim
config.feature_size = self.hidden_dim config.feature_size = self.hidden_dim
...@@ -220,10 +234,6 @@ class Mask2FormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestC ...@@ -220,10 +234,6 @@ class Mask2FormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestC
def test_multi_gpu_data_parallel_forward(self): def test_multi_gpu_data_parallel_forward(self):
pass pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
def test_forward_signature(self): def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common() config, _ = self.model_tester.prepare_config_and_inputs_for_common()
......
...@@ -85,9 +85,15 @@ class MaskFormerModelTester: ...@@ -85,9 +85,15 @@ class MaskFormerModelTester:
return MaskFormerConfig.from_backbone_and_decoder_configs( return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig( backbone_config=SwinConfig(
depths=[1, 1, 1, 1], depths=[1, 1, 1, 1],
embed_dim=16,
hidden_size=32,
num_heads=[1, 1, 2, 2],
), ),
decoder_config=DetrConfig( decoder_config=DetrConfig(
decoder_ffn_dim=128, decoder_ffn_dim=64,
decoder_layers=2,
encoder_ffn_dim=64,
encoder_layers=2,
num_queries=self.num_queries, num_queries=self.num_queries,
decoder_attention_heads=2, decoder_attention_heads=2,
d_model=self.mask_feature_size, d_model=self.mask_feature_size,
...@@ -224,10 +230,6 @@ class MaskFormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCa ...@@ -224,10 +230,6 @@ class MaskFormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCa
def test_multi_gpu_data_parallel_forward(self): def test_multi_gpu_data_parallel_forward(self):
pass pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
def test_forward_signature(self): def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common() config, _ = self.model_tester.prepare_config_and_inputs_for_common()
......
...@@ -56,7 +56,7 @@ class MobileViTModelTester: ...@@ -56,7 +56,7 @@ class MobileViTModelTester:
image_size=32, image_size=32,
patch_size=2, patch_size=2,
num_channels=3, num_channels=3,
last_hidden_size=640, last_hidden_size=32,
num_attention_heads=4, num_attention_heads=4,
hidden_act="silu", hidden_act="silu",
conv_kernel_size=3, conv_kernel_size=3,
...@@ -115,6 +115,8 @@ class MobileViTModelTester: ...@@ -115,6 +115,8 @@ class MobileViTModelTester:
attention_probs_dropout_prob=self.attention_probs_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob,
classifier_dropout_prob=self.classifier_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob,
initializer_range=self.initializer_range, initializer_range=self.initializer_range,
hidden_sizes=[12, 16, 20],
neck_hidden_sizes=[8, 8, 16, 16, 32, 32, 32],
) )
def create_and_check_model(self, config, pixel_values, labels, pixel_labels): def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
...@@ -231,10 +233,6 @@ class MobileViTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCas ...@@ -231,10 +233,6 @@ class MobileViTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCas
expected_arg_names = ["pixel_values"] expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names) self.assertListEqual(arg_names[:1], expected_arg_names)
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def test_model_is_small(self):
pass
def test_model(self): def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs) self.model_tester.create_and_check_model(*config_and_inputs)
......
...@@ -59,7 +59,7 @@ class TFMobileViTModelTester: ...@@ -59,7 +59,7 @@ class TFMobileViTModelTester:
image_size=32, image_size=32,
patch_size=2, patch_size=2,
num_channels=3, num_channels=3,
last_hidden_size=640, last_hidden_size=32,
num_attention_heads=4, num_attention_heads=4,
hidden_act="silu", hidden_act="silu",
conv_kernel_size=3, conv_kernel_size=3,
...@@ -118,6 +118,8 @@ class TFMobileViTModelTester: ...@@ -118,6 +118,8 @@ class TFMobileViTModelTester:
attention_probs_dropout_prob=self.attention_probs_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob,
classifier_dropout_prob=self.classifier_dropout_prob, classifier_dropout_prob=self.classifier_dropout_prob,
initializer_range=self.initializer_range, initializer_range=self.initializer_range,
hidden_sizes=[12, 16, 20],
neck_hidden_sizes=[8, 8, 16, 16, 32, 32, 32],
) )
def create_and_check_model(self, config, pixel_values, labels, pixel_labels): def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment