Commit 40ed7172 authored by erenup's avatar erenup
Browse files

Merge remote-tracking branch 'refs/remotes/huggingface/master'

parents 86a63070 7296f101
......@@ -43,7 +43,7 @@ from transformers import (WEIGHTS_NAME, BertConfig,
XLNetTokenizer, RobertaConfig,
RobertaForMultipleChoice, RobertaTokenizer)
from transformers import AdamW, WarmupLinearSchedule
from transformers import AdamW, get_linear_schedule_with_warmup
from utils_multiple_choice import (convert_examples_to_features, processors)
......@@ -101,7 +101,7 @@ def train(args, train_dataset, model, tokenizer):
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
if args.fp16:
try:
from apex import amp
......@@ -226,9 +226,13 @@ def evaluate(args, model, tokenizer, prefix="", test=False):
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu evaluate
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
......@@ -464,9 +468,17 @@ def main():
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
num_labels=num_labels,
finetuning_task=args.task_name,
cache_dir=args.cache_dir if args.cache_dir else None)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None)
model = model_class.from_pretrained(args.model_name_or_path,
from_tf=bool('.ckpt' in args.model_name_or_path),
config=config,
cache_dir=args.cache_dir if args.cache_dir else None)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
......
......@@ -13,7 +13,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fine-tuning the library models for named entity recognition on CoNLL-2003 (Bert). """
""" Fine-tuning the library models for named entity recognition on CoNLL-2003 (Bert or Roberta). """
from __future__ import absolute_import, division, print_function
......@@ -33,17 +33,23 @@ from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from utils_ner import convert_examples_to_features, get_labels, read_examples_from_file
from transformers import AdamW, WarmupLinearSchedule
from transformers import AdamW, get_linear_schedule_with_warmup
from transformers import WEIGHTS_NAME, BertConfig, BertForTokenClassification, BertTokenizer
from transformers import RobertaConfig, RobertaForTokenClassification, RobertaTokenizer
from transformers import DistilBertConfig, DistilBertForTokenClassification, DistilBertTokenizer
from transformers import CamembertConfig, CamembertForTokenClassification, CamembertTokenizer
logger = logging.getLogger(__name__)
ALL_MODELS = sum(
(tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, )),
(tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, RobertaConfig, DistilBertConfig)),
())
MODEL_CLASSES = {
"bert": (BertConfig, BertForTokenClassification, BertTokenizer),
"roberta": (RobertaConfig, RobertaForTokenClassification, RobertaTokenizer),
"distilbert": (DistilBertConfig, DistilBertForTokenClassification, DistilBertTokenizer),
"camembert": (CamembertConfig, CamembertForTokenClassification, CamembertTokenizer),
}
......@@ -78,7 +84,7 @@ def train(args, train_dataset, model, tokenizer, labels, pad_token_label_id):
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
if args.fp16:
try:
from apex import amp
......@@ -119,9 +125,10 @@ def train(args, train_dataset, model, tokenizer, labels, pad_token_label_id):
batch = tuple(t.to(args.device) for t in batch)
inputs = {"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2] if args.model_type in ["bert", "xlnet"] else None,
# XLM and RoBERTa don"t use segment_ids
"labels": batch[3]}
if args.model_type != "distilbert":
inputs["token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet"] else None # XLM and RoBERTa don"t use segment_ids
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in pytorch-transformers (see doc)
......@@ -133,13 +140,16 @@ def train(args, train_dataset, model, tokenizer, labels, pad_token_label_id):
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
scheduler.step() # Update learning rate schedule
optimizer.step()
model.zero_grad()
......@@ -148,7 +158,7 @@ def train(args, train_dataset, model, tokenizer, labels, pad_token_label_id):
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id)
results, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev")
for key, value in results.items():
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
......@@ -186,6 +196,10 @@ def evaluate(args, model, tokenizer, labels, pad_token_label_id, mode, prefix=""
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu evaluate
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation %s *****", prefix)
logger.info(" Num examples = %d", len(eval_dataset))
......@@ -201,12 +215,15 @@ def evaluate(args, model, tokenizer, labels, pad_token_label_id, mode, prefix=""
with torch.no_grad():
inputs = {"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2] if args.model_type in ["bert", "xlnet"] else None,
# XLM and RoBERTa don"t use segment_ids
"labels": batch[3]}
if args.model_type != "distilbert":
inputs["token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet"] else None # XLM and RoBERTa don"t use segment_ids
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
if args.n_gpu > 1:
tmp_eval_loss = tmp_eval_loss.mean() # mean() to average on multi-gpu parallel evaluating
eval_loss += tmp_eval_loss.item()
nb_eval_steps += 1
if preds is None:
......@@ -420,11 +437,15 @@ def main():
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
num_labels=num_labels)
num_labels=num_labels,
cache_dir=args.cache_dir if args.cache_dir else None)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case)
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path),
config=config)
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None)
model = model_class.from_pretrained(args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
cache_dir=args.cache_dir if args.cache_dir else None)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
......@@ -508,3 +529,4 @@ def main():
if __name__ == "__main__":
main()
This diff is collapsed.
import os
import tensorflow as tf
import tensorflow_datasets
from transformers import BertTokenizer, TFBertForSequenceClassification, glue_convert_examples_to_features, BertForSequenceClassification
from transformers import BertTokenizer, TFBertForSequenceClassification, BertConfig, glue_convert_examples_to_features, BertForSequenceClassification, glue_processors
# script parameters
BATCH_SIZE = 32
EVAL_BATCH_SIZE = BATCH_SIZE * 2
USE_XLA = False
USE_AMP = False
EPOCHS = 3
TASK = "mrpc"
if TASK == "sst-2":
TFDS_TASK = "sst2"
elif TASK == "sts-b":
TFDS_TASK = "stsb"
else:
TFDS_TASK = TASK
num_labels = len(glue_processors[TASK]().get_labels())
print(num_labels)
tf.config.optimizer.set_jit(USE_XLA)
tf.config.optimizer.set_experimental_options({"auto_mixed_precision": USE_AMP})
# Load tokenizer and model from pretrained model/vocabulary
# Load tokenizer and model from pretrained model/vocabulary. Specify the number of labels to classify (2+: classification, 1: regression)
config = BertConfig.from_pretrained("bert-base-cased", num_labels=num_labels)
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-cased')
model = TFBertForSequenceClassification.from_pretrained('bert-base-cased', config=config)
# Load dataset via TensorFlow Datasets
data, info = tensorflow_datasets.load('glue/mrpc', with_info=True)
data, info = tensorflow_datasets.load(f'glue/{TFDS_TASK}', with_info=True)
train_examples = info.splits['train'].num_examples
# MNLI expects either validation_matched or validation_mismatched
valid_examples = info.splits['validation'].num_examples
# Prepare dataset for GLUE as a tf.data.Dataset instance
train_dataset = glue_convert_examples_to_features(data['train'], tokenizer, 128, 'mrpc')
valid_dataset = glue_convert_examples_to_features(data['validation'], tokenizer, 128, 'mrpc')
train_dataset = glue_convert_examples_to_features(data['train'], tokenizer, 128, TASK)
# MNLI expects either validation_matched or validation_mismatched
valid_dataset = glue_convert_examples_to_features(data['validation'], tokenizer, 128, TASK)
train_dataset = train_dataset.shuffle(128).batch(BATCH_SIZE).repeat(-1)
valid_dataset = valid_dataset.batch(EVAL_BATCH_SIZE)
......@@ -32,7 +50,13 @@ opt = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08)
if USE_AMP:
# loss scaling is currently required when using mixed precision
opt = tf.keras.mixed_precision.experimental.LossScaleOptimizer(opt, 'dynamic')
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
if num_labels == 1:
loss = tf.keras.losses.MeanSquaredError()
else:
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metric = tf.keras.metrics.SparseCategoricalAccuracy('accuracy')
model.compile(optimizer=opt, loss=loss, metrics=[metric])
......@@ -40,24 +64,30 @@ model.compile(optimizer=opt, loss=loss, metrics=[metric])
train_steps = train_examples//BATCH_SIZE
valid_steps = valid_examples//EVAL_BATCH_SIZE
history = model.fit(train_dataset, epochs=2, steps_per_epoch=train_steps,
history = model.fit(train_dataset, epochs=EPOCHS, steps_per_epoch=train_steps,
validation_data=valid_dataset, validation_steps=valid_steps)
# Save TF2 model
os.makedirs('./save/', exist_ok=True)
model.save_pretrained('./save/')
# Load the TensorFlow model in PyTorch for inspection
pytorch_model = BertForSequenceClassification.from_pretrained('./save/', from_tf=True)
if TASK == "mrpc":
# Load the TensorFlow model in PyTorch for inspection
# This is to demo the interoperability between the two frameworks, you don't have to
# do this in real life (you can run the inference on the TF model).
pytorch_model = BertForSequenceClassification.from_pretrained('./save/', from_tf=True)
# Quickly test a few predictions - MRPC is a paraphrasing task, let's see if our model learned the task
sentence_0 = 'This research was consistent with his findings.'
sentence_1 = 'His findings were compatible with this research.'
sentence_2 = 'His findings were not compatible with this research.'
inputs_1 = tokenizer.encode_plus(sentence_0, sentence_1, add_special_tokens=True, return_tensors='pt')
inputs_2 = tokenizer.encode_plus(sentence_0, sentence_2, add_special_tokens=True, return_tensors='pt')
# Quickly test a few predictions - MRPC is a paraphrasing task, let's see if our model learned the task
sentence_0 = 'This research was consistent with his findings.'
sentence_1 = 'His findings were compatible with this research.'
sentence_2 = 'His findings were not compatible with this research.'
inputs_1 = tokenizer.encode_plus(sentence_0, sentence_1, add_special_tokens=True, return_tensors='pt')
inputs_2 = tokenizer.encode_plus(sentence_0, sentence_2, add_special_tokens=True, return_tensors='pt')
del inputs_1["special_tokens_mask"]
del inputs_2["special_tokens_mask"]
pred_1 = pytorch_model(**inputs_1)[0].argmax().item()
pred_2 = pytorch_model(**inputs_2)[0].argmax().item()
print('sentence_1 is', 'a paraphrase' if pred_1 else 'not a paraphrase', 'of sentence_0')
print('sentence_2 is', 'a paraphrase' if pred_2 else 'not a paraphrase', 'of sentence_0')
pred_1 = pytorch_model(**inputs_1)[0].argmax().item()
pred_2 = pytorch_model(**inputs_2)[0].argmax().item()
print('sentence_1 is', 'a paraphrase' if pred_1 else 'not a paraphrase', 'of sentence_0')
print('sentence_2 is', 'a paraphrase' if pred_2 else 'not a paraphrase', 'of sentence_0')
This diff is collapsed.
This diff is collapsed.
# Text Summarization with Pretrained Encoders
This folder contains part of the code necessary to reproduce the results on abstractive summarization from the article [Text Summarization with Pretrained Encoders](https://arxiv.org/pdf/1908.08345.pdf) by [Yang Liu](https://nlp-yang.github.io/) and [Mirella Lapata](https://homepages.inf.ed.ac.uk/mlap/). It can also be used to summarize any document.
The original code can be found on the Yang Liu's [github repository](https://github.com/nlpyang/PreSumm).
The model is loaded with the pre-trained weights for the abstractive summarization model trained on the CNN/Daily Mail dataset with an extractive and then abstractive tasks.
## Setup
```
git clone https://github.com/huggingface/transformers && cd transformers
pip install [--editable] .
pip install nltk py-rouge
cd examples/summarization
```
## Reproduce the authors' results on ROUGE
To be able to reproduce the authors' results on the CNN/Daily Mail dataset you first need to download both CNN and Daily Mail datasets [from Kyunghyun Cho's website](https://cs.nyu.edu/~kcho/DMQA/) (the links next to "Stories") in the same folder. Then uncompress the archives by running:
```bash
tar -xvf cnn_stories.tgz && tar -xvf dailymail_stories.tgz
```
And move all the stories to the same folder. We will refer as `$DATA_PATH` the path to where you uncompressed both archive. Then run the following in the same folder as `run_summarization.py`:
```bash
python run_summarization.py \
--documents_dir $DATA_PATH \
--summaries_output_dir $SUMMARIES_PATH \ # optional
--to_cpu false \
--batch_size 4 \
--min_length 50 \
--max_length 200 \
--beam_size 5 \
--alpha 0.95 \
--block_trigram true \
--compute_rouge true
```
The scripts executes on GPU if one is available and if `to_cpu` is not set to `true`. Inference on multiple GPUs is not suported yet. The ROUGE scores will be displayed in the console at the end of evaluation and written in a `rouge_scores.txt` file. The script takes 30 hours to compute with a single Tesla V100 GPU and a batch size of 10 (300,000 texts to summarize).
## Summarize any text
Put the documents that you would like to summarize in a folder (the path to which is referred to as `$DATA_PATH` below) and run the following in the same folder as `run_summarization.py`:
```bash
python run_summarization.py \
--documents_dir $DATA_PATH \
--summaries_output_dir $SUMMARIES_PATH \ # optional
--to_cpu false \
--batch_size 4 \
--min_length 50 \
--max_length 200 \
--beam_size 5 \
--alpha 0.95 \
--block_trigram true \
```
You may want to play around with `min_length`, `max_length` and `alpha` to suit your use case. If you want to compute ROUGE on another dataset you will need to tweak the stories/summaries import in `utils_summarization.py` and tell it where to fetch the reference summaries.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment