"Log every X updates steps. Should be an integer or a float in range `[0,1)`."
"Log every X updates steps. Should be an integer or a float in range `[0,1)`."
"If smaller than 1, will be interpreted as ratio of total training steps."
"If smaller than 1, will be interpreted as ratio of total training steps."
)
)
},
},
...
@@ -770,7 +770,7 @@ class TrainingArguments:
...
@@ -770,7 +770,7 @@ class TrainingArguments:
default=500,
default=500,
metadata={
metadata={
"help":(
"help":(
"Save checkpoint every X updates steps. Should be an integer or a float in range `[0,1)`."
"Save checkpoint every X updates steps. Should be an integer or a float in range `[0,1)`."
"If smaller than 1, will be interpreted as ratio of total training steps."
"If smaller than 1, will be interpreted as ratio of total training steps."
)
)
},
},
...
@@ -923,7 +923,7 @@ class TrainingArguments:
...
@@ -923,7 +923,7 @@ class TrainingArguments:
default=None,
default=None,
metadata={
metadata={
"help":(
"help":(
"Run an evaluation every X steps. Should be an integer or a float in range `[0,1)`."
"Run an evaluation every X steps. Should be an integer or a float in range `[0,1)`."
"If smaller than 1, will be interpreted as ratio of total training steps."
"If smaller than 1, will be interpreted as ratio of total training steps."
)
)
},
},
...
@@ -1006,7 +1006,7 @@ class TrainingArguments:
...
@@ -1006,7 +1006,7 @@ class TrainingArguments:
default=None,
default=None,
metadata={
metadata={
"help":(
"help":(
"Config to be used with FSDP (Pytorch Fully Sharded Data Parallel). The value is either a"
"Config to be used with FSDP (Pytorch Fully Sharded Data Parallel). The value is either a"
"fsdp json config file (e.g., `fsdp_config.json`) or an already loaded json file as `dict`."
"fsdp json config file (e.g., `fsdp_config.json`) or an already loaded json file as `dict`."
)
)
},
},
...
@@ -1207,7 +1207,7 @@ class TrainingArguments:
...
@@ -1207,7 +1207,7 @@ class TrainingArguments:
dispatch_batches:Optional[bool]=field(
dispatch_batches:Optional[bool]=field(
default=None,
default=None,
metadata={
metadata={
"help":"Whether to dispatch batches across devices in distributed training. If set to `True`, the dataloader prepared by the Accelerator is only iterated through on the main process"
"help":"Whether to dispatch batches across devices in distributed training. If set to `True`, the dataloader prepared by the Accelerator is only iterated through on the main process"
"and then the batches are split and broadcast to each process. Will default to `True` for `DataLoader` whose"
"and then the batches are split and broadcast to each process. Will default to `True` for `DataLoader` whose"
"underlying dataset is an `IterableDataset`, `False` otherwise."
"underlying dataset is an `IterableDataset`, `False` otherwise."
},
},
...
@@ -1297,7 +1297,7 @@ class TrainingArguments:
...
@@ -1297,7 +1297,7 @@ class TrainingArguments:
ifnot(self.eval_steps<1andself.save_steps<1):
ifnot(self.eval_steps<1andself.save_steps<1):
raiseValueError(
raiseValueError(
"--load_best_model_at_end requires the saving steps to be a multiple of the evaluation "
"--load_best_model_at_end requires the saving steps to be a multiple of the evaluation "
"steps, which cannot get guaranteed when mixing ratio and absolute steps for save_steps"
"steps, which cannot get guaranteed when mixing ratio and absolute steps for save_steps"
f"{self.save_steps} and eval_steps {self.eval_steps}."
f"{self.save_steps} and eval_steps {self.eval_steps}."