Unverified Commit 3f20877d authored by tomeras91's avatar tomeras91 Committed by GitHub
Browse files

Add jamba (#29943)

* Add jamba arch

* apply "make fix-copies" changes

* fix link to model in JambaConfig docstring

* Add n_ctx in modeling file because repo-consistency wants that

* Add jamba to flash attention and sdpa documentation

* mamba dt_proj quant fix now works for LoRA as well

* override test_left_padding_compatibility and use a more permissive tolerance. left padding numerical difference are accentuated by mamba layers

* add jamba to tokenization auto

* fix comments of shape (PR #24 in the model page: https://huggingface.co/ai21labs/Jamba-v0.1/discussions/24)

* simple PR fixes

* remove unnecessary kwargs from JambaAttentionDecoderLayer and JambaMambaDecoderLayer

* remove the LoRA hack for the mamba dt_proj bias. It was solved in huggingface/peft#1530 (https://github.com/huggingface/peft/pull/1530)

* Add copied comment on JambaMLP (it's the same as MixtralMLP)

* remove padding_mask warnings. It's not supported anymore

* fix docstring. Float instead of int

* A few more minor PR fixes

* (1) lowercase names for mamba layernorms (2) remove _apply_inner_layernorms and do it directly in the forward pass

* Return None attention weights from mamba layers. Append to all attentions only if not None.

* remove some leftover jamba archive lists

* Better separation between expert vs non-expert layers. non-expert layers return None as router_logits, and it is not concatenated to all_router_logits returned from JambaModel

* no need to take router_logits at config.expert_layer_offset anymore. result.router_logits now holds results only for expert layers

* Add Jamba paper on READMEs

* (1) rename n_ctx -> max_position_embeddings (2) don't use it in the modeling file since it's not needed (set it as an exception to check_config_attributes)

* Add copied from comment

* remove the code path for apply_inner_layernorms=False. Jamba always has the inner mamba layernorms

* clearer docstring for _convert_to_standard_cache

* style fixes

* Change calc_logits_for_entire_prompt (bool) to num_logits_to_keep (int). Adapt assisted decoding code tp use it. Also small change in low memory beam search decoding path to support this new int value in model_inputs

* rename test so it still overrides what its meant to override

* draft

* oups

* nit

* remove more complexe logic

* fix names used in config

* fix fix fix

* style

* fix some more failing tests

* generate did not init the cache 🙃



* more small nits

* typo

* config.mamba_expand * config.hidden_size for the intermediate size of the mamba shapes

* fix init of pkv with torch.tensor()

* empty tensor

* fix some init issues

* stupid changes required by generate because it does not even support it's own DynamicCache class

* more fixes

* fix general assisted gen cache_position bug

* tests passing

* Add offsets and periods as SPECIAL_CASES_TO_ALLOW in check_config_attributes.py

* fix reorder_cache to reorder mamba states and override some more functions in HybridMambaAttentionDynamicCache

* no need to override test_past_key_values_format() and _check_past_key_values_for_generate() in tests anymore

* fix docstrings and typehints for past_key_values

* style fixes

* fix docs

* change typehint due to copy from Mixtral

* forgot import

* import order

* Add configuration_jamba and modeling_jamba to not_doctested because the model is too big to download (in docstring of JambaForCausalLM.forward)

* Add integration test with tiny tandom Jamba model on hub

* fix flash attention cache shapes

* bring back forgotten hidden states

* rename HybridMambaAttentionDynamicCache.seqlen_offset to has_previous_state (and make bool) and bugfix - it should be set to True after a finished forward pass of the entire model

* align integration test after modeling fixes

* bugfix - mamba can use precomputed states only of forward pass is on a single token

* bugfix - mamba can use precomputed states only if they match the batch size

* typo

* remove making _prepare_4d_causal_attention_mask a leaf function

* stop using past_seq_len.get_seq_length(). Use cache positions instead. Adjust test (test_decoder_model_past_with_large_inputs) accordingly

---------
Co-authored-by: default avatarArthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: default avatarJoao Gante <joao@huggingface.co>
parent 28a22834
......@@ -18,6 +18,8 @@ from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple
import torch
from ..cache_utils import DynamicCache
if TYPE_CHECKING:
from ..modeling_utils import PreTrainedModel
......@@ -371,7 +373,13 @@ def _crop_past_key_values(model, past_key_values, maximum_length):
else:
for idx in range(len(past_key_values)):
past_key_values[idx] = past_key_values[idx][:, :, :maximum_length, :]
else:
elif isinstance(past_key_values, DynamicCache):
for idx in range(len(past_key_values.key_cache)):
if past_key_values.value_cache[idx].shape[-1] != 0:
past_key_values.key_cache[idx] = past_key_values.key_cache[idx][:, :, :maximum_length, :]
past_key_values.value_cache[idx] = past_key_values.value_cache[idx][:, :, :maximum_length, :]
elif past_key_values is not None:
for idx in range(len(past_key_values)):
new_past.append(
(
......
......@@ -598,7 +598,11 @@ class GenerationMixin:
def _expand_dict_for_generation(dict_to_expand):
for key in dict_to_expand:
if dict_to_expand[key] is not None and isinstance(dict_to_expand[key], torch.Tensor):
if (
key != "cache_position"
and dict_to_expand[key] is not None
and isinstance(dict_to_expand[key], torch.Tensor)
):
dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
return dict_to_expand
......@@ -2094,7 +2098,8 @@ class GenerationMixin:
# Replicates the new past_key_values to match the `top_k` candidates
new_key_values = []
for layer in model_kwargs["past_key_values"]:
past = model_kwargs["past_key_values"]
for layer in past:
items = []
# item is either the key or the value matrix
for item in layer:
......@@ -2103,7 +2108,13 @@ class GenerationMixin:
else:
items.append(item.repeat_interleave(top_k, dim=0))
new_key_values.append(tuple(items))
model_kwargs["past_key_values"] = tuple(new_key_values)
if not isinstance(past, DynamicCache):
past = tuple(new_key_values)
else:
for layer_idx in range(len(new_key_values)):
past.key_cache[layer_idx] = new_key_values[layer_idx][0]
past.value_cache[layer_idx] = new_key_values[layer_idx][1]
model_kwargs["past_key_values"] = past
if sequential:
all_outputs = []
......@@ -2178,16 +2189,22 @@ class GenerationMixin:
else:
next_past_key_values = self._extract_past_from_model_output(outputs, standardize_cache_format=True)
new_key_values = ()
new_key_values = []
for layer in next_past_key_values:
items = ()
items = []
# item is either the key or the value matrix
for item in layer:
item = torch.stack(torch.split(item, top_k, dim=0)) # [B, K, num_head, seq_len, esz]
item = item[range(batch_size), selected_idx, ...] # [B, num_head, seq_len, esz]
items += (item,)
new_key_values += (items,)
next_past_key_values = new_key_values
items += [item]
new_key_values += [items]
if not isinstance(next_past_key_values, DynamicCache):
next_past_key_values = tuple(new_key_values)
else:
for layer_idx in range(len(new_key_values)):
next_past_key_values.key_cache[layer_idx] = new_key_values[layer_idx][0]
next_past_key_values.value_cache[layer_idx] = new_key_values[layer_idx][1]
logit_for_next_step = torch.stack(torch.split(logits, top_k))[range(batch_size), selected_idx, :]
......@@ -3127,6 +3144,7 @@ class GenerationMixin:
"transo_xl",
"xlnet",
"cpm",
"jamba",
]
):
raise RuntimeError(
......@@ -4645,21 +4663,22 @@ class GenerationMixin:
# we use this forward pass to also pick the subsequent logits in the original model.
# 2.1. Prepare the model inputs
candidate_kwargs = copy.copy(model_kwargs)
candidate_kwargs = _prepare_attention_mask(
candidate_kwargs, candidate_input_ids.shape[1], self.config.is_encoder_decoder
model_kwargs = _prepare_attention_mask(
model_kwargs, candidate_input_ids.shape[1], self.config.is_encoder_decoder
)
candidate_kwargs = _prepare_token_type_ids(candidate_kwargs, candidate_input_ids.shape[1])
if "cache_position" in candidate_kwargs:
candidate_kwargs["cache_position"] = torch.cat(
model_kwargs = _prepare_token_type_ids(model_kwargs, candidate_input_ids.shape[1])
if "cache_position" in model_kwargs:
model_kwargs["cache_position"] = torch.cat(
(
candidate_kwargs["cache_position"],
model_kwargs["cache_position"],
torch.arange(cur_len, cur_len + candidate_length, device=input_ids.device, dtype=torch.long),
),
dim=0,
)
model_inputs = self.prepare_inputs_for_generation(candidate_input_ids, **candidate_kwargs)
model_inputs = self.prepare_inputs_for_generation(candidate_input_ids, **model_kwargs)
if "num_logits_to_keep" in model_inputs:
model_inputs["num_logits_to_keep"] = candidate_length + 1
# 2.2. Run a forward pass on the candidate sequence
outputs = self(
......@@ -4985,7 +5004,7 @@ def _split_model_inputs(
# ModelOutput object.
# bool should not be split but replicated for each split
bool_keys = [k for k in keys if isinstance(model_input[k], bool) or k == "cache_position"]
keys_to_ignore = ["cache_position", "encoder_outputs"]
keys_to_ignore = ["cache_position", "encoder_outputs", "num_logits_to_keep"]
non_bool_keys = [k for k in keys if not isinstance(model_input[k], bool) and k not in keys_to_ignore]
# we split the tensors and tuples of tensors
......@@ -5001,6 +5020,11 @@ def _split_model_inputs(
data_split_list = [
{**data_split, "encoder_outputs": encoder_outputs_split[i]} for i, data_split in enumerate(data_split_list)
]
# num_logits_to_keep should be replicated for each split, similar to bool values
if "num_logits_to_keep" in model_input:
data_split_list = [
{**data_split, "num_logits_to_keep": model_input["num_logits_to_keep"]} for data_split in data_split_list
]
# Convert each dictionary in the list to an object of the inferred class
split_model_inputs: List[Union[ModelOutput, Dict]] = [
......
......@@ -115,6 +115,7 @@ from . import (
imagegpt,
informer,
instructblip,
jamba,
jukebox,
kosmos2,
layoutlm,
......
......@@ -129,6 +129,7 @@ CONFIG_MAPPING_NAMES = OrderedDict(
("imagegpt", "ImageGPTConfig"),
("informer", "InformerConfig"),
("instructblip", "InstructBlipConfig"),
("jamba", "JambaConfig"),
("jukebox", "JukeboxConfig"),
("kosmos-2", "Kosmos2Config"),
("layoutlm", "LayoutLMConfig"),
......@@ -397,6 +398,7 @@ MODEL_NAMES_MAPPING = OrderedDict(
("imagegpt", "ImageGPT"),
("informer", "Informer"),
("instructblip", "InstructBLIP"),
("jamba", "Jamba"),
("jukebox", "Jukebox"),
("kosmos-2", "KOSMOS-2"),
("layoutlm", "LayoutLM"),
......
......@@ -123,6 +123,7 @@ MODEL_MAPPING_NAMES = OrderedDict(
("idefics2", "Idefics2Model"),
("imagegpt", "ImageGPTModel"),
("informer", "InformerModel"),
("jamba", "JambaModel"),
("jukebox", "JukeboxModel"),
("kosmos-2", "Kosmos2Model"),
("layoutlm", "LayoutLMModel"),
......@@ -451,6 +452,7 @@ MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
("gpt_neox", "GPTNeoXForCausalLM"),
("gpt_neox_japanese", "GPTNeoXJapaneseForCausalLM"),
("gptj", "GPTJForCausalLM"),
("jamba", "JambaForCausalLM"),
("llama", "LlamaForCausalLM"),
("mamba", "MambaForCausalLM"),
("marian", "MarianForCausalLM"),
......@@ -851,6 +853,7 @@ MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
("gpt_neox", "GPTNeoXForSequenceClassification"),
("gptj", "GPTJForSequenceClassification"),
("ibert", "IBertForSequenceClassification"),
("jamba", "JambaForSequenceClassification"),
("layoutlm", "LayoutLMForSequenceClassification"),
("layoutlmv2", "LayoutLMv2ForSequenceClassification"),
("layoutlmv3", "LayoutLMv3ForSequenceClassification"),
......
......@@ -203,6 +203,13 @@ else:
("idefics", (None, "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("idefics2", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("instructblip", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)),
(
"jamba",
(
"LlamaTokenizer" if is_sentencepiece_available() else None,
"LlamaTokenizerFast" if is_tokenizers_available() else None,
),
),
("jukebox", ("JukeboxTokenizer", None)),
(
"kosmos-2",
......
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {
"configuration_jamba": ["JambaConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_jamba"] = [
"JambaForCausalLM",
"JambaForSequenceClassification",
"JambaModel",
"JambaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_jamba import JambaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_jamba import (
JambaForCausalLM,
JambaForSequenceClassification,
JambaModel,
JambaPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
# coding=utf-8
# Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Jamba model configuration"""
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class JambaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`JambaModel`]. It is used to instantiate a
Jamba model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Jamba-v0.1 model.
[ai21labs/Jamba-v0.1](https://huggingface.co/ai21labs/Jamba-v0.1)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 65536):
Vocabulary size of the Jamba model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`JambaModel`]
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
model has a output word embedding layer.
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 14336):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an
integer value, only last `num_logits_to_keep` logits will be calculated. Default is 1 because only the
logits of the last prompt token are needed for generation. For long sequences, the logits for the entire
sequence may use a lot of memory so, setting `num_logits_to_keep=1` will reduce memory footprint
significantly.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not the router logits should be returned by the model. Enabling this will also
allow the model to output the auxiliary loss. See [here]() for more details
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
The aux loss factor for the total loss.
pad_token_id (`int`, *optional*, defaults to 0):
The id of the padding token.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 2):
The id of the "end-of-sequence" token.
sliding_window (`int`, *optional*):
Sliding window attention window size. If not specified, will default to `None`.
max_position_embeddings (`int`, *optional*, defaults to 262144):
This value doesn't have any real effect. The maximum sequence length that this model is intended to be
used with. It can be used with longer sequences, but performance may degrade.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
num_experts_per_tok (`int`, *optional*, defaults to 2):
The number of experts to root per-token, can be also interpreted as the `top-p` routing
parameter
num_experts (`int`, *optional*, defaults to 16):
Number of experts per Sparse MLP layer.
expert_layer_period (`int`, *optional*, defaults to 2):
Once in this many layers, we will have an expert layer
expert_layer_offset (`int`, *optional*, defaults to 1):
The first layer index that contains an expert mlp layer
attn_layer_period (`int`, *optional*, defaults to 8):
Once in this many layers, we will have a vanilla attention layer
attn_layer_offset (`int`, *optional*, defaults to 4):
The first layer index that contains a vanilla attention mlp layer
use_mamba_kernels (`bool`, *optional*, defaults to `True`):
Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and
`causal-conv1d` are installed, and the mamba modules are running on a CUDA device. Raises ValueError if
`True` and kernels are not available
mamba_d_state (`int`, *optional*, defaults to 16):
The dimension the mamba state space latents
mamba_d_conv (`int`, *optional*, defaults to 4):
The size of the mamba convolution kernel
mamba_expand (`int`, *optional*, defaults to 2):
Expanding factor (relative to hidden_size) used to determine the mamba intermediate size
mamba_dt_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
Rank of the the mamba discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
mamba_conv_bias (`bool`, *optional*, defaults to `True`):
Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block.
mamba_proj_bias (`bool`, *optional*, defaults to `False`):
Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block
"""
model_type = "jamba"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=65536,
tie_word_embeddings=False,
hidden_size=4096,
intermediate_size=14336,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=8,
hidden_act="silu",
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
num_logits_to_keep=1,
output_router_logits=False,
router_aux_loss_coef=0.001,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
sliding_window=None,
max_position_embeddings=262144,
attention_dropout=0.0,
num_experts_per_tok=2,
num_experts=16,
expert_layer_period=2,
expert_layer_offset=1,
attn_layer_period=8,
attn_layer_offset=4,
use_mamba_kernels=True,
mamba_d_state=16,
mamba_d_conv=4,
mamba_expand=2,
mamba_dt_rank="auto",
mamba_conv_bias=True,
mamba_proj_bias=False,
**kwargs,
):
self.vocab_size = vocab_size
self.tie_word_embeddings = tie_word_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.sliding_window = sliding_window
self.max_position_embeddings = max_position_embeddings
self.attention_dropout = attention_dropout
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.num_logits_to_keep = num_logits_to_keep
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
self.num_experts_per_tok = num_experts_per_tok
self.num_experts = num_experts
self.expert_layer_period = expert_layer_period
self.expert_layer_offset = expert_layer_offset
self.attn_layer_period = attn_layer_period
self.attn_layer_offset = attn_layer_offset
self.use_mamba_kernels = use_mamba_kernels
self.mamba_d_state = mamba_d_state
self.mamba_d_conv = mamba_d_conv
self.mamba_expand = mamba_expand
self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank
self.mamba_conv_bias = mamba_conv_bias
self.mamba_proj_bias = mamba_proj_bias
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
@property
def layers_block_type(self):
return [
"attention" if i % self.attn_layer_period == self.attn_layer_offset else "mamba"
for i in range(self.num_hidden_layers)
]
@property
def layers_num_experts(self):
return [
self.num_experts if i % self.expert_layer_period == self.expert_layer_offset else 1
for i in range(self.num_hidden_layers)
]
# coding=utf-8
# Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Jamba model."""
import inspect
import math
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...cache_utils import DynamicCache # we need __iter__ and __len__ of pkv
from ...modeling_attn_mask_utils import (
AttentionMaskConverter,
)
from ...modeling_outputs import (
MoeCausalLMOutputWithPast,
MoeModelOutputWithPast,
SequenceClassifierOutputWithPast,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
from ...utils.import_utils import (
is_causal_conv1d_available,
is_flash_attn_2_available,
is_mamba_ssm_available,
)
from .configuration_jamba import JambaConfig
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
if is_mamba_ssm_available():
from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
else:
selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None
if is_causal_conv1d_available():
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
else:
causal_conv1d_update, causal_conv1d_fn = None, None
is_fast_path_available = all(
(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)
)
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "JambaConfig"
# Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func with gate->router
def load_balancing_loss_func(
router_logits: torch.Tensor,
num_experts: torch.Tensor = None,
top_k=2,
attention_mask: Optional[torch.Tensor] = None,
) -> float:
r"""
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
experts is too unbalanced.
Args:
router_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
Logits from the `router`, should be a tuple of model.config.num_hidden_layers tensors of
shape [batch_size X sequence_length, num_experts].
attention_mask (`torch.Tensor`, None):
The attention_mask used in forward function
shape [batch_size X sequence_length] if not None.
num_experts (`int`, *optional*):
Number of experts
Returns:
The auxiliary loss.
"""
if router_logits is None or not isinstance(router_logits, tuple):
return 0
if isinstance(router_logits, tuple):
compute_device = router_logits[0].device
concatenated_router_logits = torch.cat(
[layer_router.to(compute_device) for layer_router in router_logits], dim=0
)
routing_weights = torch.nn.functional.softmax(concatenated_router_logits, dim=-1)
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
if attention_mask is None:
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.mean(routing_weights, dim=0)
else:
batch_size, sequence_length = attention_mask.shape
num_hidden_layers = concatenated_router_logits.shape[0] // (batch_size * sequence_length)
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
expert_attention_mask = (
attention_mask[None, :, :, None, None]
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
.reshape(-1, top_k, num_experts)
.to(compute_device)
)
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
expert_attention_mask, dim=0
)
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
router_per_expert_attention_mask = (
attention_mask[None, :, :, None]
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
.reshape(-1, num_experts)
.to(compute_device)
)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
router_per_expert_attention_mask, dim=0
)
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
return overall_loss * num_experts
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Jamba
class JambaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
JambaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class HybridMambaAttentionDynamicCache(DynamicCache):
"""
A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache
(which has a constant shape regardless of seq_len).
This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states`
and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor
For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`,
while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors).
For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors),
while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`,
and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`.
"""
def __init__(self, config, batch_size, dtype=torch.float16, device=None):
self.dtype = dtype
self.layers_block_type = config.layers_block_type
self.has_previous_state = False # only used by mamba
intermediate_size = config.mamba_expand * config.hidden_size
ssm_state_size = config.mamba_d_state
conv_kernel_size = config.mamba_d_conv
self.conv_states = []
self.ssm_states = []
for i in range(config.num_hidden_layers):
if self.layers_block_type[i] == "mamba":
self.conv_states += [
torch.zeros(batch_size, intermediate_size, conv_kernel_size, device=device, dtype=dtype)
]
self.ssm_states += [
torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype)
]
else:
self.conv_states += [torch.tensor([[]] * batch_size, device=device)]
self.ssm_states += [torch.tensor([[]] * batch_size, device=device)]
self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Update the cache
if self.key_cache[layer_idx].shape[-1] == 0:
self.key_cache[layer_idx] = key_states
self.value_cache[layer_idx] = value_states
else:
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2)
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2)
return self.key_cache[layer_idx], self.value_cache[layer_idx]
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Reorders the cache for beam search, given the selected beam indices."""
for layer_idx in range(len(self.key_cache)):
device = self.key_cache[layer_idx].device
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
device = self.value_cache[layer_idx].device
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
device = self.conv_states[layer_idx].device
self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device))
device = self.ssm_states[layer_idx].device
self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device))
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")
@classmethod
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")
# Adapted from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->Jamba
class JambaAttention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
and "Generating Long Sequences with Sparse Transformers".
"""
def __init__(self, config: JambaConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.is_causal = True
self.attention_dropout = config.attention_dropout
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if past_key_value is not None:
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Adapted from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->Jamba
class JambaFlashAttention2(JambaAttention):
"""
Jamba flash attention module. This module inherits from `JambaAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
):
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = cache_position[-1]
use_sliding_windows = (
_flash_supports_window_size
and getattr(self.config, "sliding_window", None) is not None
and kv_seq_len > self.config.sliding_window
)
if not _flash_supports_window_size:
logger.warning_once(
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
" make sure to upgrade flash-attn library."
)
if past_key_value is not None:
# Activate slicing cache only if the config has a value `sliding_windows` attribute
cache_has_contents = cache_position[0] > 0
if (
getattr(self.config, "sliding_window", None) is not None
and kv_seq_len > self.config.sliding_window
and cache_has_contents
):
slicing_tokens = 1 - self.config.sliding_window
past_key = past_key_value[self.layer_idx][0]
past_value = past_key_value[self.layer_idx][1]
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
if past_key.shape[-2] != self.config.sliding_window - 1:
raise ValueError(
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
f" {past_key.shape}"
)
if attention_mask is not None:
attention_mask = attention_mask[:, slicing_tokens:]
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
dropout_rate = 0.0 if not self.training else self.attention_dropout
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
# Reashape to the expected shape for Flash Attention
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
attn_output = self._flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
use_sliding_windows=use_sliding_windows,
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def _flash_attention_forward(
self,
query_states,
key_states,
value_states,
attention_mask,
query_length,
dropout=0.0,
softmax_scale=None,
use_sliding_windows=False,
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`float`, *optional*):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
use_sliding_windows (`bool`, *optional*):
Whether to activate sliding window attention.
"""
if not self._flash_attn_uses_top_left_mask:
causal = self.is_causal
else:
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
causal = self.is_causal and query_length != 1
# Contains at least one padding token in the sequence
if attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
if not use_sliding_windows:
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
else:
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
window_size=(self.config.sliding_window, self.config.sliding_window),
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
else:
if not use_sliding_windows:
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
dropout,
softmax_scale=softmax_scale,
causal=causal,
)
else:
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
dropout,
softmax_scale=softmax_scale,
causal=causal,
window_size=(self.config.sliding_window, self.config.sliding_window),
)
return attn_output
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralFlashAttention2._upad_input
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
# On the first iteration we need to properly re-create the padding mask
# by slicing it on the proper place
if kv_seq_len != attention_mask.shape[-1]:
attention_mask_num_tokens = attention_mask.shape[-1]
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
# Adapted from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Jamba
class JambaSdpaAttention(JambaAttention):
"""
Jamba attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`JambaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from JambaAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"JambaModel is using JambaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if past_key_value is not None:
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and attention_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
is_causal=self.is_causal and attention_mask is None and q_len > 1,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
JAMBA_ATTENTION_CLASSES = {
"eager": JambaAttention,
"flash_attention_2": JambaFlashAttention2,
"sdpa": JambaSdpaAttention,
}
# Adapted from transformers.models.mamba.modeling_mamba.MambaMixer
class JambaMambaMixer(nn.Module):
"""
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
and is why Mamba is called **selective** state spaces)
"""
def __init__(self, config: JambaConfig, layer_idx):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.ssm_state_size = config.mamba_d_state
self.conv_kernel_size = config.mamba_d_conv
self.intermediate_size = config.mamba_expand * config.hidden_size
self.time_step_rank = config.mamba_dt_rank
self.use_conv_bias = config.mamba_conv_bias
self.use_bias = config.mamba_proj_bias
self.conv1d = nn.Conv1d(
in_channels=self.intermediate_size,
out_channels=self.intermediate_size,
bias=self.use_conv_bias,
kernel_size=self.conv_kernel_size,
groups=self.intermediate_size,
padding=self.conv_kernel_size - 1,
)
self.activation = config.hidden_act
self.act = ACT2FN[config.hidden_act]
self.use_fast_kernels = config.use_mamba_kernels
# projection of the input hidden states
self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=self.use_bias)
# selective projection used to make dt, B and C input dependant
self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
# time step projection (discretization)
self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True)
# S4D real initialization. These are not discretized!
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :]
A = A.expand(self.intermediate_size, -1).contiguous()
self.A_log = nn.Parameter(torch.log(A))
self.D = nn.Parameter(torch.ones(self.intermediate_size))
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias)
self.dt_layernorm = JambaRMSNorm(self.time_step_rank, eps=config.rms_norm_eps)
self.b_layernorm = JambaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps)
self.c_layernorm = JambaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps)
if not is_fast_path_available:
logger.warning_once(
"The fast path is not available because on of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`"
" is None. To install follow https://github.com/state-spaces/mamba/#installation and"
" https://github.com/Dao-AILab/causal-conv1d. If you want to use the naive implementation, set `use_mamba_kernels=False` in the model config"
)
def cuda_kernels_forward(self, hidden_states: torch.Tensor, cache_params: HybridMambaAttentionDynamicCache = None):
batch_size, seq_len, _ = hidden_states.shape
use_precomputed_states = (
cache_params is not None
and cache_params.has_previous_state
and seq_len == 1
and cache_params.conv_states[self.layer_idx].shape[0]
== cache_params.ssm_states[self.layer_idx].shape[0]
== batch_size
)
# 1. Gated MLP's linear projection
projected_states = self.in_proj(hidden_states).transpose(1, 2)
# We can't use `mamba_inner_fn` even if in training and without cache params because we have the
# inner layernorms which isn't supported by this fused kernel
hidden_states, gate = projected_states.chunk(2, dim=1)
# 2. Convolution sequence transformation
conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2))
if use_precomputed_states:
hidden_states = causal_conv1d_update(
hidden_states.squeeze(-1),
cache_params.conv_states[self.layer_idx],
conv_weights,
self.conv1d.bias,
self.activation,
)
hidden_states = hidden_states.unsqueeze(-1)
else:
if cache_params is not None:
conv_states = nn.functional.pad(hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0))
cache_params.conv_states[self.layer_idx].copy_(conv_states)
hidden_states = causal_conv1d_fn(hidden_states, conv_weights, self.conv1d.bias, activation=self.activation)
# 3. State Space Model sequence transformation
# 3.a. input varying initialization of time_step, B and C
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
time_step, B, C = torch.split(
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
)
time_step = self.dt_layernorm(time_step)
B = self.b_layernorm(B)
C = self.c_layernorm(C)
# Here we need to apply dt_proj without the bias, as the bias is added in the selective scan kernel.
# This is a hack to apply dt_proj while still using the forward pass of `torch.nn.Linear`, which is needed
# in order to make quantization work. Quantization code replaces `torch.nn.Linear` layers with quantized
# linear layers, and requires to call the forward pass directly.
# The original code here was: ```discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2)```
time_proj_bias = self.dt_proj.bias
self.dt_proj.bias = None
discrete_time_step = self.dt_proj(time_step).transpose(1, 2)
self.dt_proj.bias = time_proj_bias
A = -torch.exp(self.A_log.float())
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
time_proj_bias = time_proj_bias.float() if time_proj_bias is not None else None
if use_precomputed_states:
scan_outputs = selective_state_update(
cache_params.ssm_states[self.layer_idx],
hidden_states[..., 0],
discrete_time_step[..., 0],
A,
B[:, 0],
C[:, 0],
self.D,
gate[..., 0],
time_proj_bias,
dt_softplus=True,
).unsqueeze(-1)
else:
scan_outputs, ssm_state = selective_scan_fn(
hidden_states,
discrete_time_step,
A,
B.transpose(1, 2),
C.transpose(1, 2),
self.D.float(),
gate,
time_proj_bias,
delta_softplus=True,
return_last_state=True,
)
if ssm_state is not None and cache_params is not None:
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
# 4. Final linear projection
contextualized_states = self.out_proj(scan_outputs.transpose(1, 2))
return contextualized_states
# fmt: off
def slow_forward(self, input_states, cache_params: HybridMambaAttentionDynamicCache = None):
batch_size, seq_len, _ = input_states.shape
dtype = input_states.dtype
# 1. Gated MLP's linear projection
projected_states = self.in_proj(input_states).transpose(1, 2) # [batch, 2 * intermediate_size, seq_len]
hidden_states, gate = projected_states.chunk(2, dim=1)
use_cache = isinstance(cache_params,HybridMambaAttentionDynamicCache)
# 2. Convolution sequence transformation
if use_cache and cache_params.ssm_states[self.layer_idx].shape[0] == batch_size:
if self.training:
# In training mode, we don't want to perform in-place operations on ssm_state so we can compute the backwards pass
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
else:
ssm_state = cache_params.ssm_states[self.layer_idx]
if cache_params.has_previous_state and seq_len == 1 and \
cache_params.conv_states[self.layer_idx].shape[0] == batch_size:
conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size]
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
conv_state[:, :, -1] = hidden_states[:, :, 0]
cache_params.conv_states[self.layer_idx] = conv_state
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
if self.use_conv_bias:
hidden_states += self.conv1d.bias
hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1) # [batch, intermediate_size, 1] : decoding
else:
conv_state = nn.functional.pad(
hidden_states,
(self.conv_kernel_size - hidden_states.shape[-1], 0)
)
cache_params.conv_states[self.layer_idx] = conv_state
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
else:
ssm_state = torch.zeros(
(batch_size, self.intermediate_size, self.ssm_state_size),
device=hidden_states.device, dtype=dtype
)
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
# 3. State Space Model sequence transformation
# 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2]
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
time_step, B, C = torch.split(
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
)
time_step = self.dt_layernorm(time_step)
B = self.b_layernorm(B)
C = self.c_layernorm(C)
discrete_time_step = self.dt_proj(time_step) # [batch, seq_len, intermediate_size]
discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2) # [batch, intermediate_size, seq_len]
# 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM)
A = -torch.exp(self.A_log.float()) # [intermediate_size, ssm_state_size]
discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None]) # [batch, intermediate_size, seq_len, ssm_state_size]
discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float() # [batch, intermediade_size, seq_len, ssm_state_size]
deltaB_u = discrete_B * hidden_states[:, :, :, None].float()
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
scan_outputs = []
for i in range(seq_len):
ssm_state = discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :] # [batch, intermediade_size, ssm_state]
scan_output = torch.matmul(ssm_state.to(dtype), C[:, i, :].unsqueeze(-1)) # [batch, intermediade_size, 1]
scan_outputs.append(scan_output[:, :, 0])
scan_output = torch.stack(scan_outputs, dim=-1) # [batch, intermediade_size, seq_len]
scan_output = scan_output + (hidden_states * self.D[None, :, None])
scan_output = (scan_output * self.act(gate))
if use_cache:
cache_params.ssm_states[self.layer_idx] = ssm_state
# 4. Final linear projection
contextualized_states = self.out_proj(scan_output.transpose(1, 2)) # [batch, seq_len, hidden_size]
return contextualized_states
# fmt: on
def forward(self, hidden_states, cache_params: HybridMambaAttentionDynamicCache = None):
if self.use_fast_kernels:
if not is_fast_path_available or "cuda" not in self.x_proj.weight.device.type:
raise ValueError(
"Fast Mamba kernels are not available. Make sure to they are installed and that the mamba module is on a CUDA device"
)
return self.cuda_kernels_forward(hidden_states, cache_params)
return self.slow_forward(hidden_states, cache_params)
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Jamba
class JambaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
# Adapted from transformers.models.mixtral.modeling_mixtral.MixtralSparseMoeBlock with Mistral->Jamba
class JambaSparseMoeBlock(nn.Module):
"""
This implementation is
strictly equivalent to standard MoE with full capacity (no
dropped tokens). It's faster since it formulates MoE operations
in terms of block-sparse operations to accomodate imbalanced
assignments of tokens to experts, whereas standard MoE either
(1) drop tokens at the cost of reduced performance or (2) set
capacity factor to number of experts and thus waste computation
and memory on padding.
"""
def __init__(self, config: JambaConfig):
super().__init__()
self.hidden_dim = config.hidden_size
self.ffn_dim = config.intermediate_size
self.num_experts = config.num_experts
self.top_k = config.num_experts_per_tok
self.router = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
self.experts = nn.ModuleList([JambaMLP(config) for _ in range(self.num_experts)])
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
""" """
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.router(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
if top_x.shape[0] == 0:
continue
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
class JambaAttentionDecoderLayer(nn.Module):
def __init__(self, config: JambaConfig, layer_idx: int):
super().__init__()
num_experts = config.layers_num_experts[layer_idx]
self.self_attn = JAMBA_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
ffn_layer_class = JambaSparseMoeBlock if num_experts > 1 else JambaMLP
self.feed_forward = ffn_layer_class(config)
self.input_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.pre_ff_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`HybridMambaAttentionDynamicCache`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
# residual connection after attention
hidden_states = residual + hidden_states
# feed-forward (experts/MLP)
residual = hidden_states
hidden_states = self.pre_ff_layernorm(hidden_states)
ff_outputs = self.feed_forward(hidden_states)
if isinstance(ff_outputs, tuple):
hidden_states, router_logits = ff_outputs
else:
hidden_states, router_logits = ff_outputs, None
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
if output_router_logits:
outputs += (router_logits,)
return outputs
class JambaMambaDecoderLayer(nn.Module):
def __init__(self, config: JambaConfig, layer_idx: int):
super().__init__()
num_experts = config.layers_num_experts[layer_idx]
self.mamba = JambaMambaMixer(config=config, layer_idx=layer_idx)
ffn_layer_class = JambaSparseMoeBlock if num_experts > 1 else JambaMLP
self.feed_forward = ffn_layer_class(config)
self.input_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.pre_ff_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`HybridMambaAttentionDynamicCache`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.mamba(
hidden_states=hidden_states,
cache_params=past_key_value,
)
self_attn_weights = None
# residual connection after mamba
hidden_states = residual + hidden_states
# feed-forward (experts/MLP)
residual = hidden_states
hidden_states = self.pre_ff_layernorm(hidden_states)
ff_outputs = self.feed_forward(hidden_states)
if isinstance(ff_outputs, tuple):
hidden_states, router_logits = ff_outputs
else:
hidden_states, router_logits = ff_outputs, None
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (past_key_value,)
if output_router_logits:
outputs += (router_logits,)
return outputs
JAMBA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`JambaConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Jamba Model outputting raw hidden-states without any specific head on top.",
JAMBA_START_DOCSTRING,
)
class JambaPreTrainedModel(PreTrainedModel):
config_class = JambaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["JambaAttentionDecoderLayer", "JambaMambaDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
JAMBA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`HybridMambaAttentionDynamicCache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
A HybridMambaAttentionDynamicCache object containing pre-computed hidden-states (keys and values in the
self-attention blocks and convolution and ssm states in the mamba blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
Key and value cache tensors have shape `(batch_size, num_heads, seq_len, head_dim)`.
Convolution and ssm states tensors have shape `(batch_size, d_inner, d_conv)` and
`(batch_size, d_inner, d_state)` respectively.
See the `HybridMambaAttentionDynamicCache` class for more details.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
ALL_DECODER_LAYER_TYPES = {"attention": JambaAttentionDecoderLayer, "mamba": JambaMambaDecoderLayer}
@add_start_docstrings(
"The bare Jamba Model outputting raw hidden-states without any specific head on top.",
JAMBA_START_DOCSTRING,
)
# Adapted from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->JAMBA, Mistral->Jamba
class JambaModel(JambaPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`JambaDecoderLayer`]
Args:
config: JambaConfig
"""
def __init__(self, config: JambaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
decoder_layers = []
for i in range(config.num_hidden_layers):
layer_class = ALL_DECODER_LAYER_TYPES[config.layers_block_type[i]]
decoder_layers.append(layer_class(config, layer_idx=i))
self.layers = nn.ModuleList(decoder_layers)
self._attn_implementation = config._attn_implementation
self.final_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[HybridMambaAttentionDynamicCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, MoeModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
if use_cache and past_key_values is None:
logger.warning_once(
"Jamba requires an initialized `HybridMambaAttentionDynamicCache` to return a cache. None was "
"provided, so no cache will be returned."
)
if cache_position is None:
cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_router_logits = () if output_router_logits else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
output_router_logits,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if output_attentions:
if layer_outputs[1] is not None:
# append attentions only of attention layers. Mamba layers return `None` as the attention weights
all_self_attns += (layer_outputs[1],)
if output_router_logits:
if layer_outputs[-1] is not None:
# append router logits only of expert layers. Regular MLP layers return `None` as the router logits
all_router_logits += (layer_outputs[-1],)
hidden_states = self.final_layernorm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
if past_key_values and not past_key_values.has_previous_state:
past_key_values.has_previous_state = True
next_cache = None if not use_cache else past_key_values
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
if v is not None
)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
router_logits=all_router_logits,
)
def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
target_length = cache_position[-1] + 1
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
if attention_mask.dim() == 2:
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
# Adapted from transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM with MIXTRAL->JAMBA, Mixtral->Jamba
class JambaForCausalLM(JambaPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: JambaConfig):
super().__init__(config)
self.model = JambaModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.router_aux_loss_coef = config.router_aux_loss_coef
self.num_experts = config.num_experts
self.num_experts_per_tok = config.num_experts_per_tok
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
# Ignore copy
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[HybridMambaAttentionDynamicCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: Optional[Union[int, None]] = None,
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
num_logits_to_keep (`int` or `None`, *optional*):
Calculate logits for the last `num_logits_to_keep` tokens. If `None`, calculate logits for all
`input_ids`. Only last token logits are needed for generation, and calculating them only for that token
can save memory, which becomes pretty significant for long sequences.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, JambaForCausalLM
>>> model = JambaForCausalLM.from_pretrained("ai21labs/Jamba-v0.1")
>>> tokenizer = AutoTokenizer.from_pretrained("ai21labs/Jamba-v0.1")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
cache_position=cache_position,
return_dict=return_dict,
)
hidden_states = outputs[0]
if num_logits_to_keep is None:
logits = self.lm_head(hidden_states)
else:
logits = self.lm_head(hidden_states[..., -num_logits_to_keep:, :])
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
aux_loss = None
if output_router_logits:
aux_loss = load_balancing_loss_func(
outputs.router_logits if return_dict else outputs[-1],
self.num_experts,
self.num_experts_per_tok,
attention_mask,
)
if labels is not None:
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
if not return_dict:
output = (logits,) + outputs[1:]
if output_router_logits:
output = (aux_loss,) + output
return (loss,) + output if loss is not None else output
return MoeCausalLMOutputWithPast(
loss=loss,
aux_loss=aux_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
output_router_logits=False,
cache_position=None,
**kwargs,
):
empty_past_kv = past_key_values is None
# Omit tokens covered by past_key_values
if not empty_past_kv:
past_length = cache_position[0] if cache_position is not None else attention_mask.shape[1]
max_cache_length = self.config.sliding_window
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and past_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
else:
past_key_values = HybridMambaAttentionDynamicCache(
self.config, input_ids.shape[0], self.dtype, device=self.device
)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if not empty_past_kv:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and empty_past_kv:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"output_router_logits": output_router_logits,
"num_logits_to_keep": self.config.num_logits_to_keep,
"cache_position": cache_position,
}
)
return model_inputs
@add_start_docstrings(
"""
The Jamba Model with a sequence classification head on top (linear layer).
[`JambaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
JAMBA_START_DOCSTRING,
)
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralForSequenceClassification with Mixtral->Jamba, MIXTRAL->JAMBA
class JambaForSequenceClassification(JambaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = JambaModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
......@@ -4526,6 +4526,34 @@ class InstructBlipVisionModel(metaclass=DummyObject):
requires_backends(self, ["torch"])
class JambaForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class JambaForSequenceClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class JambaModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class JambaPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST = None
......
......@@ -1050,7 +1050,7 @@ class GenerationTesterMixin:
for model_class in self.all_generative_model_classes:
if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer", "speech2text"]):
self.skipTest("Won't fix: old model with different cache format")
if any(model_name in model_class.__name__.lower() for model_name in ["gptbigcode"]):
if any(model_name in model_class.__name__.lower() for model_name in ["gptbigcode", "jamba"]):
self.skipTest("TODO: fix me")
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config(batch_size=1)
......@@ -1098,6 +1098,7 @@ class GenerationTesterMixin:
"transo_xl",
"xlnet",
"cpm",
"jamba",
]
):
self.skipTest("May fix in the future: need model-specific fixes")
......@@ -1735,11 +1736,12 @@ class GenerationTesterMixin:
use_cache=use_cache,
)
# Past Key Value States -- two notes here:
# Past Key Value States -- a few notes here:
# 1. Its inner sequence length is with respect to the inputs of the latest forward pass, hence the "-1"
# 2. Some old models still return `output.past_key_values` even without `use_cache=True`
# 3. TODO (joao): A few models have different formats, skipping those until the cache refactor is complete
models_without_standard_cache = ("bloom", "ctrl", "fsmt", "gptbigcode", "mega", "reformer")
# 3. TODO (joao): A few models have different formats/types, skipping those until the cache refactor is
# complete
models_without_standard_cache = ("bloom", "ctrl", "fsmt", "gptbigcode", "mega", "reformer", "jamba")
has_standard_cache = not any(
model_name in config.__class__.__name__.lower() for model_name in models_without_standard_cache
)
......
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Jamba model. """
import math
import tempfile
import unittest
import pytest
from parameterized import parameterized
from transformers import AutoTokenizer, JambaConfig, is_torch_available
from transformers.testing_utils import (
require_bitsandbytes,
require_flash_attn,
require_torch,
require_torch_gpu,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
JambaForCausalLM,
JambaForSequenceClassification,
JambaModel,
)
from transformers.models.jamba.modeling_jamba import (
HybridMambaAttentionDynamicCache,
)
class JambaModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
attn_layer_offset=1,
attn_layer_period=8,
num_attention_heads=4,
num_key_value_heads=2,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.attn_layer_offset = attn_layer_offset
self.attn_layer_period = attn_layer_period
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return JambaConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
attn_layer_offset=self.attn_layer_offset,
attn_layer_period=self.attn_layer_period,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=True,
initializer_range=self.initializer_range,
use_mamba_kernels=False,
num_experts=2,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
return (
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = JambaModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
):
model = JambaForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids, labels=token_labels)
result = model(input_ids)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
):
config.is_decoder = True
config.add_cross_attention = True
model = JambaForCausalLM(config=config)
model.to(torch_device)
model.eval()
# first forward pass
# Attention: Jamba needs the cache to be initialized to return a cache!
past_key_values = HybridMambaAttentionDynamicCache(
config, input_ids.shape[0], model.dtype, device=model.device
)
outputs = model(
input_ids,
attention_mask=input_mask,
past_key_values=past_key_values,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
cache_position=torch.arange(
input_ids.shape[1], input_ids.shape[1] + next_tokens.shape[1], device=model.device
),
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_for_sequence_classification(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = JambaForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class JambaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
JambaModel,
JambaForCausalLM,
JambaForSequenceClassification,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (JambaForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": JambaModel,
"text-classification": JambaForSequenceClassification,
"text-generation": JambaForCausalLM,
"zero-shot": JambaForSequenceClassification,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
def setUp(self):
self.model_tester = JambaModelTester(self)
self.config_tester = ConfigTester(self, config_class=JambaConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_casual_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_load_balancing_loss(self):
r"""
Let's make sure we can actually compute the loss and do a backward on it.
"""
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.num_experts = 16
config.output_router_logits = True
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(config.pad_token_id).to(torch_device)
model = JambaForCausalLM(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask)
bs, seqlen = input_ids.shape
self.assertEqual(result.router_logits[0].shape, (bs * seqlen, config.num_experts))
torch.testing.assert_close(result.aux_loss.cpu(), torch.tensor(2, dtype=torch.float32), rtol=1e-2, atol=1e-2)
# First, we make sure that adding padding tokens doesn't change the loss
# loss(input_ids, attention_mask=None) == loss(input_ids + padding, attention_mask=attention_mask_with_padding)
pad_length = 1000
# Add padding tokens to input_ids
padding_block = config.pad_token_id * torch.ones(input_ids.shape[0], pad_length, dtype=torch.int32).to(
torch_device
)
padded_input_ids = torch.cat((padding_block, input_ids), dim=1) # this is to simulate padding to the left
padded_attention_mask = padded_input_ids.ne(config.pad_token_id).to(torch_device)
padded_result = model(padded_input_ids, attention_mask=padded_attention_mask)
torch.testing.assert_close(result.aux_loss.cpu(), padded_result.aux_loss.cpu(), rtol=1e-4, atol=1e-4)
# We make sure that the loss of including padding tokens != the loss without padding tokens
# if attention_mask=None --> we don't exclude padding tokens
include_padding_result = model(padded_input_ids, attention_mask=None)
# This is to mimic torch.testing.assert_not_close
self.assertNotAlmostEqual(include_padding_result.aux_loss.item(), result.aux_loss.item())
def test_initialization(self):
r"""
Overriding the test_initialization test as the A_log and D params of the Mamba block are initialized differently
"""
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
if "A_log" in name:
A = torch.arange(1, config.mamba_d_state + 1, dtype=torch.float32)[None, :]
self.assertTrue(torch.allclose(param.data, torch.log(A), atol=1e-5, rtol=1e-5))
elif "D" in name:
# check if it's a ones like
self.assertTrue(torch.allclose(param.data, torch.ones_like(param.data), atol=1e-5, rtol=1e-5))
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def test_mismatched_shapes_have_properly_initialized_weights(self):
r"""
Overriding the test_mismatched_shapes_have_properly_initialized_weights test because A_log and D params of the
Mamba block are initialized differently and we tested that in test_initialization
"""
self.skipTest("Cumbersome and redundant for Jamba")
def test_attention_outputs(self):
r"""
Overriding the test_attention_outputs test as the Jamba model outputs attention only for its attention layers
"""
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_len = getattr(self.model_tester, "seq_length", None)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
expected_num_attentions = math.ceil(
(self.model_tester.num_hidden_layers - self.model_tester.attn_layer_offset)
/ self.model_tester.attn_layer_period
)
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), expected_num_attentions)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), expected_num_attentions)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), expected_num_attentions)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
def test_left_padding_compatibility(self):
r"""
Overriding the test_left_padding_compatibility test as the mamba layers accentuate the numerical differences
effect of the left padding discussed in the issue in the note. Using a more permissive tolerance value.
"""
import inspect
# NOTE: left-padding results in small numerical differences. This is expected.
# See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535
# First, filter out models that don't support left padding - generative and decoder-only.
# Jamba is a decoder-only architecture
decoder_only_classes = self.all_generative_model_classes
# Then, test left-padding
def _prepare_model_kwargs(input_ids, attention_mask, signature):
model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask}
if "position_ids" in signature:
position_ids = torch.cumsum(attention_mask, dim=-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
model_kwargs["position_ids"] = position_ids
if "cache_position" in signature:
cache_position = torch.arange(input_ids.shape[-1], device=torch_device)
model_kwargs["cache_position"] = cache_position
return model_kwargs
for model_class in decoder_only_classes:
config, input_ids, attention_mask, _ = self._get_input_ids_and_config()
model = model_class(config).to(torch_device).eval()
signature = inspect.signature(model.forward).parameters.keys()
# Without padding
model_kwargs = _prepare_model_kwargs(input_ids, attention_mask, signature)
next_logits_wo_padding = model(**model_kwargs).logits[:, -1, :]
# With left-padding (length 32)
pad_size = (input_ids.shape[0], 32)
padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * config.pad_token_id
padded_input_ids = torch.cat((padding, input_ids), dim=1)
padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1)
model_kwargs = _prepare_model_kwargs(padded_input_ids, padded_attention_mask, signature)
next_logits_with_padding = model(**model_kwargs).logits[:, -1, :]
# They should result in very similar logits
self.assertTrue(torch.allclose(next_logits_wo_padding, next_logits_with_padding, atol=3e-3))
@require_flash_attn
@require_torch_gpu
@require_bitsandbytes
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_fp32_ln(self):
r"""
Overriding the test_flash_attn_2_fp32_ln test as the Jamba model, like Mixtral, doesn't support
right padding + use cache with FA2
"""
for model_class in self.all_generative_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
dummy_input = inputs_dict[model.main_input_name]
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
# NOTE: Jamba does not support right padding + use_cache with FA2.
dummy_attention_mask[:, -1] = 1
model = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
load_in_4bit=True,
)
for _, param in model.named_parameters():
# upcast only layer norms
if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16):
param.data = param.data.to(torch.float32)
_ = model(dummy_input)
# with attention mask
_ = model(dummy_input, attention_mask=dummy_attention_mask)
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_generate_padding_right(self):
r"""
Overriding the test_flash_attn_2_generate_padding_right test as the Jamba model, like Mixtral, doesn't support
right padding + use cache with FA2
"""
import torch
for model_class in self.all_generative_model_classes:
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
torch_device
)
dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [1, 1, 1, 0]]).to(torch_device)
model.generate(dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False)
model = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
).to(torch_device)
with self.assertRaises(ValueError):
_ = model.generate(
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
)
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_generate_use_cache(self):
r"""
Overriding the test_flash_attn_2_generate_use_cache test as the Jamba model, like Mixtral, doesn't support
right padding + use cache with FA2
"""
import torch
max_new_tokens = 30
for model_class in self.all_generative_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
dummy_input = inputs_dict[model_class.main_input_name]
if dummy_input.dtype in [torch.float32, torch.bfloat16]:
dummy_input = dummy_input.to(torch.float16)
# make sure that all models have enough positions for generation
if hasattr(config, "max_position_embeddings"):
config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
# NOTE: Jamba does not support right padding + use_cache with FA2.
dummy_attention_mask[:, -1] = 1
model = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
).to(torch_device)
# Just test that a large cache works as expected
_ = model.generate(
dummy_input,
attention_mask=dummy_attention_mask,
max_new_tokens=max_new_tokens,
do_sample=False,
use_cache=True,
)
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_inference_equivalence_right_padding(self):
r"""
Overriding the test_flash_attn_2_inference_padding_right test as the Jamba model, like Mixtral, doesn't support
right padding + use cache with FA2
"""
self.skipTest("Jamba flash attention does not support right padding")
@unittest.skip("Jamba has its own special cache type")
@parameterized.expand([(1, False), (1, True), (4, False)])
def test_new_cache_format(self, num_beams, do_sample):
pass
@require_torch
class JambaModelIntegrationTest(unittest.TestCase):
model = None
tokenizer = None
@classmethod
def setUpClass(cls):
model_id = "ai21labs/Jamba-tiny-random"
cls.model = JambaForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)
cls.tokenizer = AutoTokenizer.from_pretrained(model_id)
@slow
def test_simple_generate(self):
self.model.to(torch_device)
input_ids = self.tokenizer("Hey how are you doing on this lovely evening?", return_tensors="pt")[
"input_ids"
].to(torch_device)
out = self.model.generate(input_ids, do_sample=False, max_new_tokens=10)
output_sentence = self.tokenizer.decode(out[0, :])
self.assertEqual(
output_sentence,
"<|startoftext|>Hey how are you doing on this lovely evening? Canyon rins hugaughter glamour Rutgers Singh Hebrew cases Cats",
)
with torch.no_grad():
logits = self.model(input_ids=input_ids).logits
EXPECTED_LOGITS_NO_GRAD = torch.tensor(
[
0.0140, -0.2246, 0.0408, -0.1016, 0.0471, 0.2715, -0.1465, 0.1631,
-0.2949, -0.0297, 0.0250, -0.5586, -0.2139, -0.1426, -0.1602, 0.1309,
0.0703, 0.2236, 0.1729, -0.2285, -0.1152, -0.1177, -0.1367, 0.0289,
0.1245, 0.2363, 0.0442, 0.1094, -0.1348, -0.2295, 0.1494, -0.3945,
0.1777, -0.4570, -0.0408, 0.2412, 0.1562, -0.1943, 0.2373, -0.0593
]
, dtype=torch.float32) # fmt: skip
torch.testing.assert_close(logits[0, -1, :40].cpu(), EXPECTED_LOGITS_NO_GRAD, rtol=1e-3, atol=1e-3)
@slow
def test_simple_batched_generate_with_padding(self):
self.model.to(torch_device)
inputs = self.tokenizer(
["Hey how are you doing on this lovely evening?", "Tell me a story"], padding=True, return_tensors="pt"
).to(torch_device)
out = self.model.generate(**inputs, do_sample=False, max_new_tokens=10)
output_sentences = self.tokenizer.batch_decode(out)
self.assertEqual(
output_sentences[0],
"<|startoftext|>Hey how are you doing on this lovely evening? Canyon rins hugaughter glamour Rutgers Singh Hebrew cases Cats",
)
self.assertEqual(
output_sentences[1],
"<|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|startoftext|>Tell me a storyptus Nets Madison El chamadamodern updximVaparsed",
)
with torch.no_grad():
logits = self.model(input_ids=inputs["input_ids"]).logits
EXPECTED_LOGITS_NO_GRAD_0 = torch.tensor(
[
0.0140, -0.2246, 0.0408, -0.1016, 0.0471, 0.2715, -0.1465, 0.1631,
-0.2949, -0.0297, 0.0250, -0.5586, -0.2139, -0.1426, -0.1602, 0.1309,
0.0703, 0.2236, 0.1729, -0.2285, -0.1152, -0.1177, -0.1367, 0.0289,
0.1245, 0.2363, 0.0442, 0.1094, -0.1348, -0.2295, 0.1494, -0.3945,
0.1777, -0.4570, -0.0408, 0.2412, 0.1562, -0.1943, 0.2373, -0.0593
]
, dtype=torch.float32) # fmt: skip
EXPECTED_LOGITS_NO_GRAD_1 = torch.tensor(
[
-0.1289, 0.2363, -0.4180, -0.0302, -0.0476, 0.0327, 0.2578, 0.0874,
0.1484, 0.2305, -0.1152, -0.1396, -0.1494, -0.1113, -0.0021, -0.2832,
0.2002, -0.2676, 0.0598, -0.1982, -0.2539, -0.1133, -0.1973, 0.2148,
0.0559, 0.1670, 0.1846, 0.1270, 0.1680, -0.1250, -0.2656, -0.2871,
0.2344, 0.2637, 0.0510, -0.1855, 0.2158, -0.1289, 0.1758, 0.0074
]
, dtype=torch.float32) # fmt: skip
torch.testing.assert_close(logits[0, -1, :40].cpu(), EXPECTED_LOGITS_NO_GRAD_0, rtol=1e-3, atol=1e-3)
torch.testing.assert_close(logits[1, -1, :40].cpu(), EXPECTED_LOGITS_NO_GRAD_1, rtol=1e-3, atol=1e-3)
......@@ -32,6 +32,15 @@ transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
CONFIG_MAPPING = transformers.models.auto.configuration_auto.CONFIG_MAPPING
SPECIAL_CASES_TO_ALLOW = {
# 'max_position_embeddings' is not used in modeling file, but needed for eval frameworks like Huggingface's lighteval (https://github.com/huggingface/lighteval/blob/af24080ea4f16eaf1683e353042a2dfc9099f038/src/lighteval/models/base_model.py#L264).
# periods and offsers are not used in modeling file, but used in the configuration file to define `layers_block_type` and `layers_num_experts`.
"JambaConfig": [
"max_position_embeddings",
"attn_layer_offset",
"attn_layer_period",
"expert_layer_offset",
"expert_layer_period",
],
# used to compute the property `self.chunk_length`
"EncodecConfig": ["overlap"],
# used to compute the property `self.layers_block_type`
......
......@@ -631,6 +631,8 @@ src/transformers/models/instructblip/configuration_instructblip.py
src/transformers/models/instructblip/convert_instructblip_original_to_pytorch.py
src/transformers/models/instructblip/modeling_instructblip.py
src/transformers/models/instructblip/processing_instructblip.py
src/transformers/models/jamba/configuration_jamba.py
src/transformers/models/jamba/modeling_jamba.py
src/transformers/models/jukebox/configuration_jukebox.py
src/transformers/models/jukebox/convert_jukebox.py
src/transformers/models/jukebox/modeling_jukebox.py
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment