Unverified Commit 3ec10e6c authored by NielsRogge's avatar NielsRogge Committed by GitHub
Browse files

Add DINOv2 (#24016)

* First draft

* More improvements

* Convert patch embedding layer

* Convert all weights

* Make conversion work

* Improve conversion script

* Fix style

* Make all tests pass

* Add image processor to auto mapping

* Add swiglu ffn

* Add image processor to conversion script

* Fix conversion of giant model

* Fix documentation

* Fix style

* Fix tests

* Address comments

* Address more comments

* Remove unused arguments

* Remove more arguments

* Rename parameters

* Include mask token

* Address comments

* Add docstring

* Transfer checkpoints

* Empty commit
parent 57da42ad
# coding=utf-8
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch DINOv2 model."""
import collections.abc
import math
from typing import Dict, List, Optional, Set, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPooling,
ImageClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_dinov2 import Dinov2Config
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "Dinov2Config"
# Base docstring
_CHECKPOINT_FOR_DOC = "facebook/dinov2-base"
_EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "facebook/dinov2-base-patch16-224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat"
DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/dinov2-base",
# See all DINOv2 models at https://huggingface.co/models?filter=dinov2
]
class Dinov2Embeddings(nn.Module):
"""
Construct the CLS token, mask token, position and patch embeddings.
"""
def __init__(self, config: Dinov2Config) -> None:
super().__init__()
self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size))
self.mask_token = nn.Parameter(torch.zeros(1, config.hidden_size))
self.patch_embeddings = Dinov2PatchEmbeddings(config)
num_patches = self.patch_embeddings.num_patches
self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size))
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.config = config
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
resolution images.
Source:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
"""
num_patches = embeddings.shape[1] - 1
num_positions = self.position_embeddings.shape[1] - 1
if num_patches == num_positions and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, 0]
patch_pos_embed = self.position_embeddings[:, 1:]
dim = embeddings.shape[-1]
height = height // self.config.patch_size
width = width // self.config.patch_size
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
height, width = height + 0.1, width + 0.1
patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
scale_factor=(height / math.sqrt(num_positions), width / math.sqrt(num_positions)),
mode="bicubic",
align_corners=False,
)
if int(height) != patch_pos_embed.shape[-2] or int(width) != patch_pos_embed.shape[-1]:
raise ValueError("Width or height does not match with the interpolated position embeddings")
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
def forward(self, pixel_values: torch.Tensor, bool_masked_pos: torch.Tensor) -> torch.Tensor:
batch_size, _, height, width = pixel_values.shape
embeddings = self.patch_embeddings(pixel_values)
if bool_masked_pos is not None:
embeddings = torch.where(
bool_masked_pos.unsqueeze(-1), self.mask_token.to(embeddings.dtype).unsqueeze(0), embeddings
)
# add the [CLS] token to the embedded patch tokens
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
# add positional encoding to each token
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
embeddings = self.dropout(embeddings)
return embeddings
class Dinov2PatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
num_channels = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
f" Expected {self.num_channels} but got {num_channels}."
)
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
return embeddings
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->Dinov2
class Dinov2SelfAttention(nn.Module):
def __init__(self, config: Dinov2Config) -> None:
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Dinov2
class Dinov2SelfOutput(nn.Module):
"""
The residual connection is defined in Dinov2Layer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config: Dinov2Config) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->Dinov2
class Dinov2Attention(nn.Module):
def __init__(self, config: Dinov2Config) -> None:
super().__init__()
self.attention = Dinov2SelfAttention(config)
self.output = Dinov2SelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads: Set[int]) -> None:
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_outputs = self.attention(hidden_states, head_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class Dinov2LayerScale(nn.Module):
def __init__(self, config) -> None:
super().__init__()
self.lambda1 = nn.Parameter(config.layerscale_value * torch.ones(config.hidden_size))
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
return hidden_state * self.lambda1
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath
class Dinov2DropPath:
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class Dinov2MLP(nn.Module):
def __init__(self, config) -> None:
super().__init__()
in_features = out_features = config.hidden_size
hidden_features = int(config.hidden_size * config.mlp_ratio)
self.fc1 = nn.Linear(in_features, hidden_features, bias=True)
if isinstance(config.hidden_act, str):
self.activation = ACT2FN[config.hidden_act]
else:
self.activation = config.hidden_act
self.fc2 = nn.Linear(hidden_features, out_features, bias=True)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
hidden_state = self.fc1(hidden_state)
hidden_state = self.activation(hidden_state)
hidden_state = self.fc2(hidden_state)
return hidden_state
class Dinov2SwiGLUFFN(nn.Module):
def __init__(self, config) -> None:
super().__init__()
in_features = out_features = config.hidden_size
hidden_features = int(config.hidden_size * config.mlp_ratio)
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
self.weights_in = nn.Linear(in_features, 2 * hidden_features, bias=True)
self.weights_out = nn.Linear(hidden_features, out_features, bias=True)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
hidden_state = self.weights_in(hidden_state)
x1, x2 = hidden_state.chunk(2, dim=-1)
hidden = nn.functional.silu(x1) * x2
return self.weights_out(hidden)
class Dinov2Layer(nn.Module):
"""This corresponds to the Block class in the original implementation."""
def __init__(self, config: Dinov2Config) -> None:
super().__init__()
self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.attention = Dinov2Attention(config)
self.layer_scale1 = Dinov2LayerScale(config)
self.drop_path1 = Dinov2DropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity()
self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
if config.use_swiglu_ffn:
self.mlp = Dinov2SwiGLUFFN(config)
else:
self.mlp = Dinov2MLP(config)
self.layer_scale2 = Dinov2LayerScale(config)
self.drop_path2 = Dinov2DropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity()
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_attention_outputs = self.attention(
self.norm1(hidden_states), # in Dinov2, layernorm is applied before self-attention
head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
attention_output = self.layer_scale1(attention_output)
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# first residual connection
hidden_states = attention_output + hidden_states
# in Dinov2, layernorm is also applied after self-attention
layer_output = self.norm2(hidden_states)
layer_output = self.mlp(layer_output)
layer_output = self.layer_scale2(layer_output)
# second residual connection
layer_output = layer_output + hidden_states
outputs = (layer_output,) + outputs
return outputs
# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->Dinov2
class Dinov2Encoder(nn.Module):
def __init__(self, config: Dinov2Config) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([Dinov2Layer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
layer_head_mask,
)
else:
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class Dinov2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Dinov2Config
base_model_prefix = "dinov2"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
# `trunc_normal_cpu` not implemented in `half` issues
module.weight.data = nn.init.trunc_normal_(
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
).to(module.weight.dtype)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, Dinov2Embeddings):
module.position_embeddings.data = nn.init.trunc_normal_(
module.position_embeddings.data.to(torch.float32),
mean=0.0,
std=self.config.initializer_range,
).to(module.position_embeddings.dtype)
module.cls_token.data = nn.init.trunc_normal_(
module.cls_token.data.to(torch.float32),
mean=0.0,
std=self.config.initializer_range,
).to(module.cls_token.dtype)
def _set_gradient_checkpointing(self, module: Dinov2Encoder, value: bool = False) -> None:
if isinstance(module, Dinov2Encoder):
module.gradient_checkpointing = value
DINOV2_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`Dinov2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DINOV2_BASE_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`BitImageProcessor.preprocess`] for details.
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Only relevant for
pre-training.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
DINOV2_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`BitImageProcessor.preprocess`] for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare DINOv2 Model transformer outputting raw hidden-states without any specific head on top.",
DINOV2_START_DOCSTRING,
)
class Dinov2Model(Dinov2PreTrainedModel):
def __init__(self, config: Dinov2Config, add_pooling_layer: bool = True):
super().__init__(config)
self.config = config
self.embeddings = Dinov2Embeddings(config)
self.encoder = Dinov2Encoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pooler = Dinov2Pooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> Dinov2PatchEmbeddings:
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(DINOV2_BASE_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos)
encoder_outputs = self.encoder(
embedding_output,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
return head_outputs + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
# Copied from transformers.models.vit.modeling_vit.ViTPooler with ViT->Dinov2
class Dinov2Pooler(nn.Module):
def __init__(self, config: Dinov2Config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
@add_start_docstrings(
"""
Dinov2 Model transformer with an image classification head on top (a linear layer on top of the final hidden state
of the [CLS] token) e.g. for ImageNet.
""",
DINOV2_START_DOCSTRING,
)
class Dinov2ForImageClassification(Dinov2PreTrainedModel):
def __init__(self, config: Dinov2Config) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.dinov2 = Dinov2Model(config, add_pooling_layer=False)
# Classifier head
self.classifier = (
nn.Linear(config.hidden_size * 2, config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.dinov2(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0] # batch_size, sequence_length, hidden_size
cls_token = sequence_output[:, 0]
patch_tokens = sequence_output[:, 1:]
linear_input = torch.cat([cls_token, patch_tokens.mean(dim=1)], dim=1)
logits = self.classifier(linear_input)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
...@@ -2540,6 +2540,30 @@ class DinatPreTrainedModel(metaclass=DummyObject): ...@@ -2540,6 +2540,30 @@ class DinatPreTrainedModel(metaclass=DummyObject):
requires_backends(self, ["torch"]) requires_backends(self, ["torch"])
DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST = None
class Dinov2ForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Dinov2Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class Dinov2PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
......
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Dinov2 model. """
import inspect
import unittest
from transformers import Dinov2Config
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import Dinov2ForImageClassification, Dinov2Model
from transformers.models.dinov2.modeling_dinov2 import DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class Dinov2ModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_sequence_label_size=10,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.scope = scope
# in Dinov2, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return Dinov2Config(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
is_decoder=False,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values, labels):
model = Dinov2Model(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_image_classification(self, config, pixel_values, labels):
config.num_labels = self.type_sequence_label_size
model = Dinov2ForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
# test greyscale images
config.num_channels = 1
model = Dinov2ForImageClassification(config)
model.to(torch_device)
model.eval()
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
result = model(pixel_values)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
pixel_values,
labels,
) = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class Dinov2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as Dinov2 does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (Dinov2Model, Dinov2ForImageClassification) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": Dinov2Model, "image-classification": Dinov2ForImageClassification}
if is_torch_available()
else {}
)
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = Dinov2ModelTester(self)
self.config_tester = ConfigTester(self, config_class=Dinov2Config, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="Dinov2 does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = Dinov2Model.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class Dinov2ModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return AutoImageProcessor.from_pretrained("facebook/dinov2-base") if is_vision_available() else None
@slow
def test_inference_no_head(self):
model = Dinov2Model.from_pretrained("facebook/dinov2-base").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the last hidden states
expected_shape = torch.Size((1, 257, 768))
self.assertEqual(outputs.last_hidden_state.shape, expected_shape)
expected_slice = torch.tensor(
[[-2.1747, -0.4729, 1.0936], [-3.2780, -0.8269, -0.9210], [-2.9129, 1.1284, -0.7306]],
device=torch_device,
)
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment