Unverified Commit 3e58b6b7 authored by Joe Davison's avatar Joe Davison Committed by GitHub
Browse files

infer entailment label id on zero shot pipeline (#8059)

* add entailment dim argument

* rename dim -> id

* fix last name change, style

* rm arg, auto-infer only

* typo

* rm superfluous import
parent 9fefdb07
...@@ -1085,8 +1085,8 @@ class ZeroShotClassificationPipeline(Pipeline): ...@@ -1085,8 +1085,8 @@ class ZeroShotClassificationPipeline(Pipeline):
Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis
pair and passed to the pretrained model. Then, the logit for `entailment` is taken as the logit for the candidate pair and passed to the pretrained model. Then, the logit for `entailment` is taken as the logit for the candidate
label being valid. Any NLI model can be used as long as the first output logit corresponds to `contradiction` and label being valid. Any NLI model can be used, but the id of the `entailment` label must be included in the model
the last to `entailment`. config's :attr:`~transformers.PretrainedConfig.label2id`.
This NLI pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier: This NLI pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task identifier:
:obj:`"zero-shot-classification"`. :obj:`"zero-shot-classification"`.
...@@ -1097,6 +1097,18 @@ class ZeroShotClassificationPipeline(Pipeline): ...@@ -1097,6 +1097,18 @@ class ZeroShotClassificationPipeline(Pipeline):
def __init__(self, args_parser=ZeroShotClassificationArgumentHandler(), *args, **kwargs): def __init__(self, args_parser=ZeroShotClassificationArgumentHandler(), *args, **kwargs):
super().__init__(*args, args_parser=args_parser, **kwargs) super().__init__(*args, args_parser=args_parser, **kwargs)
if self.entailment_id == -1:
logger.warning(
"Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to "
"-1. Define a descriptive label2id mapping in the model config to ensure correct outputs."
)
@property
def entailment_id(self):
for label, ind in self.model.config.label2id.items():
if label.lower().startswith("entail"):
return ind
return -1
def _parse_and_tokenize(self, *args, padding=True, add_special_tokens=True, **kwargs): def _parse_and_tokenize(self, *args, padding=True, add_special_tokens=True, **kwargs):
""" """
...@@ -1115,7 +1127,8 @@ class ZeroShotClassificationPipeline(Pipeline): ...@@ -1115,7 +1127,8 @@ class ZeroShotClassificationPipeline(Pipeline):
def __call__(self, sequences, candidate_labels, hypothesis_template="This example is {}.", multi_class=False): def __call__(self, sequences, candidate_labels, hypothesis_template="This example is {}.", multi_class=False):
""" """
Classify the sequence(s) given as inputs. Classify the sequence(s) given as inputs. See the :obj:`~transformers.ZeroShotClassificationPipeline`
documentation for more information.
Args: Args:
sequences (:obj:`str` or :obj:`List[str]`): sequences (:obj:`str` or :obj:`List[str]`):
...@@ -1153,11 +1166,13 @@ class ZeroShotClassificationPipeline(Pipeline): ...@@ -1153,11 +1166,13 @@ class ZeroShotClassificationPipeline(Pipeline):
if not multi_class: if not multi_class:
# softmax the "entailment" logits over all candidate labels # softmax the "entailment" logits over all candidate labels
entail_logits = reshaped_outputs[..., -1] entail_logits = reshaped_outputs[..., self.entailment_id]
scores = np.exp(entail_logits) / np.exp(entail_logits).sum(-1, keepdims=True) scores = np.exp(entail_logits) / np.exp(entail_logits).sum(-1, keepdims=True)
else: else:
# softmax over the entailment vs. contradiction dim for each label independently # softmax over the entailment vs. contradiction dim for each label independently
entail_contr_logits = reshaped_outputs[..., [0, -1]] entailment_id = self.entailment_id
contradiction_id = -1 if entailment_id == 0 else 0
entail_contr_logits = reshaped_outputs[..., [contradiction_id, entailment_id]]
scores = np.exp(entail_contr_logits) / np.exp(entail_contr_logits).sum(-1, keepdims=True) scores = np.exp(entail_contr_logits) / np.exp(entail_contr_logits).sum(-1, keepdims=True)
scores = scores[..., 1] scores = scores[..., 1]
......
import unittest import unittest
from copy import deepcopy
from transformers.pipelines import Pipeline from transformers.pipelines import Pipeline
...@@ -18,6 +19,24 @@ class ZeroShotClassificationPipelineTests(CustomInputPipelineCommonMixin, unitte ...@@ -18,6 +19,24 @@ class ZeroShotClassificationPipelineTests(CustomInputPipelineCommonMixin, unitte
sum += score sum += score
self.assertAlmostEqual(sum, 1.0) self.assertAlmostEqual(sum, 1.0)
def _test_entailment_id(self, nlp: Pipeline):
config = nlp.model.config
original_config = deepcopy(config)
config.label2id = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2}
self.assertEqual(nlp.entailment_id, -1)
config.label2id = {"entailment": 0, "neutral": 1, "contradiction": 2}
self.assertEqual(nlp.entailment_id, 0)
config.label2id = {"ENTAIL": 0, "NON-ENTAIL": 1}
self.assertEqual(nlp.entailment_id, 0)
config.label2id = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0}
self.assertEqual(nlp.entailment_id, 2)
nlp.model.config = original_config
def _test_pipeline(self, nlp: Pipeline): def _test_pipeline(self, nlp: Pipeline):
output_keys = {"sequence", "labels", "scores"} output_keys = {"sequence", "labels", "scores"}
valid_mono_inputs = [ valid_mono_inputs = [
...@@ -59,6 +78,8 @@ class ZeroShotClassificationPipelineTests(CustomInputPipelineCommonMixin, unitte ...@@ -59,6 +78,8 @@ class ZeroShotClassificationPipelineTests(CustomInputPipelineCommonMixin, unitte
] ]
self.assertIsNotNone(nlp) self.assertIsNotNone(nlp)
self._test_entailment_id(nlp)
for mono_input in valid_mono_inputs: for mono_input in valid_mono_inputs:
mono_result = nlp(**mono_input) mono_result = nlp(**mono_input)
self.assertIsInstance(mono_result, dict) self.assertIsInstance(mono_result, dict)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment