Unverified Commit 3e47d19c authored by Yih-Dar's avatar Yih-Dar Committed by GitHub
Browse files

Add missing ckpt in config docs (#16900)



* add missing ckpt in config docs

* add more missing ckpt in config docs

* fix wrong ckpts

* fix realm ckpt

* fix s2t2

* fix xlm_roberta ckpt

* Fix for deberta v2

* Apply suggestions from code review
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* use only one checkpoint for DPR

* Apply suggestions from code review
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: default avatarydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>
parent 3a71e94a
...@@ -30,7 +30,7 @@ class MegatronBertConfig(PretrainedConfig): ...@@ -30,7 +30,7 @@ class MegatronBertConfig(PretrainedConfig):
This is the configuration class to store the configuration of a [`MegatronBertModel`]. It is used to instantiate a This is the configuration class to store the configuration of a [`MegatronBertModel`]. It is used to instantiate a
MEGATRON_BERT model according to the specified arguments, defining the model architecture. Instantiating a MEGATRON_BERT model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the MEGATRON_BERT configuration with the defaults will yield a similar configuration to that of the MEGATRON_BERT
[megatron-bert-uncased-345m](https://huggingface.co/nvidia/megatron-bert-uncased-345m) architecture. [nvidia/megatron-bert-uncased-345m](https://huggingface.co/nvidia/megatron-bert-uncased-345m) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. documentation from [`PretrainedConfig`] for more information.
......
...@@ -21,7 +21,7 @@ from ...utils import logging ...@@ -21,7 +21,7 @@ from ...utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/config.json" "google/mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/config.json"
} }
...@@ -29,6 +29,8 @@ class MobileBertConfig(PretrainedConfig): ...@@ -29,6 +29,8 @@ class MobileBertConfig(PretrainedConfig):
r""" r"""
This is the configuration class to store the configuration of a [`MobileBertModel`] or a [`TFMobileBertModel`]. It This is the configuration class to store the configuration of a [`MobileBertModel`] or a [`TFMobileBertModel`]. It
is used to instantiate a MobileBERT model according to the specified arguments, defining the model architecture. is used to instantiate a MobileBERT model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileBERT
[google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. documentation from [`PretrainedConfig`] for more information.
......
...@@ -31,7 +31,7 @@ class MPNetConfig(PretrainedConfig): ...@@ -31,7 +31,7 @@ class MPNetConfig(PretrainedConfig):
This is the configuration class to store the configuration of a [`MPNetModel`] or a [`TFMPNetModel`]. It is used to This is the configuration class to store the configuration of a [`MPNetModel`] or a [`TFMPNetModel`]. It is used to
instantiate a MPNet model according to the specified arguments, defining the model architecture. Instantiating a instantiate a MPNet model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the MPNet configuration with the defaults will yield a similar configuration to that of the MPNet
[mpnet-base](https://huggingface.co/mpnet-base) architecture. [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. documentation from [`PretrainedConfig`] for more information.
......
...@@ -28,8 +28,8 @@ class OpenAIGPTConfig(PretrainedConfig): ...@@ -28,8 +28,8 @@ class OpenAIGPTConfig(PretrainedConfig):
""" """
This is the configuration class to store the configuration of a [`OpenAIGPTModel`] or a [`TFOpenAIGPTModel`]. It is This is the configuration class to store the configuration of a [`OpenAIGPTModel`] or a [`TFOpenAIGPTModel`]. It is
used to instantiate a GPT model according to the specified arguments, defining the model architecture. used to instantiate a GPT model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Instantiating a configuration with the defaults will yield a similar configuration to that of the GPT
[GPT](https://huggingface.co/openai-gpt) architecture from OpenAI. [openai-gpt](https://huggingface.co/openai-gpt) architecture from OpenAI.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. documentation from [`PretrainedConfig`] for more information.
......
...@@ -29,7 +29,9 @@ PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP = { ...@@ -29,7 +29,9 @@ PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
class ProphetNetConfig(PretrainedConfig): class ProphetNetConfig(PretrainedConfig):
r""" r"""
This is the configuration class to store the configuration of a [`ProphetNetModel`]. It is used to instantiate a This is the configuration class to store the configuration of a [`ProphetNetModel`]. It is used to instantiate a
ProphetNet model according to the specified arguments, defining the model architecture. ProphetNet model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the ProphetNet
[microsoft/prophetnet-large-uncased](https://huggingface.co/microsoft/prophetnet-large-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. documentation from [`PretrainedConfig`] for more information.
......
...@@ -46,7 +46,8 @@ class RealmConfig(PretrainedConfig): ...@@ -46,7 +46,8 @@ class RealmConfig(PretrainedConfig):
It is used to instantiate an REALM model according to the specified arguments, defining the model architecture. It is used to instantiate an REALM model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the REALM Instantiating a configuration with the defaults will yield a similar configuration to that of the REALM
[realm-cc-news-pretrained](https://huggingface.co/google/realm-cc-news-pretrained-embedder) architecture. [google/realm-cc-news-pretrained-embedder](https://huggingface.co/google/realm-cc-news-pretrained-embedder)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. documentation from [`PretrainedConfig`] for more information.
......
...@@ -30,7 +30,9 @@ REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { ...@@ -30,7 +30,9 @@ REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
class ReformerConfig(PretrainedConfig): class ReformerConfig(PretrainedConfig):
r""" r"""
This is the configuration class to store the configuration of a [`ReformerModel`]. It is used to instantiate a This is the configuration class to store the configuration of a [`ReformerModel`]. It is used to instantiate a
Reformer model according to the specified arguments, defining the model architecture. Reformer model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the ReFormer
[google/reformer-crime-and-punishment](https://huggingface.co/google/reformer-crime-and-punishment) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. documentation from [`PretrainedConfig`] for more information.
......
...@@ -21,7 +21,7 @@ from ...utils import logging ...@@ -21,7 +21,7 @@ from ...utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP = { REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"regnety-40": "https://huggingface.co/zuppif/regnety-040/blob/main/config.json", "facebook/regnet-y-040": "https://huggingface.co/facebook/regnet-y-040/blob/main/config.json",
} }
...@@ -29,8 +29,8 @@ class RegNetConfig(PretrainedConfig): ...@@ -29,8 +29,8 @@ class RegNetConfig(PretrainedConfig):
r""" r"""
This is the configuration class to store the configuration of a [`RegNetModel`]. It is used to instantiate a RegNet This is the configuration class to store the configuration of a [`RegNetModel`]. It is used to instantiate a RegNet
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the defaults will yield a similar configuration to that of the RegNet
[facebook/regnet-y-40](https://huggingface.co/facebook/regnet-y-40) architecture. [facebook/regnet-y-040](https://huggingface.co/facebook/regnet-y-040) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. documentation from [`PretrainedConfig`] for more information.
......
...@@ -30,7 +30,8 @@ class RemBertConfig(PretrainedConfig): ...@@ -30,7 +30,8 @@ class RemBertConfig(PretrainedConfig):
r""" r"""
This is the configuration class to store the configuration of a [`RemBertModel`]. It is used to instantiate an This is the configuration class to store the configuration of a [`RemBertModel`]. It is used to instantiate an
RemBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration RemBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the remert-large architecture. with the defaults will yield a similar configuration to that of the RemBERT
[google/rembert](https://huggingface.co/google/rembert) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. documentation from [`PretrainedConfig`] for more information.
......
...@@ -21,7 +21,7 @@ from ...utils import logging ...@@ -21,7 +21,7 @@ from ...utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP = { RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
} }
...@@ -29,8 +29,8 @@ class ResNetConfig(PretrainedConfig): ...@@ -29,8 +29,8 @@ class ResNetConfig(PretrainedConfig):
r""" r"""
This is the configuration class to store the configuration of a [`ResNetModel`]. It is used to instantiate an This is the configuration class to store the configuration of a [`ResNetModel`]. It is used to instantiate an
ResNet model according to the specified arguments, defining the model architecture. Instantiating a configuration ResNet model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the with the defaults will yield a similar configuration to that of the ResNet
[resnet-50](https://huggingface.co/microsoft/resnet-50) architecture. [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. documentation from [`PretrainedConfig`] for more information.
......
...@@ -22,14 +22,16 @@ logger = logging.get_logger(__name__) ...@@ -22,14 +22,16 @@ logger = logging.get_logger(__name__)
# TODO: upload to AWS # TODO: upload to AWS
RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"retribert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "yjernite/retribert-base-uncased": "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json",
} }
class RetriBertConfig(PretrainedConfig): class RetriBertConfig(PretrainedConfig):
r""" r"""
This is the configuration class to store the configuration of a [`RetriBertModel`]. It is used to instantiate a This is the configuration class to store the configuration of a [`RetriBertModel`]. It is used to instantiate a
RetriBertModel model according to the specified arguments, defining the model architecture. RetriBertModel model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the RetriBERT
[yjernite/retribert-base-uncased](https://huggingface.co/yjernite/retribert-base-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. documentation from [`PretrainedConfig`] for more information.
......
...@@ -38,7 +38,8 @@ class RobertaConfig(BertConfig): ...@@ -38,7 +38,8 @@ class RobertaConfig(BertConfig):
r""" r"""
This is the configuration class to store the configuration of a [`RobertaModel`] or a [`TFRobertaModel`]. It is This is the configuration class to store the configuration of a [`RobertaModel`] or a [`TFRobertaModel`]. It is
used to instantiate a RoBERTa model according to the specified arguments, defining the model architecture. used to instantiate a RoBERTa model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the RoBERTa
[roberta-base](https://huggingface.co/roberta-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. documentation from [`PretrainedConfig`] for more information.
......
...@@ -21,7 +21,7 @@ from ...utils import logging ...@@ -21,7 +21,7 @@ from ...utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
SPEECH_TO_TEXT_2_PRETRAINED_CONFIG_ARCHIVE_MAP = { SPEECH_TO_TEXT_2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/s2t-small-librispeech-asr": "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json", "facebook/s2t-wav2vec2-large-en-de": "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json",
# See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2
} }
...@@ -31,7 +31,7 @@ class Speech2Text2Config(PretrainedConfig): ...@@ -31,7 +31,7 @@ class Speech2Text2Config(PretrainedConfig):
This is the configuration class to store the configuration of a [`Speech2Text2ForCausalLM`]. It is used to This is the configuration class to store the configuration of a [`Speech2Text2ForCausalLM`]. It is used to
instantiate an Speech2Text2 model according to the specified arguments, defining the model architecture. instantiate an Speech2Text2 model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Speech2Text2 Instantiating a configuration with the defaults will yield a similar configuration to that of the Speech2Text2
[facebook/s2t-small-librispeech-asr](https://huggingface.co/facebook/s2t-small-librispeech-asr) architecture. [facebook/s2t-wav2vec2-large-en-de](https://huggingface.co/facebook/s2t-wav2vec2-large-en-de) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. documentation from [`PretrainedConfig`] for more information.
......
...@@ -30,7 +30,9 @@ SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { ...@@ -30,7 +30,9 @@ SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
class SqueezeBertConfig(PretrainedConfig): class SqueezeBertConfig(PretrainedConfig):
r""" r"""
This is the configuration class to store the configuration of a [`SqueezeBertModel`]. It is used to instantiate a This is the configuration class to store the configuration of a [`SqueezeBertModel`]. It is used to instantiate a
SqueezeBERT model according to the specified arguments, defining the model architecture. SqueezeBERT model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the SqueezeBERT
[squeezebert/squeezebert-uncased](https://huggingface.co/squeezebert/squeezebert-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. documentation from [`PretrainedConfig`] for more information.
......
...@@ -38,7 +38,9 @@ class TapasConfig(PretrainedConfig): ...@@ -38,7 +38,9 @@ class TapasConfig(PretrainedConfig):
r""" r"""
This is the configuration class to store the configuration of a [`TapasModel`]. It is used to instantiate a TAPAS This is the configuration class to store the configuration of a [`TapasModel`]. It is used to instantiate a TAPAS
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the TAPAS *tapas-base-finetuned-sqa* architecture. defaults will yield a similar configuration to that of the TAPAS
[google/tapas-base-finetuned-sqa](https://huggingface.co/google/tapas-base-finetuned-sqa) architecture.
Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. documentation from [`PretrainedConfig`] for more information.
......
...@@ -30,8 +30,8 @@ class TransfoXLConfig(PretrainedConfig): ...@@ -30,8 +30,8 @@ class TransfoXLConfig(PretrainedConfig):
""" """
This is the configuration class to store the configuration of a [`TransfoXLModel`] or a [`TFTransfoXLModel`]. It is This is the configuration class to store the configuration of a [`TransfoXLModel`] or a [`TFTransfoXLModel`]. It is
used to instantiate a Transformer-XL model according to the specified arguments, defining the model architecture. used to instantiate a Transformer-XL model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the [Transformer Instantiating a configuration with the defaults will yield a similar configuration to that of the TransfoXL
XL](https://huggingface.co/transfo-xl-wt103) architecture. [transfo-xl-wt103](https://huggingface.co/transfo-xl-wt103) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. documentation from [`PretrainedConfig`] for more information.
......
...@@ -21,7 +21,7 @@ from ...utils import logging ...@@ -21,7 +21,7 @@ from ...utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP = { TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/trocr-base": "https://huggingface.co/microsoft/trocr-base/resolve/main/config.json", "microsoft/trocr-base-handwritten": "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json",
# See all TrOCR models at https://huggingface.co/models?filter=trocr # See all TrOCR models at https://huggingface.co/models?filter=trocr
} }
...@@ -31,7 +31,7 @@ class TrOCRConfig(PretrainedConfig): ...@@ -31,7 +31,7 @@ class TrOCRConfig(PretrainedConfig):
This is the configuration class to store the configuration of a [`TrOCRForCausalLM`]. It is used to instantiate an This is the configuration class to store the configuration of a [`TrOCRForCausalLM`]. It is used to instantiate an
TrOCR model according to the specified arguments, defining the model architecture. Instantiating a configuration TrOCR model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the TrOCR with the defaults will yield a similar configuration to that of the TrOCR
[microsoft/trocr-base](https://huggingface.co/microsoft/trocr-base) architecture. [microsoft/trocr-base-handwritten](https://huggingface.co/microsoft/trocr-base-handwritten) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. documentation from [`PretrainedConfig`] for more information.
......
...@@ -24,7 +24,7 @@ from ...utils import logging ...@@ -24,7 +24,7 @@ from ...utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP = { UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/unispeech-base-960h": "https://huggingface.co/facebook/unispeech-base-960h/resolve/main/config.json", "microsoft/unispeech-large-1500h-cv": "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json",
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech # See all UniSpeech models at https://huggingface.co/models?filter=unispeech
} }
...@@ -34,7 +34,7 @@ class UniSpeechConfig(PretrainedConfig): ...@@ -34,7 +34,7 @@ class UniSpeechConfig(PretrainedConfig):
This is the configuration class to store the configuration of a [`UniSpeechModel`]. It is used to instantiate an This is the configuration class to store the configuration of a [`UniSpeechModel`]. It is used to instantiate an
UniSpeech model according to the specified arguments, defining the model architecture. Instantiating a UniSpeech model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the UniSpeech configuration with the defaults will yield a similar configuration to that of the UniSpeech
[facebook/unispeech-base-960h](https://huggingface.co/facebook/unispeech-base-960h) architecture. [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. documentation from [`PretrainedConfig`] for more information.
......
...@@ -24,7 +24,7 @@ from ...utils import logging ...@@ -24,7 +24,7 @@ from ...utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP = { UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/unispeech_sat-base-960h": "https://huggingface.co/facebook/unispeech_sat-base-960h/resolve/main/config.json", "microsoft/unispeech-sat-base-100h-libri-ft": "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json",
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
} }
...@@ -34,7 +34,8 @@ class UniSpeechSatConfig(PretrainedConfig): ...@@ -34,7 +34,8 @@ class UniSpeechSatConfig(PretrainedConfig):
This is the configuration class to store the configuration of a [`UniSpeechSatModel`]. It is used to instantiate an This is the configuration class to store the configuration of a [`UniSpeechSatModel`]. It is used to instantiate an
UniSpeechSat model according to the specified arguments, defining the model architecture. Instantiating a UniSpeechSat model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the UniSpeechSat configuration with the defaults will yield a similar configuration to that of the UniSpeechSat
[facebook/unispeech_sat-base-960h](https://huggingface.co/facebook/unispeech_sat-base-960h) architecture. [microsoft/unispeech-sat-base-100h-libri-ft](https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. documentation from [`PretrainedConfig`] for more information.
...@@ -173,10 +174,10 @@ class UniSpeechSatConfig(PretrainedConfig): ...@@ -173,10 +174,10 @@ class UniSpeechSatConfig(PretrainedConfig):
```python ```python
>>> from transformers import UniSpeechSatModel, UniSpeechSatConfig >>> from transformers import UniSpeechSatModel, UniSpeechSatConfig
>>> # Initializing a UniSpeechSat facebook/unispeech_sat-base-960h style configuration >>> # Initializing a UniSpeechSat microsoft/unispeech-sat-base-100h-libri-ft style configuration
>>> configuration = UniSpeechSatConfig() >>> configuration = UniSpeechSatConfig()
>>> # Initializing a model from the facebook/unispeech_sat-base-960h style configuration >>> # Initializing a model from the microsoft/unispeech-sat-base-100h-libri-ft style configuration
>>> model = UniSpeechSatModel(configuration) >>> model = UniSpeechSatModel(configuration)
>>> # Accessing the model configuration >>> # Accessing the model configuration
......
...@@ -1103,10 +1103,11 @@ UNISPEECH_SAT_INPUTS_DOCSTRING = r""" ...@@ -1103,10 +1103,11 @@ UNISPEECH_SAT_INPUTS_DOCSTRING = r"""
`attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask ==
True`. For all models whose processor has `config.return_attention_mask == False`, such as True`. For all models whose processor has `config.return_attention_mask == False`, such as
[unispeech_sat-base](https://huggingface.co/facebook/unispeech_sat-base-960h), `attention_mask` should [microsoft/unispeech-sat-base-100h-libri-ft](https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft),
**not** be passed to avoid degraded performance when doing batched inference. For such models `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For
`input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware
models also yield slightly different results depending on whether `input_values` is padded or not. that these models also yield slightly different results depending on whether `input_values` is padded or
not.
</Tip> </Tip>
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment