"tests/vscode:/vscode.git/clone" did not exist on "2faa09530bc5d29756bddfec12037c066cc85a02"
Unverified Commit 3e47d19c authored by Yih-Dar's avatar Yih-Dar Committed by GitHub
Browse files

Add missing ckpt in config docs (#16900)



* add missing ckpt in config docs

* add more missing ckpt in config docs

* fix wrong ckpts

* fix realm ckpt

* fix s2t2

* fix xlm_roberta ckpt

* Fix for deberta v2

* Apply suggestions from code review
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* use only one checkpoint for DPR

* Apply suggestions from code review
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: default avatarydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: default avatarNielsRogge <48327001+NielsRogge@users.noreply.github.com>
parent 3a71e94a
......@@ -30,7 +30,7 @@ class MegatronBertConfig(PretrainedConfig):
This is the configuration class to store the configuration of a [`MegatronBertModel`]. It is used to instantiate a
MEGATRON_BERT model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the MEGATRON_BERT
[megatron-bert-uncased-345m](https://huggingface.co/nvidia/megatron-bert-uncased-345m) architecture.
[nvidia/megatron-bert-uncased-345m](https://huggingface.co/nvidia/megatron-bert-uncased-345m) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -21,7 +21,7 @@ from ...utils import logging
logger = logging.get_logger(__name__)
MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/config.json"
"google/mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/config.json"
}
......@@ -29,6 +29,8 @@ class MobileBertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MobileBertModel`] or a [`TFMobileBertModel`]. It
is used to instantiate a MobileBERT model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileBERT
[google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -31,7 +31,7 @@ class MPNetConfig(PretrainedConfig):
This is the configuration class to store the configuration of a [`MPNetModel`] or a [`TFMPNetModel`]. It is used to
instantiate a MPNet model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the MPNet
[mpnet-base](https://huggingface.co/mpnet-base) architecture.
[microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -28,8 +28,8 @@ class OpenAIGPTConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`OpenAIGPTModel`] or a [`TFOpenAIGPTModel`]. It is
used to instantiate a GPT model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the
[GPT](https://huggingface.co/openai-gpt) architecture from OpenAI.
Instantiating a configuration with the defaults will yield a similar configuration to that of the GPT
[openai-gpt](https://huggingface.co/openai-gpt) architecture from OpenAI.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -29,7 +29,9 @@ PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
class ProphetNetConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ProphetNetModel`]. It is used to instantiate a
ProphetNet model according to the specified arguments, defining the model architecture.
ProphetNet model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the ProphetNet
[microsoft/prophetnet-large-uncased](https://huggingface.co/microsoft/prophetnet-large-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -46,7 +46,8 @@ class RealmConfig(PretrainedConfig):
It is used to instantiate an REALM model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the REALM
[realm-cc-news-pretrained](https://huggingface.co/google/realm-cc-news-pretrained-embedder) architecture.
[google/realm-cc-news-pretrained-embedder](https://huggingface.co/google/realm-cc-news-pretrained-embedder)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -30,7 +30,9 @@ REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
class ReformerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ReformerModel`]. It is used to instantiate a
Reformer model according to the specified arguments, defining the model architecture.
Reformer model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the ReFormer
[google/reformer-crime-and-punishment](https://huggingface.co/google/reformer-crime-and-punishment) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -21,7 +21,7 @@ from ...utils import logging
logger = logging.get_logger(__name__)
REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"regnety-40": "https://huggingface.co/zuppif/regnety-040/blob/main/config.json",
"facebook/regnet-y-040": "https://huggingface.co/facebook/regnet-y-040/blob/main/config.json",
}
......@@ -29,8 +29,8 @@ class RegNetConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`RegNetModel`]. It is used to instantiate a RegNet
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the
[facebook/regnet-y-40](https://huggingface.co/facebook/regnet-y-40) architecture.
defaults will yield a similar configuration to that of the RegNet
[facebook/regnet-y-040](https://huggingface.co/facebook/regnet-y-040) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -30,7 +30,8 @@ class RemBertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`RemBertModel`]. It is used to instantiate an
RemBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the remert-large architecture.
with the defaults will yield a similar configuration to that of the RemBERT
[google/rembert](https://huggingface.co/google/rembert) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -21,7 +21,7 @@ from ...utils import logging
logger = logging.get_logger(__name__)
RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
......@@ -29,8 +29,8 @@ class ResNetConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ResNetModel`]. It is used to instantiate an
ResNet model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the
[resnet-50](https://huggingface.co/microsoft/resnet-50) architecture.
with the defaults will yield a similar configuration to that of the ResNet
[microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -22,14 +22,16 @@ logger = logging.get_logger(__name__)
# TODO: upload to AWS
RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"retribert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json",
"yjernite/retribert-base-uncased": "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json",
}
class RetriBertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`RetriBertModel`]. It is used to instantiate a
RetriBertModel model according to the specified arguments, defining the model architecture.
RetriBertModel model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the RetriBERT
[yjernite/retribert-base-uncased](https://huggingface.co/yjernite/retribert-base-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -38,7 +38,8 @@ class RobertaConfig(BertConfig):
r"""
This is the configuration class to store the configuration of a [`RobertaModel`] or a [`TFRobertaModel`]. It is
used to instantiate a RoBERTa model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the RoBERTa
[roberta-base](https://huggingface.co/roberta-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -21,7 +21,7 @@ from ...utils import logging
logger = logging.get_logger(__name__)
SPEECH_TO_TEXT_2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/s2t-small-librispeech-asr": "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json",
"facebook/s2t-wav2vec2-large-en-de": "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json",
# See all Speech2Text models at https://huggingface.co/models?filter=speech2text2
}
......@@ -31,7 +31,7 @@ class Speech2Text2Config(PretrainedConfig):
This is the configuration class to store the configuration of a [`Speech2Text2ForCausalLM`]. It is used to
instantiate an Speech2Text2 model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Speech2Text2
[facebook/s2t-small-librispeech-asr](https://huggingface.co/facebook/s2t-small-librispeech-asr) architecture.
[facebook/s2t-wav2vec2-large-en-de](https://huggingface.co/facebook/s2t-wav2vec2-large-en-de) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -30,7 +30,9 @@ SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
class SqueezeBertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SqueezeBertModel`]. It is used to instantiate a
SqueezeBERT model according to the specified arguments, defining the model architecture.
SqueezeBERT model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the SqueezeBERT
[squeezebert/squeezebert-uncased](https://huggingface.co/squeezebert/squeezebert-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -38,7 +38,9 @@ class TapasConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`TapasModel`]. It is used to instantiate a TAPAS
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the TAPAS *tapas-base-finetuned-sqa* architecture.
defaults will yield a similar configuration to that of the TAPAS
[google/tapas-base-finetuned-sqa](https://huggingface.co/google/tapas-base-finetuned-sqa) architecture.
Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -30,8 +30,8 @@ class TransfoXLConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`TransfoXLModel`] or a [`TFTransfoXLModel`]. It is
used to instantiate a Transformer-XL model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the [Transformer
XL](https://huggingface.co/transfo-xl-wt103) architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the TransfoXL
[transfo-xl-wt103](https://huggingface.co/transfo-xl-wt103) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -21,7 +21,7 @@ from ...utils import logging
logger = logging.get_logger(__name__)
TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/trocr-base": "https://huggingface.co/microsoft/trocr-base/resolve/main/config.json",
"microsoft/trocr-base-handwritten": "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json",
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
......@@ -31,7 +31,7 @@ class TrOCRConfig(PretrainedConfig):
This is the configuration class to store the configuration of a [`TrOCRForCausalLM`]. It is used to instantiate an
TrOCR model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the TrOCR
[microsoft/trocr-base](https://huggingface.co/microsoft/trocr-base) architecture.
[microsoft/trocr-base-handwritten](https://huggingface.co/microsoft/trocr-base-handwritten) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -24,7 +24,7 @@ from ...utils import logging
logger = logging.get_logger(__name__)
UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/unispeech-base-960h": "https://huggingface.co/facebook/unispeech-base-960h/resolve/main/config.json",
"microsoft/unispeech-large-1500h-cv": "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json",
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
......@@ -34,7 +34,7 @@ class UniSpeechConfig(PretrainedConfig):
This is the configuration class to store the configuration of a [`UniSpeechModel`]. It is used to instantiate an
UniSpeech model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the UniSpeech
[facebook/unispeech-base-960h](https://huggingface.co/facebook/unispeech-base-960h) architecture.
[microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......
......@@ -24,7 +24,7 @@ from ...utils import logging
logger = logging.get_logger(__name__)
UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/unispeech_sat-base-960h": "https://huggingface.co/facebook/unispeech_sat-base-960h/resolve/main/config.json",
"microsoft/unispeech-sat-base-100h-libri-ft": "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json",
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
......@@ -34,7 +34,8 @@ class UniSpeechSatConfig(PretrainedConfig):
This is the configuration class to store the configuration of a [`UniSpeechSatModel`]. It is used to instantiate an
UniSpeechSat model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the UniSpeechSat
[facebook/unispeech_sat-base-960h](https://huggingface.co/facebook/unispeech_sat-base-960h) architecture.
[microsoft/unispeech-sat-base-100h-libri-ft](https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
......@@ -173,10 +174,10 @@ class UniSpeechSatConfig(PretrainedConfig):
```python
>>> from transformers import UniSpeechSatModel, UniSpeechSatConfig
>>> # Initializing a UniSpeechSat facebook/unispeech_sat-base-960h style configuration
>>> # Initializing a UniSpeechSat microsoft/unispeech-sat-base-100h-libri-ft style configuration
>>> configuration = UniSpeechSatConfig()
>>> # Initializing a model from the facebook/unispeech_sat-base-960h style configuration
>>> # Initializing a model from the microsoft/unispeech-sat-base-100h-libri-ft style configuration
>>> model = UniSpeechSatModel(configuration)
>>> # Accessing the model configuration
......
......@@ -1103,10 +1103,11 @@ UNISPEECH_SAT_INPUTS_DOCSTRING = r"""
`attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask ==
True`. For all models whose processor has `config.return_attention_mask == False`, such as
[unispeech_sat-base](https://huggingface.co/facebook/unispeech_sat-base-960h), `attention_mask` should
**not** be passed to avoid degraded performance when doing batched inference. For such models
`input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these
models also yield slightly different results depending on whether `input_values` is padded or not.
[microsoft/unispeech-sat-base-100h-libri-ft](https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft),
`attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For
such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware
that these models also yield slightly different results depending on whether `input_values` is padded or
not.
</Tip>
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment