Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
3c28a2da
Commit
3c28a2da
authored
Nov 27, 2019
by
Yao Lu
Committed by
Lysandre Debut
Nov 27, 2019
Browse files
add add_special_tokens=True for input examples
parent
5afca00b
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
7 additions
and
7 deletions
+7
-7
transformers/modeling_bert.py
transformers/modeling_bert.py
+7
-7
No files found.
transformers/modeling_bert.py
View file @
3c28a2da
...
...
@@ -597,7 +597,7 @@ class BertModel(BertPreTrainedModel):
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute"
, add_special_tokens=True
)).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
...
...
@@ -760,7 +760,7 @@ class BertForPreTraining(BertPreTrainedModel):
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForPreTraining.from_pretrained('bert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute"
, add_special_tokens=True
)).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
prediction_scores, seq_relationship_scores = outputs[:2]
...
...
@@ -836,7 +836,7 @@ class BertForMaskedLM(BertPreTrainedModel):
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForMaskedLM.from_pretrained('bert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute"
, add_special_tokens=True
)).unsqueeze(0) # Batch size 1
outputs = model(input_ids, masked_lm_labels=input_ids)
loss, prediction_scores = outputs[:2]
...
...
@@ -919,7 +919,7 @@ class BertForNextSentencePrediction(BertPreTrainedModel):
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute"
, add_special_tokens=True
)).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
seq_relationship_scores = outputs[0]
...
...
@@ -984,7 +984,7 @@ class BertForSequenceClassification(BertPreTrainedModel):
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute"
, add_special_tokens=True
)).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, logits = outputs[:2]
...
...
@@ -1060,7 +1060,7 @@ class BertForMultipleChoice(BertPreTrainedModel):
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForMultipleChoice.from_pretrained('bert-base-uncased')
choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
input_ids = torch.tensor([tokenizer.encode(s
, add_special_tokens=True
) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
labels = torch.tensor(1).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, classification_scores = outputs[:2]
...
...
@@ -1134,7 +1134,7 @@ class BertForTokenClassification(BertPreTrainedModel):
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForTokenClassification.from_pretrained('bert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute"
, add_special_tokens=True
)).unsqueeze(0) # Batch size 1
labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, scores = outputs[:2]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment