Unverified Commit 3c1b6f59 authored by Julien Chaumond's avatar Julien Chaumond Committed by GitHub
Browse files

Merge branch 'master' into fix_top_k_top_p_filtering

parents a9f24a16 fa735208
...@@ -4,40 +4,68 @@ XLNet ...@@ -4,40 +4,68 @@ XLNet
``XLNetConfig`` ``XLNetConfig``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.XLNetConfig .. autoclass:: transformers.XLNetConfig
:members: :members:
``XLNetTokenizer`` ``XLNetTokenizer``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.XLNetTokenizer .. autoclass:: transformers.XLNetTokenizer
:members: :members:
``XLNetModel`` ``XLNetModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.XLNetModel .. autoclass:: transformers.XLNetModel
:members: :members:
``XLNetLMHeadModel`` ``XLNetLMHeadModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.XLNetLMHeadModel .. autoclass:: transformers.XLNetLMHeadModel
:members: :members:
``XLNetForSequenceClassification`` ``XLNetForSequenceClassification``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.XLNetForSequenceClassification .. autoclass:: transformers.XLNetForSequenceClassification
:members: :members:
``XLNetForQuestionAnswering`` ``XLNetForQuestionAnswering``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: pytorch_transformers.XLNetForQuestionAnswering .. autoclass:: transformers.XLNetForQuestionAnswering
:members:
``TFXLNetModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLNetModel
:members:
``TFXLNetLMHeadModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLNetLMHeadModel
:members:
``TFXLNetForSequenceClassification``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLNetForSequenceClassification
:members:
``TFXLNetForQuestionAnsweringSimple``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLNetForQuestionAnsweringSimple
:members: :members:
Multi-lingual models
================================================
Most of the models available in this library are mono-lingual models (English, Chinese and German). A few
multi-lingual models are available and have a different mechanisms than mono-lingual models.
This page details the usage of these models.
The two models that currently support multiple languages are BERT and XLM.
XLM
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
XLM has a total of 10 different checkpoints, only one of which is mono-lingual. The 9 remaining model checkpoints can
be split in two categories: the checkpoints that make use of language embeddings, and those that don't
XLM & Language Embeddings
------------------------------------------------
This section concerns the following checkpoints:
- ``xlm-mlm-ende-1024`` (Masked language modeling, English-German)
- ``xlm-mlm-enfr-1024`` (Masked language modeling, English-French)
- ``xlm-mlm-enro-1024`` (Masked language modeling, English-Romanian)
- ``xlm-mlm-xnli15-1024`` (Masked language modeling, XNLI languages)
- ``xlm-mlm-tlm-xnli15-1024`` (Masked language modeling + Translation, XNLI languages)
- ``xlm-clm-enfr-1024`` (Causal language modeling, English-French)
- ``xlm-clm-ende-1024`` (Causal language modeling, English-German)
These checkpoints require language embeddings that will specify the language used at inference time. These language
embeddings are represented as a tensor that is of the same shape as the input ids passed to the model. The values in
these tensors depend on the language used and are identifiable using the ``lang2id`` and ``id2lang`` attributes
from the tokenizer.
Here is an example using the ``xlm-clm-enfr-1024`` checkpoint (Causal language modeling, English-French):
.. code-block::
import torch
from transformers import XLMTokenizer, XLMWithLMHeadModel
tokenizer = XLMTokenizer.from_pretrained("xlm-clm-1024-enfr")
The different languages this model/tokenizer handles, as well as the ids of these languages are visible using the
``lang2id`` attribute:
.. code-block::
print(tokenizer.lang2id) # {'en': 0, 'fr': 1}
These ids should be used when passing a language parameter during a model pass. Let's define our inputs:
.. code-block::
input_ids = torch.tensor([tokenizer.encode("Wikipedia was used to")]) # batch size of 1
We should now define the language embedding by using the previously defined language id. We want to create a tensor
filled with the appropriate language ids, of the same size as input_ids. For english, the id is 0:
.. code-block::
language_id = tokenizer.lang2id['en'] # 0
langs = torch.tensor([language_id] * input_ids.shape[1]) # torch.tensor([0, 0, 0, ..., 0])
# We reshape it to be of size (batch_size, sequence_length)
langs = langs.view(1, -1) # is now of shape [1, sequence_length] (we have a batch size of 1)
You can then feed it all as input to your model:
.. code-block::
outputs = model(input_ids, langs=langs)
The example `run_generation.py <https://github.com/huggingface/transformers/blob/master/examples/run_generation.py>`__
can generate text using the CLM checkpoints from XLM, using the language embeddings.
XLM without Language Embeddings
------------------------------------------------
This section concerns the following checkpoints:
- ``xlm-mlm-17-1280`` (Masked language modeling, 17 languages)
- ``xlm-mlm-100-1280`` (Masked language modeling, 100 languages)
These checkpoints do not require language embeddings at inference time. These models are used to have generic
sentence representations, differently from previously-mentioned XLM checkpoints.
BERT
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
BERT has two checkpoints that can be used for multi-lingual tasks:
- ``bert-base-multilingual-uncased`` (Masked language modeling + Next sentence prediction, 102 languages)
- ``bert-base-multilingual-cased`` (Masked language modeling + Next sentence prediction, 104 languages)
These checkpoints do not require language embeddings at inference time. They should identify the language
used in the context and infer accordingly.
\ No newline at end of file
Notebooks Notebooks
================================================ ================================================
We include `three Jupyter Notebooks <https://github.com/huggingface/pytorch-transformers/tree/master/notebooks>`_ that can be used to check that the predictions of the PyTorch model are identical to the predictions of the original TensorFlow model. We include `three Jupyter Notebooks <https://github.com/huggingface/transformers/tree/master/notebooks>`_ that can be used to check that the predictions of the PyTorch model are identical to the predictions of the original TensorFlow model.
* *
The first NoteBook (\ `Comparing-TF-and-PT-models.ipynb <https://github.com/huggingface/pytorch-transformers/blob/master/notebooks/Comparing-TF-and-PT-models.ipynb>`_\ ) extracts the hidden states of a full sequence on each layers of the TensorFlow and the PyTorch models and computes the standard deviation between them. In the given example, we get a standard deviation of 1.5e-7 to 9e-7 on the various hidden state of the models. The first NoteBook (\ `Comparing-TF-and-PT-models.ipynb <https://github.com/huggingface/transformers/blob/master/notebooks/Comparing-TF-and-PT-models.ipynb>`_\ ) extracts the hidden states of a full sequence on each layers of the TensorFlow and the PyTorch models and computes the standard deviation between them. In the given example, we get a standard deviation of 1.5e-7 to 9e-7 on the various hidden state of the models.
* *
The second NoteBook (\ `Comparing-TF-and-PT-models-SQuAD.ipynb <https://github.com/huggingface/pytorch-transformers/blob/master/notebooks/Comparing-TF-and-PT-models-SQuAD.ipynb>`_\ ) compares the loss computed by the TensorFlow and the PyTorch models for identical initialization of the fine-tuning layer of the ``BertForQuestionAnswering`` and computes the standard deviation between them. In the given example, we get a standard deviation of 2.5e-7 between the models. The second NoteBook (\ `Comparing-TF-and-PT-models-SQuAD.ipynb <https://github.com/huggingface/transformers/blob/master/notebooks/Comparing-TF-and-PT-models-SQuAD.ipynb>`_\ ) compares the loss computed by the TensorFlow and the PyTorch models for identical initialization of the fine-tuning layer of the ``BertForQuestionAnswering`` and computes the standard deviation between them. In the given example, we get a standard deviation of 2.5e-7 between the models.
* *
The third NoteBook (\ `Comparing-TF-and-PT-models-MLM-NSP.ipynb <https://github.com/huggingface/pytorch-transformers/blob/master/notebooks/Comparing-TF-and-PT-models-MLM-NSP.ipynb>`_\ ) compares the predictions computed by the TensorFlow and the PyTorch models for masked token language modeling using the pre-trained masked language modeling model. The third NoteBook (\ `Comparing-TF-and-PT-models-MLM-NSP.ipynb <https://github.com/huggingface/transformers/blob/master/notebooks/Comparing-TF-and-PT-models-MLM-NSP.ipynb>`_\ ) compares the predictions computed by the TensorFlow and the PyTorch models for masked token language modeling using the pre-trained masked language modeling model.
Please follow the instructions given in the notebooks to run and modify them. Please follow the instructions given in the notebooks to run and modify them.
...@@ -44,15 +44,23 @@ Here is the full list of the currently provided pretrained models together with ...@@ -44,15 +44,23 @@ Here is the full list of the currently provided pretrained models together with
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+ | +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``bert-large-uncased-whole-word-masking-finetuned-squad`` | | 24-layer, 1024-hidden, 16-heads, 340M parameters. | | | ``bert-large-uncased-whole-word-masking-finetuned-squad`` | | 24-layer, 1024-hidden, 16-heads, 340M parameters. |
| | | | The ``bert-large-uncased-whole-word-masking`` model fine-tuned on SQuAD | | | | | The ``bert-large-uncased-whole-word-masking`` model fine-tuned on SQuAD |
| | | (see details of fine-tuning in the `example section <https://github.com/huggingface/pytorch-transformers/tree/master/examples>`__). | | | | (see details of fine-tuning in the `example section <https://github.com/huggingface/transformers/tree/master/examples>`__). |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+ | +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``bert-large-cased-whole-word-masking-finetuned-squad`` | | 24-layer, 1024-hidden, 16-heads, 340M parameters | | | ``bert-large-cased-whole-word-masking-finetuned-squad`` | | 24-layer, 1024-hidden, 16-heads, 340M parameters |
| | | | The ``bert-large-cased-whole-word-masking`` model fine-tuned on SQuAD | | | | | The ``bert-large-cased-whole-word-masking`` model fine-tuned on SQuAD |
| | | (see `details of fine-tuning in the example section <https://huggingface.co/pytorch-transformers/examples.html>`__) | | | | (see `details of fine-tuning in the example section <https://huggingface.co/transformers/examples.html>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+ | +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``bert-base-cased-finetuned-mrpc`` | | 12-layer, 768-hidden, 12-heads, 110M parameters. | | | ``bert-base-cased-finetuned-mrpc`` | | 12-layer, 768-hidden, 12-heads, 110M parameters. |
| | | | The ``bert-base-cased`` model fine-tuned on MRPC | | | | | The ``bert-base-cased`` model fine-tuned on MRPC |
| | | (see `details of fine-tuning in the example section <https://huggingface.co/pytorch-transformers/examples.html>`__) | | | | (see `details of fine-tuning in the example section <https://huggingface.co/transformers/examples.html>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``bert-base-german-dbmdz-cased`` | | 12-layer, 768-hidden, 12-heads, 110M parameters. |
| | | | Trained on cased German text by DBMDZ |
| | | (see `details on dbmdz repository <https://github.com/dbmdz/german-bert>`__). |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``bert-base-german-dbmdz-uncased`` | | 12-layer, 768-hidden, 12-heads, 110M parameters. |
| | | | Trained on uncased German text by DBMDZ |
| | | (see `details on dbmdz repository <https://github.com/dbmdz/german-bert>`__). |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+ +-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| GPT | ``openai-gpt`` | | 12-layer, 768-hidden, 12-heads, 110M parameters. | | GPT | ``openai-gpt`` | | 12-layer, 768-hidden, 12-heads, 110M parameters. |
| | | | OpenAI GPT English model | | | | | OpenAI GPT English model |
...@@ -98,6 +106,12 @@ Here is the full list of the currently provided pretrained models together with ...@@ -98,6 +106,12 @@ Here is the full list of the currently provided pretrained models together with
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+ | +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``xlm-clm-ende-1024`` | | 6-layer, 1024-hidden, 8-heads | | | ``xlm-clm-ende-1024`` | | 6-layer, 1024-hidden, 8-heads |
| | | | XLM English-German model trained with CLM (Causal Language Modeling) on the concatenation of English and German wikipedia | | | | | XLM English-German model trained with CLM (Causal Language Modeling) on the concatenation of English and German wikipedia |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``xlm-mlm-17-1280`` | | 16-layer, 1280-hidden, 16-heads |
| | | | XLM model trained with MLM (Masked Language Modeling) on 17 languages. |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``xlm-mlm-100-1280`` | | 16-layer, 1280-hidden, 16-heads |
| | | | XLM model trained with MLM (Masked Language Modeling) on 100 languages. |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+ +-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| RoBERTa | ``roberta-base`` | | 12-layer, 768-hidden, 12-heads, 125M parameters | | RoBERTa | ``roberta-base`` | | 12-layer, 768-hidden, 12-heads, 125M parameters |
| | | | RoBERTa using the BERT-base architecture | | | | | RoBERTa using the BERT-base architecture |
...@@ -113,11 +127,22 @@ Here is the full list of the currently provided pretrained models together with ...@@ -113,11 +127,22 @@ Here is the full list of the currently provided pretrained models together with
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+ +-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| DistilBERT | ``distilbert-base-uncased`` | | 6-layer, 768-hidden, 12-heads, 66M parameters | | DistilBERT | ``distilbert-base-uncased`` | | 6-layer, 768-hidden, 12-heads, 66M parameters |
| | | | The DistilBERT model distilled from the BERT model `bert-base-uncased` checkpoint | | | | | The DistilBERT model distilled from the BERT model `bert-base-uncased` checkpoint |
| | | (see `details <https://medium.com/huggingface/distilbert-8cf3380435b5>`__) | | | | (see `details <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+ | +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``distilbert-base-uncased-distilled-squad`` | | 6-layer, 768-hidden, 12-heads, 66M parameters | | | ``distilbert-base-uncased-distilled-squad`` | | 6-layer, 768-hidden, 12-heads, 66M parameters |
| | | | The DistilBERT model distilled from the BERT model `bert-base-uncased` checkpoint, with an additional linear layer. | | | | | The DistilBERT model distilled from the BERT model `bert-base-uncased` checkpoint, with an additional linear layer. |
| | | (see `details <https://medium.com/huggingface/distilbert-8cf3380435b5>`__) | | | | (see `details <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``distilgpt2`` | | 6-layer, 768-hidden, 12-heads, 82M parameters |
| | | | The DistilGPT2 model distilled from the GPT2 model `gpt2` checkpoint. |
| | | (see `details <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``distilroberta-base`` | | 6-layer, 768-hidden, 12-heads, 82M parameters |
| | | | The DistilRoBERTa model distilled from the RoBERTa model `roberta-base` checkpoint. |
| | | (see `details <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__) |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| CTRL | ``ctrl`` | | 48-layer, 1280-hidden, 16-heads, 1.6B parameters |
| | | | Salesforce's Large-sized CTRL English model |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+ +-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
.. <https://huggingface.co/pytorch-transformers/examples.html>`__ .. <https://huggingface.co/transformers/examples.html>`__
\ No newline at end of file \ No newline at end of file
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
## Philosophy ## Philosophy
PyTorch-Transformers is an opinionated library built for NLP researchers seeking to use/study/extend large-scale transformers models. Transformers is an opinionated library built for NLP researchers seeking to use/study/extend large-scale transformers models.
The library was designed with two strong goals in mind: The library was designed with two strong goals in mind:
...@@ -19,12 +19,12 @@ The library was designed with two strong goals in mind: ...@@ -19,12 +19,12 @@ The library was designed with two strong goals in mind:
A few other goals: A few other goals:
- expose the models internals as consistently as possible: - expose the models' internals as consistently as possible:
- we give access, using a single API to the full hidden-states and attention weights, - we give access, using a single API to the full hidden-states and attention weights,
- tokenizer and base model's API are standardized to easily switch between models. - tokenizer and base model's API are standardized to easily switch between models.
- incorporate a subjective selection of promising tools for fine-tuning/investiguating these models: - incorporate a subjective selection of promising tools for fine-tuning/investigating these models:
- a simple/consistent way to add new tokens to the vocabulary and embeddings for fine-tuning, - a simple/consistent way to add new tokens to the vocabulary and embeddings for fine-tuning,
- simple ways to mask and prune transformer heads. - simple ways to mask and prune transformer heads.
...@@ -33,13 +33,13 @@ A few other goals: ...@@ -33,13 +33,13 @@ A few other goals:
The library is build around three type of classes for each models: The library is build around three type of classes for each models:
- **model classes** which are PyTorch models (`torch.nn.Modules`) of the 6 models architectures currently provided in the library, e.g. `BertModel` - **model classes** which are PyTorch models (`torch.nn.Modules`) of the 8 models architectures currently provided in the library, e.g. `BertModel`
- **configuration classes** which store all the parameters required to build a model, e.g. `BertConfig`. You don't always need to instantiate these your-self, in particular if you are using a pretrained model without any modification, creating the model will automatically take care of instantiating the configuration (which is part of the model) - **configuration classes** which store all the parameters required to build a model, e.g. `BertConfig`. You don't always need to instantiate these your-self, in particular if you are using a pretrained model without any modification, creating the model will automatically take care of instantiating the configuration (which is part of the model)
- **tokenizer classes** which store the vocabulary for each model and provide methods for encoding/decoding strings in list of token embeddings indices to be fed to a model, e.g. `BertTokenizer` - **tokenizer classes** which store the vocabulary for each model and provide methods for encoding/decoding strings in list of token embeddings indices to be fed to a model, e.g. `BertTokenizer`
All these classes can be instantiated from pretrained instances and saved locally using two methods: All these classes can be instantiated from pretrained instances and saved locally using two methods:
- `from_pretrained()` let you instantiate a model/configuration/tokenizer from a pretrained version either provided by the library itself (currently 27 models are provided as listed [here](https://huggingface.co/pytorch-transformers/pretrained_models.html)) or stored locally (or on a server) by the user, - `from_pretrained()` let you instantiate a model/configuration/tokenizer from a pretrained version either provided by the library itself (currently 27 models are provided as listed [here](https://huggingface.co/transformers/pretrained_models.html)) or stored locally (or on a server) by the user,
- `save_pretrained()` let you save a model/configuration/tokenizer locally so that it can be reloaded using `from_pretrained()`. - `save_pretrained()` let you save a model/configuration/tokenizer locally so that it can be reloaded using `from_pretrained()`.
We'll finish this quickstart tour by going through a few simple quick-start examples to see how we can instantiate and use these classes. The rest of the documentation is organized in two parts: We'll finish this quickstart tour by going through a few simple quick-start examples to see how we can instantiate and use these classes. The rest of the documentation is organized in two parts:
...@@ -51,7 +51,7 @@ We'll finish this quickstart tour by going through a few simple quick-start exam ...@@ -51,7 +51,7 @@ We'll finish this quickstart tour by going through a few simple quick-start exam
Here are two examples showcasing a few `Bert` and `GPT2` classes and pre-trained models. Here are two examples showcasing a few `Bert` and `GPT2` classes and pre-trained models.
See full API reference for examples for each model classe. See full API reference for examples for each model class.
### BERT example ### BERT example
...@@ -59,7 +59,7 @@ Let's start by preparing a tokenized input (a list of token embeddings indices t ...@@ -59,7 +59,7 @@ Let's start by preparing a tokenized input (a list of token embeddings indices t
```python ```python
import torch import torch
from pytorch_transformers import BertTokenizer, BertModel, BertForMaskedLM from transformers import BertTokenizer, BertModel, BertForMaskedLM
# OPTIONAL: if you want to have more information on what's happening under the hood, activate the logger as follows # OPTIONAL: if you want to have more information on what's happening under the hood, activate the logger as follows
import logging import logging
...@@ -93,8 +93,8 @@ Let's see how we can use `BertModel` to encode our inputs in hidden-states: ...@@ -93,8 +93,8 @@ Let's see how we can use `BertModel` to encode our inputs in hidden-states:
# Load pre-trained model (weights) # Load pre-trained model (weights)
model = BertModel.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased')
# Set the model in evaluation mode to desactivate the DropOut modules # Set the model in evaluation mode to deactivate the DropOut modules
# This is IMPORTANT to have reproductible results during evaluation! # This is IMPORTANT to have reproducible results during evaluation!
model.eval() model.eval()
# If you have a GPU, put everything on cuda # If you have a GPU, put everything on cuda
...@@ -106,7 +106,7 @@ model.to('cuda') ...@@ -106,7 +106,7 @@ model.to('cuda')
with torch.no_grad(): with torch.no_grad():
# See the models docstrings for the detail of the inputs # See the models docstrings for the detail of the inputs
outputs = model(tokens_tensor, token_type_ids=segments_tensors) outputs = model(tokens_tensor, token_type_ids=segments_tensors)
# PyTorch-Transformers models always output tuples. # Transformers models always output tuples.
# See the models docstrings for the detail of all the outputs # See the models docstrings for the detail of all the outputs
# In our case, the first element is the hidden state of the last layer of the Bert model # In our case, the first element is the hidden state of the last layer of the Bert model
encoded_layers = outputs[0] encoded_layers = outputs[0]
...@@ -145,7 +145,7 @@ First let's prepare a tokenized input from our text string using `GPT2Tokenizer` ...@@ -145,7 +145,7 @@ First let's prepare a tokenized input from our text string using `GPT2Tokenizer`
```python ```python
import torch import torch
from pytorch_transformers import GPT2Tokenizer, GPT2LMHeadModel from transformers import GPT2Tokenizer, GPT2LMHeadModel
# OPTIONAL: if you want to have more information on what's happening, activate the logger as follows # OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
import logging import logging
...@@ -168,8 +168,8 @@ Let's see how to use `GPT2LMHeadModel` to generate the next token following our ...@@ -168,8 +168,8 @@ Let's see how to use `GPT2LMHeadModel` to generate the next token following our
# Load pre-trained model (weights) # Load pre-trained model (weights)
model = GPT2LMHeadModel.from_pretrained('gpt2') model = GPT2LMHeadModel.from_pretrained('gpt2')
# Set the model in evaluation mode to desactivate the DropOut modules # Set the model in evaluation mode to deactivate the DropOut modules
# This is IMPORTANT to have reproductible results during evaluation! # This is IMPORTANT to have reproducible results during evaluation!
model.eval() model.eval()
# If you have a GPU, put everything on cuda # If you have a GPU, put everything on cuda
......
...@@ -33,6 +33,8 @@ where ...@@ -33,6 +33,8 @@ where
* ``bert-large-uncased-whole-word-masking``: 24-layer, 1024-hidden, 16-heads, 340M parameters - Trained with Whole Word Masking (mask all of the the tokens corresponding to a word at once) * ``bert-large-uncased-whole-word-masking``: 24-layer, 1024-hidden, 16-heads, 340M parameters - Trained with Whole Word Masking (mask all of the the tokens corresponding to a word at once)
* ``bert-large-cased-whole-word-masking``: 24-layer, 1024-hidden, 16-heads, 340M parameters - Trained with Whole Word Masking (mask all of the the tokens corresponding to a word at once) * ``bert-large-cased-whole-word-masking``: 24-layer, 1024-hidden, 16-heads, 340M parameters - Trained with Whole Word Masking (mask all of the the tokens corresponding to a word at once)
* ``bert-large-uncased-whole-word-masking-finetuned-squad``: The ``bert-large-uncased-whole-word-masking`` model finetuned on SQuAD (using the ``run_bert_squad.py`` examples). Results: *exact_match: 86.91579943235573, f1: 93.1532499015869* * ``bert-large-uncased-whole-word-masking-finetuned-squad``: The ``bert-large-uncased-whole-word-masking`` model finetuned on SQuAD (using the ``run_bert_squad.py`` examples). Results: *exact_match: 86.91579943235573, f1: 93.1532499015869*
* ``bert-base-german-dbmdz-cased``: Trained on German data only, 12-layer, 768-hidden, 12-heads, 110M parameters `Performance Evaluation <https://github.com/dbmdz/german-bert>`__
* ``bert-base-german-dbmdz-uncased``: Trained on (uncased) German data only, 12-layer, 768-hidden, 12-heads, 110M parameters `Performance Evaluation <https://github.com/dbmdz/german-bert>`__
* ``openai-gpt``: OpenAI GPT English model, 12-layer, 768-hidden, 12-heads, 110M parameters * ``openai-gpt``: OpenAI GPT English model, 12-layer, 768-hidden, 12-heads, 110M parameters
* ``gpt2``: OpenAI GPT-2 English model, 12-layer, 768-hidden, 12-heads, 117M parameters * ``gpt2``: OpenAI GPT-2 English model, 12-layer, 768-hidden, 12-heads, 117M parameters
* ``gpt2-medium``: OpenAI GPT-2 English model, 24-layer, 1024-hidden, 16-heads, 345M parameters * ``gpt2-medium``: OpenAI GPT-2 English model, 24-layer, 1024-hidden, 16-heads, 345M parameters
...@@ -45,7 +47,7 @@ where ...@@ -45,7 +47,7 @@ where
* ``bert_config.json`` or ``openai_gpt_config.json`` a configuration file for the model, and * ``bert_config.json`` or ``openai_gpt_config.json`` a configuration file for the model, and
* ``pytorch_model.bin`` a PyTorch dump of a pre-trained instance of ``BertForPreTraining``\ , ``OpenAIGPTModel``\ , ``TransfoXLModel``\ , ``GPT2LMHeadModel`` (saved with the usual ``torch.save()``\ ) * ``pytorch_model.bin`` a PyTorch dump of a pre-trained instance of ``BertForPreTraining``\ , ``OpenAIGPTModel``\ , ``TransfoXLModel``\ , ``GPT2LMHeadModel`` (saved with the usual ``torch.save()``\ )
If ``PRE_TRAINED_MODEL_NAME_OR_PATH`` is a shortcut name, the pre-trained weights will be downloaded from AWS S3 (see the links `here <https://github.com/huggingface/pytorch-transformers/blob/master/pytorch_transformers/modeling_bert.py>`__\ ) and stored in a cache folder to avoid future download (the cache folder can be found at ``~/.pytorch_pretrained_bert/``\ ). If ``PRE_TRAINED_MODEL_NAME_OR_PATH`` is a shortcut name, the pre-trained weights will be downloaded from AWS S3 (see the links `here <https://github.com/huggingface/transformers/blob/master/transformers/modeling_bert.py>`__\ ) and stored in a cache folder to avoid future download (the cache folder can be found at ``~/.pytorch_pretrained_bert/``\ ).
* *
``cache_dir`` can be an optional path to a specific directory to download and cache the pre-trained model weights. This option is useful in particular when you are using distributed training: to avoid concurrent access to the same weights you can set for example ``cache_dir='./pretrained_model_{}'.format(args.local_rank)`` (see the section on distributed training for more information). ``cache_dir`` can be an optional path to a specific directory to download and cache the pre-trained model weights. This option is useful in particular when you are using distributed training: to avoid concurrent access to the same weights you can set for example ``cache_dir='./pretrained_model_{}'.format(args.local_rank)`` (see the section on distributed training for more information).
...@@ -122,7 +124,7 @@ Here is the recommended way of saving the model, configuration and vocabulary to ...@@ -122,7 +124,7 @@ Here is the recommended way of saving the model, configuration and vocabulary to
.. code-block:: python .. code-block:: python
from pytorch_transformers import WEIGHTS_NAME, CONFIG_NAME from transformers import WEIGHTS_NAME, CONFIG_NAME
output_dir = "./models/" output_dir = "./models/"
......
...@@ -12,7 +12,7 @@ According to Pytorch's documentation: "TorchScript is a way to create serializab ...@@ -12,7 +12,7 @@ According to Pytorch's documentation: "TorchScript is a way to create serializab
Pytorch's two modules `JIT and TRACE <https://pytorch.org/docs/stable/jit.html>`_ allow the developer to export Pytorch's two modules `JIT and TRACE <https://pytorch.org/docs/stable/jit.html>`_ allow the developer to export
their model to be re-used in other programs, such as efficiency-oriented C++ programs. their model to be re-used in other programs, such as efficiency-oriented C++ programs.
We have provided an interface that allows the export of `pytorch-transformers` models to TorchScript so that they can We have provided an interface that allows the export of `transformers` models to TorchScript so that they can
be reused in a different environment than a Pytorch-based python program. Here we explain how to use our models so that be reused in a different environment than a Pytorch-based python program. Here we explain how to use our models so that
they can be exported, and what to be mindful of when using these models with TorchScript. they can be exported, and what to be mindful of when using these models with TorchScript.
...@@ -74,7 +74,7 @@ according to a ``BertConfig`` class and then saved to disk under the filename `` ...@@ -74,7 +74,7 @@ according to a ``BertConfig`` class and then saved to disk under the filename ``
.. code-block:: python .. code-block:: python
from pytorch_transformers import BertModel, BertTokenizer, BertConfig from transformers import BertModel, BertTokenizer, BertConfig
import torch import torch
enc = BertTokenizer.from_pretrained("bert-base-uncased") enc = BertTokenizer.from_pretrained("bert-base-uncased")
......
...@@ -5,15 +5,40 @@ similar API between the different models. ...@@ -5,15 +5,40 @@ similar API between the different models.
| Section | Description | | Section | Description |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------| |----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [TensorFlow 2.0 models on GLUE](#TensorFlow-2.0-Bert-models-on-GLUE) | Examples running BERT TensorFlow 2.0 model on the GLUE tasks.
| [Language Model fine-tuning](#language-model-fine-tuning) | Fine-tuning the library models for language modeling on a text dataset. Causal language modeling for GPT/GPT-2, masked language modeling for BERT/RoBERTa. | | [Language Model fine-tuning](#language-model-fine-tuning) | Fine-tuning the library models for language modeling on a text dataset. Causal language modeling for GPT/GPT-2, masked language modeling for BERT/RoBERTa. |
| [Language Generation](#language-generation) | Conditional text generation using the auto-regressive models of the library: GPT, GPT-2, Transformer-XL and XLNet. | | [Language Generation](#language-generation) | Conditional text generation using the auto-regressive models of the library: GPT, GPT-2, Transformer-XL and XLNet. |
| [GLUE](#glue) | Examples running BERT/XLM/XLNet/RoBERTa on the 9 GLUE tasks. Examples feature distributed training as well as half-precision. | | [GLUE](#glue) | Examples running BERT/XLM/XLNet/RoBERTa on the 9 GLUE tasks. Examples feature distributed training as well as half-precision. |
| [SQuAD](#squad) | Using BERT for question answering, examples with distributed training. | | [SQuAD](#squad) | Using BERT/XLM/XLNet/RoBERTa for question answering, examples with distributed training. |
| [Multiple Choice](#multiple choice) | Examples running BERT/XLNet/RoBERTa on the SWAG/RACE/ARC tasks. | [Multiple Choice](#multiple-choice) | Examples running BERT/XLNet/RoBERTa on the SWAG/RACE/ARC tasks.
| [Named Entity Recognition](#named-entity-recognition) | Using BERT for Named Entity Recognition (NER) on the CoNLL 2003 dataset, examples with distributed training. |
| [Abstractive summarization](#abstractive-summarization) | Fine-tuning the library models for abstractive summarization tasks on the CNN/Daily Mail dataset. |
## TensorFlow 2.0 Bert models on GLUE
Based on the script [`run_tf_glue.py`](https://github.com/huggingface/transformers/blob/master/examples/run_tf_glue.py).
Fine-tuning the library TensorFlow 2.0 Bert model for sequence classification on the MRPC task of the GLUE benchmark: [General Language Understanding Evaluation](https://gluebenchmark.com/).
This script has an option for mixed precision (Automatic Mixed Precision / AMP) to run models on Tensor Cores (NVIDIA Volta/Turing GPUs) and future hardware and an option for XLA, which uses the XLA compiler to reduce model runtime.
Options are toggled using `USE_XLA` or `USE_AMP` variables in the script.
These options and the below benchmark are provided by @tlkh.
Quick benchmarks from the script (no other modifications):
| GPU | Mode | Time (2nd epoch) | Val Acc (3 runs) |
| --------- | -------- | ----------------------- | ----------------------|
| Titan V | FP32 | 41s | 0.8438/0.8281/0.8333 |
| Titan V | AMP | 26s | 0.8281/0.8568/0.8411 |
| V100 | FP32 | 35s | 0.8646/0.8359/0.8464 |
| V100 | AMP | 22s | 0.8646/0.8385/0.8411 |
| 1080 Ti | FP32 | 55s | - |
Mixed precision (AMP) reduces the training time considerably for the same hardware and hyper-parameters (same batch size was used).
## Language model fine-tuning ## Language model fine-tuning
Based on the script [`run_lm_finetuning.py`](https://github.com/huggingface/pytorch-transformers/blob/master/examples/run_lm_finetuning.py). Based on the script [`run_lm_finetuning.py`](https://github.com/huggingface/transformers/blob/master/examples/run_lm_finetuning.py).
Fine-tuning the library models for language modeling on a text dataset for GPT, GPT-2, BERT and RoBERTa (DistilBERT Fine-tuning the library models for language modeling on a text dataset for GPT, GPT-2, BERT and RoBERTa (DistilBERT
to be added soon). GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa to be added soon). GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa
...@@ -75,9 +100,9 @@ python run_lm_finetuning.py \ ...@@ -75,9 +100,9 @@ python run_lm_finetuning.py \
## Language generation ## Language generation
Based on the script [`run_generation.py`](https://github.com/huggingface/pytorch-transformers/blob/master/examples/run_generation.py). Based on the script [`run_generation.py`](https://github.com/huggingface/transformers/blob/master/examples/run_generation.py).
Conditional text generation using the auto-regressive models of the library: GPT, GPT-2, Transformer-XL and XLNet. Conditional text generation using the auto-regressive models of the library: GPT, GPT-2, Transformer-XL, XLNet, CTRL.
A similar script is used for our official demo [Write With Transfomer](https://transformer.huggingface.co), where you A similar script is used for our official demo [Write With Transfomer](https://transformer.huggingface.co), where you
can try out the different models available in the library. can try out the different models available in the library.
...@@ -91,7 +116,7 @@ python run_generation.py \ ...@@ -91,7 +116,7 @@ python run_generation.py \
## GLUE ## GLUE
Based on the script [`run_glue.py`](https://github.com/huggingface/pytorch-transformers/blob/master/examples/run_glue.py). Based on the script [`run_glue.py`](https://github.com/huggingface/transformers/blob/master/examples/run_glue.py).
Fine-tuning the library models for sequence classification on the GLUE benchmark: [General Language Understanding Fine-tuning the library models for sequence classification on the GLUE benchmark: [General Language Understanding
Evaluation](https://gluebenchmark.com/). This script can fine-tune the following models: BERT, XLM, XLNet and RoBERTa. Evaluation](https://gluebenchmark.com/). This script can fine-tune the following models: BERT, XLM, XLNet and RoBERTa.
...@@ -283,17 +308,17 @@ The results are the following: ...@@ -283,17 +308,17 @@ The results are the following:
loss = 0.04755385363816904 loss = 0.04755385363816904
``` ```
##Multiple Choice ## Multiple Choice
Based on the script [`run_multiple_choice.py`](). Based on the script [`run_multiple_choice.py`]().
#### Fine-tuning on SWAG #### Fine-tuning on SWAG
Download [swag](https://github.com/rowanz/swagaf/tree/master/data) data Download [swag](https://github.com/rowanz/swagaf/tree/master/data) data
``` ```bash
#training on 4 tesla V100(16GB) GPUS #training on 4 tesla V100(16GB) GPUS
export SWAG_DIR=/path/to/swag_data_dir export SWAG_DIR=/path/to/swag_data_dir
python ./examples/single_model_scripts/run_multiple_choice.py \ python ./examples/run_multiple_choice.py \
--model_type roberta \ --model_type roberta \
--task_name swag \ --task_name swag \
--model_name_or_path roberta-base \ --model_name_or_path roberta-base \
...@@ -319,7 +344,7 @@ eval_loss = 0.44457291918821606 ...@@ -319,7 +344,7 @@ eval_loss = 0.44457291918821606
## SQuAD ## SQuAD
Based on the script [`run_squad.py`](https://github.com/huggingface/pytorch-transformers/blob/master/examples/run_squad.py). Based on the script [`run_squad.py`](https://github.com/huggingface/transformers/blob/master/examples/run_squad.py).
#### Fine-tuning on SQuAD #### Fine-tuning on SQuAD
...@@ -387,6 +412,134 @@ f1 = 93.15 ...@@ -387,6 +412,134 @@ f1 = 93.15
exact_match = 86.91 exact_match = 86.91
``` ```
This fine-tuneds model is available as a checkpoint under the reference This fine-tuned model is available as a checkpoint under the reference
`bert-large-uncased-whole-word-masking-finetuned-squad`. `bert-large-uncased-whole-word-masking-finetuned-squad`.
## Named Entity Recognition
Based on the script [`run_ner.py`](https://github.com/huggingface/transformers/blob/master/examples/run_ner.py).
This example fine-tune Bert Multilingual on GermEval 2014 (German NER).
Details and results for the fine-tuning provided by @stefan-it.
### Data (Download and pre-processing steps)
Data can be obtained from the [GermEval 2014](https://sites.google.com/site/germeval2014ner/data) shared task page.
Here are the commands for downloading and pre-processing train, dev and test datasets. The original data format has four (tab-separated) columns, in a pre-processing step only the two relevant columns (token and outer span NER annotation) are extracted:
```bash
curl -L 'https://sites.google.com/site/germeval2014ner/data/NER-de-train.tsv?attredirects=0&d=1' \
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > train.txt.tmp
curl -L 'https://sites.google.com/site/germeval2014ner/data/NER-de-dev.tsv?attredirects=0&d=1' \
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > dev.txt.tmp
curl -L 'https://sites.google.com/site/germeval2014ner/data/NER-de-test.tsv?attredirects=0&d=1' \
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > test.txt.tmp
```
The GermEval 2014 dataset contains some strange "control character" tokens like `'\x96', '\u200e', '\x95', '\xad' or '\x80'`. One problem with these tokens is, that `BertTokenizer` returns an empty token for them, resulting in misaligned `InputExample`s. I wrote a script that a) filters these tokens and b) splits longer sentences into smaller ones (once the max. subtoken length is reached).
```bash
wget "https://raw.githubusercontent.com/stefan-it/fine-tuned-berts-seq/master/scripts/preprocess.py"
```
Let's define some variables that we need for further pre-processing steps and training the model:
```bash
export MAX_LENGTH=128
export BERT_MODEL=bert-base-multilingual-cased
```
Run the pre-processing script on training, dev and test datasets:
```bash
python3 preprocess.py train.txt.tmp $BERT_MODEL $MAX_LENGTH > train.txt
python3 preprocess.py dev.txt.tmp $BERT_MODEL $MAX_LENGTH > dev.txt
python3 preprocess.py test.txt.tmp $BERT_MODEL $MAX_LENGTH > test.txt
```
The GermEval 2014 dataset has much more labels than CoNLL-2002/2003 datasets, so an own set of labels must be used:
```bash
cat train.txt dev.txt test.txt | cut -d " " -f 2 | grep -v "^$"| sort | uniq > labels.txt
```
### Training
Additional environment variables must be set:
```bash
export OUTPUT_DIR=germeval-model
export BATCH_SIZE=32
export NUM_EPOCHS=3
export SAVE_STEPS=750
export SEED=1
```
To start training, just run:
```bash
python3 run_ner.py --data_dir ./ \
--model_type bert \
--labels ./labels.txt \
--model_name_or_path $BERT_MODEL \
--output_dir $OUTPUT_DIR \
--max_seq_length $MAX_LENGTH \
--num_train_epochs $NUM_EPOCHS \
--per_gpu_train_batch_size $BATCH_SIZE \
--save_steps $SAVE_STEPS \
--seed $SEED \
--do_train \
--do_eval \
--do_predict
```
If your GPU supports half-precision training, just add the `--fp16` flag. After training, the model will be both evaluated on development and test datasets.
### Evaluation
Evaluation on development dataset outputs the following for our example:
```bash
10/04/2019 00:42:06 - INFO - __main__ - ***** Eval results *****
10/04/2019 00:42:06 - INFO - __main__ - f1 = 0.8623348017621146
10/04/2019 00:42:06 - INFO - __main__ - loss = 0.07183869666975543
10/04/2019 00:42:06 - INFO - __main__ - precision = 0.8467916366258111
10/04/2019 00:42:06 - INFO - __main__ - recall = 0.8784592370979806
```
On the test dataset the following results could be achieved:
```bash
10/04/2019 00:42:42 - INFO - __main__ - ***** Eval results *****
10/04/2019 00:42:42 - INFO - __main__ - f1 = 0.8614389652384803
10/04/2019 00:42:42 - INFO - __main__ - loss = 0.07064602487454782
10/04/2019 00:42:42 - INFO - __main__ - precision = 0.8604651162790697
10/04/2019 00:42:42 - INFO - __main__ - recall = 0.8624150210424085
```
## Abstractive summarization
Based on the script
[`run_summarization_finetuning.py`](https://github.com/huggingface/transformers/blob/master/examples/run_summarization_finetuning.py).
Before running this script you should download **both** CNN and Daily Mail
datasets from [Kyunghyun Cho's website](https://cs.nyu.edu/~kcho/DMQA/) (the
links next to "Stories") in the same folder. Then uncompress the archives by running:
```bash
tar -xvf cnn_stories.tgz && tar -xvf dailymail_stories.tgz
```
note that the finetuning script **will not work** if you do not download both
datasets. We will refer as `$DATA_PATH` the path to where you uncompressed both
archive.
```bash
export DATA_PATH=/path/to/dataset/
python run_summarization_finetuning.py \
--output_dir=output \
--model_type=bert2bert \
--model_name_or_path=bert2bert \
--do_train \
--data_path=$DATA_PATH \
```
\ No newline at end of file
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Benchmarking the library on inference and training """
# If checking the tensors placement
# tf.debugging.set_log_device_placement(True)
from typing import List
import timeit
from transformers import is_tf_available, is_torch_available
from time import time
import argparse
import csv
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModel
if is_torch_available():
import torch
from transformers import AutoModel
from transformers import AutoConfig, AutoTokenizer
input_text = """Bent over their instruments, three hundred Fertilizers were plunged, as
the Director of Hatcheries and Conditioning entered the room, in the
scarcely breathing silence, the absent-minded, soliloquizing hum or
whistle, of absorbed concentration. A troop of newly arrived students,
very young, pink and callow, followed nervously, rather abjectly, at the
Director's heels. Each of them carried a notebook, in which, whenever
the great man spoke, he desperately scribbled. Straight from the
horse's mouth. It was a rare privilege. The D. H. C. for Central London
always made a point of personally conducting his new students round
the various departments.
"Just to give you a general idea," he would explain to them. For of
course some sort of general idea they must have, if they were to do
their work intelligently-though as little of one, if they were to be good
and happy members of society, as possible. For particulars, as every
one knows, make for virtue and happiness; generalities are intellectu-
ally necessary evils. Not philosophers but fret-sawyers and stamp col-
lectors compose the backbone of society.
"To-morrow," he would add, smiling at them with a slightly menacing
geniality, "you'll be settling down to serious work. You won't have time
for generalities. Meanwhile ..."
Meanwhile, it was a privilege. Straight from the horse's mouth into the
notebook. The boys scribbled like mad.
Tall and rather thin but upright, the Director advanced into the room.
He had a long chin and big rather prominent teeth, just covered, when
he was not talking, by his full, floridly curved lips. Old, young? Thirty?
Fifty? Fifty-five? It was hard to say. And anyhow the question didn't
arise; in this year of stability, A. F. 632, it didn't occur to you to ask it.
"I shall begin at the beginning," said the D.H.C. and the more zealous
students recorded his intention in their notebooks: Begin at the begin-
ning. "These," he waved his hand, "are the incubators." And opening
an insulated door he showed them racks upon racks of numbered test-
tubes. "The week's supply of ova. Kept," he explained, "at blood heat;
whereas the male gametes," and here he opened another door, "they
have to be kept at thirty-five instead of thirty-seven. Full blood heat
sterilizes." Rams wrapped in theremogene beget no lambs.
Still leaning against the incubators he gave them, while the pencils
scurried illegibly across the pages, a brief description of the modern
fertilizing process; spoke first, of course, of its surgical introduc-
tion-"the operation undergone voluntarily for the good of Society, not
to mention the fact that it carries a bonus amounting to six months'
salary"; continued with some account of the technique for preserving
the excised ovary alive and actively developing; passed on to a consid-
eration of optimum temperature, salinity, viscosity; referred to the liq-
uor in which the detached and ripened eggs were kept; and, leading
his charges to the work tables, actually showed them how this liquor
was drawn off from the test-tubes; how it was let out drop by drop
onto the specially warmed slides of the microscopes; how the eggs
which it contained were inspected for abnormalities, counted and
transferred to a porous receptacle; how (and he now took them to
watch the operation) this receptacle was immersed in a warm bouillon
containing free-swimming spermatozoa-at a minimum concentration
of one hundred thousand per cubic centimetre, he insisted; and how,
after ten minutes, the container was lifted out of the liquor and its
contents re-examined; how, if any of the eggs remained unfertilized, it
was again immersed, and, if necessary, yet again; how the fertilized
ova went back to the incubators; where the Alphas and Betas re-
mained until definitely bottled; while the Gammas, Deltas and Epsilons
were brought out again, after only thirty-six hours, to undergo Bo-
kanovsky's Process.
"Bokanovsky's Process," repeated the Director, and the students un-
derlined the words in their little notebooks.
One egg, one embryo, one adult-normality. But a bokanovskified egg
will bud, will proliferate, will divide. From eight to ninety-six buds, and
every bud will grow into a perfectly formed embryo, and every embryo
into a full-sized adult. Making ninety-six human beings grow where
only one grew before. Progress.
"Essentially," the D.H.C. concluded, "bokanovskification consists of a
series of arrests of development. We check the normal growth and,
paradoxically enough, the egg responds by budding."
Responds by budding. The pencils were busy.
He pointed. On a very slowly moving band a rack-full of test-tubes was
entering a large metal box, another, rack-full was emerging. Machinery
faintly purred. It took eight minutes for the tubes to go through, he
told them. Eight minutes of hard X-rays being about as much as an
egg can stand. A few died; of the rest, the least susceptible divided
into two; most put out four buds; some eight; all were returned to the
incubators, where the buds began to develop; then, after two days,
were suddenly chilled, chilled and checked. Two, four, eight, the buds
in their turn budded; and having budded were dosed almost to death
with alcohol; consequently burgeoned again and having budded-bud
out of bud out of bud-were thereafter-further arrest being generally
fatal-left to develop in peace. By which time the original egg was in a
fair way to becoming anything from eight to ninety-six embryos- a
prodigious improvement, you will agree, on nature. Identical twins-but
not in piddling twos and threes as in the old viviparous days, when an
egg would sometimes accidentally divide; actually by dozens, by
scores at a time.
"Scores," the Director repeated and flung out his arms, as though he
were distributing largesse. "Scores."
But one of the students was fool enough to ask where the advantage
lay.
"My good boy!" The Director wheeled sharply round on him. "Can't you
see? Can't you see?" He raised a hand; his expression was solemn.
"Bokanovsky's Process is one of the major instruments of social stabil-
ity!"
Major instruments of social stability.
Standard men and women; in uniform batches. The whole of a small
factory staffed with the products of a single bokanovskified egg.
"Ninety-six identical twins working ninety-six identical machines!" The
voice was almost tremulous with enthusiasm. "You really know where
you are. For the first time in history." He quoted the planetary motto.
"Community, Identity, Stability." Grand words. "If we could bo-
kanovskify indefinitely the whole problem would be solved."
Solved by standard Gammas, unvarying Deltas, uniform Epsilons. Mil-
lions of identical twins. The principle of mass production at last applied
to biology.
"But, alas," the Director shook his head, "we can't bokanovskify indefi-
nitely."
Ninety-six seemed to be the limit; seventy-two a good average. From
the same ovary and with gametes of the same male to manufacture as
many batches of identical twins as possible-that was the best (sadly a
second best) that they could do. And even that was difficult.
"For in nature it takes thirty years for two hundred eggs to reach ma-
turity. But our business is to stabilize the population at this moment,
here and now. Dribbling out twins over a quarter of a century-what
would be the use of that?"
Obviously, no use at all. But Podsnap's Technique had immensely ac-
celerated the process of ripening. They could make sure of at least a
hundred and fifty mature eggs within two years. Fertilize and bo-
kanovskify-in other words, multiply by seventy-two-and you get an
average of nearly eleven thousand brothers and sisters in a hundred
and fifty batches of identical twins, all within two years of the same
age.
"And in exceptional cases we can make one ovary yield us over fifteen
thousand adult individuals."
Beckoning to a fair-haired, ruddy young man who happened to be
passing at the moment. "Mr. Foster," he called. The ruddy young man
approached. "Can you tell us the record for a single ovary, Mr. Foster?"
"Sixteen thousand and twelve in this Centre," Mr. Foster replied with-
out hesitation. He spoke very quickly, had a vivacious blue eye, and
took an evident pleasure in quoting figures. "Sixteen thousand and
twelve; in one hundred and eighty-nine batches of identicals. But of
course they've done much better," he rattled on, "in some of the tropi-
cal Centres. Singapore has often produced over sixteen thousand five
hundred; and Mombasa has actually touched the seventeen thousand
mark. But then they have unfair advantages. You should see the way a
negro ovary responds to pituitary! It's quite astonishing, when you're
used to working with European material. Still," he added, with a laugh
(but the light of combat was in his eyes and the lift of his chin was
challenging), "still, we mean to beat them if we can. I'm working on a
wonderful Delta-Minus ovary at this moment. Only just eighteen
months old. Over twelve thousand seven hundred children already, ei-
ther decanted or in embryo. And still going strong. We'll beat them
yet."
"That's the spirit I like!" cried the Director, and clapped Mr. Foster on
the shoulder. "Come along with us, and give these boys the benefit of
your expert knowledge."
Mr. Foster smiled modestly. "With pleasure." They went.
In the Bottling Room all was harmonious bustle and ordered activity.
Flaps of fresh sow's peritoneum ready cut to the proper size came
shooting up in little lifts from the Organ Store in the sub-basement.
Whizz and then, click! the lift-hatches hew open; the bottle-liner had
only to reach out a hand, take the flap, insert, smooth-down, and be-
fore the lined bottle had had time to travel out of reach along the end-
less band, whizz, click! another flap of peritoneum had shot up from
the depths, ready to be slipped into yet another bottle, the next of that
slow interminable procession on the band.
Next to the Liners stood the Matriculators. The procession advanced;
one by one the eggs were transferred from their test-tubes to the
larger containers; deftly the peritoneal lining was slit, the morula
dropped into place, the saline solution poured in ... and already the
bottle had passed, and it was the turn of the labellers. Heredity, date
of fertilization, membership of Bokanovsky Group-details were trans-
ferred from test-tube to bottle. No longer anonymous, but named,
identified, the procession marched slowly on; on through an opening in
the wall, slowly on into the Social Predestination Room.
"Eighty-eight cubic metres of card-index," said Mr. Foster with relish,
as they entered."""
def create_setup_and_compute(model_names: List[str],
gpu: bool = True,
tensorflow: bool = False,
average_over: int = 3,
torchscript: bool = False,
xla: bool = False,
save_to_csv: bool = False,
csv_filename: str = f"results_{round(time())}.csv"):
if xla:
tf.config.optimizer.set_jit(True)
if tensorflow:
dictionary = {model_name: {} for model_name in model_names}
results = _compute_tensorflow(model_names, dictionary, average_over)
else:
device = 'cuda' if (gpu and torch.cuda.is_available()) else 'cpu'
dictionary = {model_name: {} for model_name in model_names}
results = _compute_pytorch(model_names, dictionary, average_over, device, torchscript)
print("=========== RESULTS ===========")
for model_name in model_names:
print("\t" + f"======= MODEL CHECKPOINT: {model_name} =======")
for batch_size in results[model_name]["bs"]:
print("\t\t" + f"===== BATCH SIZE: {batch_size} =====")
for slice_size in results[model_name]["ss"]:
result = results[model_name]['results'][batch_size][slice_size]
if isinstance(result, str):
print(f"\t\t{model_name}/{batch_size}/{slice_size}: "
f"{result}")
else:
print(f"\t\t{model_name}/{batch_size}/{slice_size}: "
f"{(round(1000 * result) / 1000)}"
f"s")
if save_to_csv:
with open(csv_filename, mode='w') as csv_file:
fieldnames = ['model',
'1x8', '1x64', '1x128', '1x256', '1x512', '1x1024',
'2x8', '2x64', '2x128', '2x256', '2x512', '2x1024',
'4x8', '4x64', '4x128', '4x256', '4x512', '4x1024',
'8x8', '8x64', '8x128', '8x256', '8x512', '8x1024',
]
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
writer.writeheader()
for model_name in model_names:
model_results = {
f'{bs}x{ss}': results[model_name]['results'][bs][ss]
for bs in results[model_name]["results"]
for ss in results[model_name]['results'][bs]
}
writer.writerow({'model': model_name, **model_results})
def _compute_pytorch(model_names, dictionary, average_over, device, torchscript):
for c, model_name in enumerate(model_names):
print(f"{c + 1} / {len(model_names)}")
config = AutoConfig.from_pretrained(model_name, torchscript=torchscript)
model = AutoModel.from_pretrained(model_name, config=config)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenized_sequence = tokenizer.encode(input_text, add_special_tokens=False)
max_input_size = tokenizer.max_model_input_sizes[model_name]
batch_sizes = [1, 2, 4, 8]
slice_sizes = [8, 64, 128, 256, 512, 1024]
dictionary[model_name] = {"bs": batch_sizes, "ss": slice_sizes, "results": {}}
dictionary[model_name]["results"] = {i: {} for i in batch_sizes}
for batch_size in batch_sizes:
model.to(device)
model.eval()
for slice_size in slice_sizes:
if max_input_size is not None and slice_size > max_input_size:
dictionary[model_name]["results"][batch_size][slice_size] = "N/A"
else:
sequence = torch.tensor(tokenized_sequence[:slice_size], device=device).repeat(batch_size, 1)
try:
if torchscript:
print("Tracing model with sequence size", sequence.shape)
inference = torch.jit.trace(model, sequence)
inference(sequence)
else:
inference = model
inference(sequence)
print("Going through model with sequence of shape", sequence.shape)
runtimes = timeit.repeat(lambda: inference(sequence), repeat=average_over, number=3)
average_time = sum(runtimes)/float(len(runtimes)) / 3.0
dictionary[model_name]["results"][batch_size][slice_size] = average_time
except RuntimeError as e:
print("Doesn't fit on GPU.", e)
torch.cuda.empty_cache()
dictionary[model_name]["results"][batch_size][slice_size] = "N/A"
return dictionary
def _compute_tensorflow(model_names, dictionary, average_over):
for c, model_name in enumerate(model_names):
print(f"{c + 1} / {len(model_names)}")
config = AutoConfig.from_pretrained(model_name)
model = TFAutoModel.from_pretrained(model_name, config=config)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenized_sequence = tokenizer.encode(input_text, add_special_tokens=False)
max_input_size = tokenizer.max_model_input_sizes[model_name]
batch_sizes = [1, 2, 4, 8]
slice_sizes = [8, 64, 128, 256, 512, 1024]
dictionary[model_name] = {"bs": batch_sizes, "ss": slice_sizes, "results": {}}
dictionary[model_name]["results"] = {i: {} for i in batch_sizes}
print("Using model", model)
@tf.function
def inference(inputs):
return model(inputs)
for batch_size in batch_sizes:
for slice_size in slice_sizes:
if max_input_size is not None and slice_size > max_input_size:
dictionary[model_name]["results"][batch_size][slice_size] = "N/A"
else:
sequence = tf.stack([tf.squeeze(tf.constant(tokenized_sequence[:slice_size])[None, :])] * batch_size)
try:
print("Going through model with sequence of shape", sequence.shape)
# To make sure that the model is traced + that the tensors are on the appropriate device
inference(sequence)
runtimes = timeit.repeat(lambda: inference(sequence), repeat=average_over, number=3)
average_time = sum(runtimes)/float(len(runtimes)) / 3.0
dictionary[model_name]["results"][batch_size][slice_size] = average_time
except tf.errors.ResourceExhaustedError as e:
print("Doesn't fit on GPU.", e)
torch.cuda.empty_cache()
dictionary[model_name]["results"][batch_size][slice_size] = "N/A"
return dictionary
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--models", required=False, type=str, default='all', help="Model checkpoints to be provided "
"to the AutoModel classes. Leave "
"blank to benchmark the base version "
"of all available model "
"architectures.")
parser.add_argument("--torch", required=False, action="store_true", help="Benchmark the Pytorch version of the "
"models")
parser.add_argument("--torch_cuda", required=False, action="store_true", help="Pytorch only: run on available "
"cuda devices")
parser.add_argument("--torchscript", required=False, action="store_true", help="Pytorch only: trace the models "
"using torchscript")
parser.add_argument("--tensorflow", required=False, action="store_true", help="Benchmark the TensorFlow version "
"of the models. Will run on GPU if "
"the correct dependencies are "
"installed")
parser.add_argument("--xla", required=False, action="store_true", help="TensorFlow only: use XLA acceleration.")
parser.add_argument("--keras_predict", required=False, action="store_true", help="Whether to use model.predict "
"instead of model() to do a "
"forward pass.")
parser.add_argument("--save_to_csv", required=False, action="store_true", help="Save to a CSV file.")
parser.add_argument("--csv_filename", required=False, default=None, help="CSV filename used if saving results to csv.")
parser.add_argument("--average_over", required=False, default=30, type=int, help="Times an experiment will be run.")
args = parser.parse_args()
if args.models == 'all':
args.models = [
"gpt2",
"bert-base-cased",
"xlnet-base-cased",
"xlm-mlm-en-2048",
"transfo-xl-wt103",
"openai-gpt",
"distilbert-base-uncased",
"distilgpt2",
"roberta-base",
"ctrl"
]
else:
args.models = args.models.split()
print("Running with arguments", args)
if args.torch:
if is_torch_available():
create_setup_and_compute(
model_names=args.models,
tensorflow=False,
gpu=args.torch_cuda,
torchscript=args.torchscript,
save_to_csv=args.save_to_csv,
csv_filename=args.csv_filename,
average_over=args.average_over
)
else:
raise ImportError("Trying to run a PyTorch benchmark but PyTorch was not found in the environment.")
if args.tensorflow:
if is_tf_available():
create_setup_and_compute(
model_names=args.models,
tensorflow=True,
xla=args.xla,
save_to_csv=args.save_to_csv,
csv_filename=args.csv_filename,
average_over=args.average_over
)
else:
raise ImportError("Trying to run a TensorFlow benchmark but TensorFlow was not found in the environment.")
if __name__ == '__main__':
main()
...@@ -39,7 +39,7 @@ import torch ...@@ -39,7 +39,7 @@ import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset) TensorDataset)
from pytorch_transformers import (OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, from transformers import (OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer,
AdamW, cached_path, WEIGHTS_NAME, CONFIG_NAME, AdamW, cached_path, WEIGHTS_NAME, CONFIG_NAME,
WarmupLinearSchedule) WarmupLinearSchedule)
......
...@@ -31,14 +31,18 @@ import torch ...@@ -31,14 +31,18 @@ import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset) TensorDataset)
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from tensorboardX import SummaryWriter try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange
from pytorch_transformers import (WEIGHTS_NAME, BertConfig, from transformers import (WEIGHTS_NAME, BertConfig,
BertForMultipleChoice, BertTokenizer) BertForMultipleChoice, BertTokenizer)
from pytorch_transformers import AdamW, WarmupLinearSchedule from transformers import AdamW, WarmupLinearSchedule
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
...@@ -365,7 +369,7 @@ def train(args, train_dataset, model, tokenizer): ...@@ -365,7 +369,7 @@ def train(args, train_dataset, model, tokenizer):
# inputs.update({'cls_index': batch[5], # inputs.update({'cls_index': batch[5],
# 'p_mask': batch[6]}) # 'p_mask': batch[6]})
outputs = model(**inputs) outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in pytorch-transformers (see doc) loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1: if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
...@@ -647,7 +651,7 @@ def main(): ...@@ -647,7 +651,7 @@ def main():
if args.eval_all_checkpoints: if args.eval_all_checkpoints:
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce model loading logs logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce model loading logs
logger.info("Evaluate the following checkpoints: %s", checkpoints) logger.info("Evaluate the following checkpoints: %s", checkpoints)
......
...@@ -28,7 +28,7 @@ import math ...@@ -28,7 +28,7 @@ import math
import torch import torch
from pytorch_transformers import TransfoXLLMHeadModel, TransfoXLCorpus, TransfoXLTokenizer from transformers import TransfoXLLMHeadModel, TransfoXLCorpus, TransfoXLTokenizer
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S', datefmt = '%m/%d/%Y %H:%M:%S',
......
# DistilBERT # Distil*
This folder contains the original code used to train DistilBERT as well as examples showcasing how to use DistilBERT. This folder contains the original code used to train Distil* as well as examples showcasing how to use DistilBERT, DistilRoBERTa and DistilGPT2.
**2019, September 19th - Update:** We fixed bugs in the code and released an upadted version of the weights trained with a modification of the distillation loss. DistilBERT now reaches 97% of `BERT-base`'s performance on GLUE, and 86.9 F1 score on SQuAD v1.1 dev set (compared to 88.5 for `BERT-base`). We will publish a formal write-up of our approach in the near future! **October 23rd, 2019 - Update** We release **DistilRoBERTa**: 95% of `RoBERTa-base`'s performance on GLUE, twice as fast as RoBERTa while being 35% smaller.
## What is DistilBERT **October 3rd, 2019 - Update** We release our [NeurIPS workshop paper](https://arxiv.org/abs/1910.01108) explaining our approach on **DistilBERT**. It includes updated results and further experiments. We applied the same method to GPT2 and release the weights of **DistilGPT2**. DistilGPT2 is two times faster and 33% smaller than GPT2. **The paper superseeds our [previous blogpost](https://medium.com/huggingface/distilbert-8cf3380435b5) with a different distillation loss and better performances. Please use the paper as a reference when comparing/reporting results on DistilBERT.**
DistilBERT stands for Distillated-BERT. DistilBERT is a small, fast, cheap and light Transformer model based on Bert architecture. It has 40% less parameters than `bert-base-uncased`, runs 60% faster while preserving 97% of BERT's performances as measured on the GLUE language understanding benchmark. DistilBERT is trained using knowledge distillation, a technique to compress a large model called the teacher into a smaller model called the student. By distillating Bert, we obtain a smaller Transformer model that bears a lot of similarities with the original BERT model while being lighter, smaller and faster to run. DistilBERT is thus an interesting option to put large-scaled trained Transformer model into production. **September 19th, 2019 - Update:** We fixed bugs in the code and released an upadted version of the weights trained with a modification of the distillation loss. DistilBERT now reaches 97% of `BERT-base`'s performance on GLUE, and 86.9 F1 score on SQuAD v1.1 dev set (compared to 88.5 for `BERT-base`). We will publish a formal write-up of our approach in the near future!
For more information on DistilBERT, please refer to our [detailed blog post](https://medium.com/huggingface/smaller-faster-cheaper-lighter-introducing-distilbert-a-distilled-version-of-bert-8cf3380435b5
). *Please note that we will publish a formal write-up with updated and more complete results in the near future (September 19th).*
Here's the updated results on the dev sets of GLUE: ## What is Distil*
| Model | Macro-score | CoLA | MNLI | MRPC | QNLI | QQP | RTE | SST-2 | STS-B | WNLI | Distil* is a class of compressed models that started with DistilBERT. DistilBERT stands for Distillated-BERT. DistilBERT is a small, fast, cheap and light Transformer model based on Bert architecture. It has 40% less parameters than `bert-base-uncased`, runs 60% faster while preserving 97% of BERT's performances as measured on the GLUE language understanding benchmark. DistilBERT is trained using knowledge distillation, a technique to compress a large model called the teacher into a smaller model called the student. By distillating Bert, we obtain a smaller Transformer model that bears a lot of similarities with the original BERT model while being lighter, smaller and faster to run. DistilBERT is thus an interesting option to put large-scaled trained Transformer model into production.
| :---: | :---: | :---:| :---:| :---:| :---:| :---:| :---:| :---:| :---:| :---:|
| BERT-base | **77.6** | 48.9 | 84.3 | 88.6 | 89.3 | 89.5 | 71.3 | 91.7 | 91.2 | 43.7 | We have applied the same method to other Transformer architectures and released the weights:
| DistilBERT | **75.2** | 49.1 | 81.8 | 90.2 | 87.0 | 89.2 | 62.9 | 92.7 | 90.7 | 44.4 | - GPT2: on the [WikiText-103](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/) benchmark, GPT2 reaches a perplexity on the test set of 15.0 compared to 18.5 for **DistilGPT2** (after fine-tuning on the train set).
- RoBERTa: **DistilRoBERTa** reaches 95% of `RoBERTa-base` performance on GLUE while being twice faster and 35% smaller.
- and more to come! 🤗🤗🤗
For more information on DistilBERT, please refer to our [NeurIPS workshop paper](https://arxiv.org/abs/1910.01108).
Here are the results on the dev sets of GLUE:
| Model | Macro-score | CoLA | MNLI | MRPC | QNLI | QQP | RTE | SST-2| STS-B| WNLI |
| :---: | :---: | :---:| :---:| :---:| :---:| :---:| :---:| :---:| :---:| :---: |
| BERT-base | **77.6** | 48.9 | 84.3 | 88.6 | 89.3 | 89.5 | 71.3 | 91.7 | 91.2 | 43.7 |
| DistilBERT | **76.8** | 49.1 | 81.8 | 90.2 | 90.2 | 89.2 | 62.9 | 92.7 | 90.7 | 44.4 |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| RoBERTa-base (reported) | **83.2**/**86.4**<sup>2</sup> | 63.6 | 87.6 | 90.2 | 92.8 | 91.9 | 78.7 | 94.8 | 91.2 | 57.7<sup>3</sup> |
| DistilRoBERTa<sup>1</sup> | **79.0**/**82.3**<sup>2</sup> | 59.4 | 83.9 | 86.6 | 90.8 | 89.4 | 67.9 | 92.5 | 88.3 | 52.1 |
<sup>1</sup> We did not use the MNLI checkpoint for fine-tuning but directy perform transfer learning on the pre-trained DistilRoBERTa.
<sup>2</sup> Macro-score computed without WNLI.
<sup>3</sup> We compute this score ourselves for completeness.
## Setup ## Setup
This part of the library has only be tested with Python3.6+. There are few specific dependencies to install before launching a distillation, you can install them with the command `pip install -r requirements.txt`. This part of the library has only be tested with Python3.6+. There are few specific dependencies to install before launching a distillation, you can install them with the command `pip install -r requirements.txt`.
**Important note:** The training scripts have been updated to support PyTorch v1.2.0 (there are breakings changes compared to v1.1.0). It is important to note that there is a small internal bug in the current version of PyTorch available on pip that causes a memory leak in our training/distillation. It has been recently fixed and will likely be integrated into the next release. For the moment, we recommend to [compile PyTorch from source](https://github.com/pytorch/pytorch#from-source). Please refer to [issue 1179](https://github.com/huggingface/pytorch-transformers/issues/1179) for more details. **Important note:** The training scripts have been updated to support PyTorch v1.2.0 (there are breakings changes compared to v1.1.0).
## How to use DistilBERT ## How to use DistilBERT
PyTorch-Transformers includes two pre-trained DistilBERT models, currently only provided for English (we are investigating the possibility to train and release a multilingual version of DistilBERT): Transformers includes two pre-trained Distil* models, currently only provided for English (we are investigating the possibility to train and release a multilingual version of DistilBERT):
- `distilbert-base-uncased`: DistilBERT English language model pretrained on the same data used to pretrain Bert (concatenation of the Toronto Book Corpus and full English Wikipedia) using distillation with the supervision of the `bert-base-uncased` version of Bert. The model has 6 layers, 768 dimension and 12 heads, totalizing 66M parameters. - `distilbert-base-uncased`: DistilBERT English language model pretrained on the same data used to pretrain Bert (concatenation of the Toronto Book Corpus and full English Wikipedia) using distillation with the supervision of the `bert-base-uncased` version of Bert. The model has 6 layers, 768 dimension and 12 heads, totalizing 66M parameters.
- `distilbert-base-uncased-distilled-squad`: A finetuned version of `distilbert-base-uncased` finetuned using (a second step of) knwoledge distillation on SQuAD 1.0. This model reaches a F1 score of 86.9 on the dev set (for comparison, Bert `bert-base-uncased` version reaches a 88.5 F1 score). - `distilbert-base-uncased-distilled-squad`: A finetuned version of `distilbert-base-uncased` finetuned using (a second step of) knwoledge distillation on SQuAD 1.0. This model reaches a F1 score of 86.9 on the dev set (for comparison, Bert `bert-base-uncased` version reaches a 88.5 F1 score).
- `distilgpt2`: DistilGPT2 English language model pretrained with the supervision of `gpt2` (the smallest version of GPT2) on [OpenWebTextCorpus](https://skylion007.github.io/OpenWebTextCorpus/), a reproduction of OpenAI's WebText dataset. The model has 6 layers, 768 dimension and 12 heads, totalizing 82M parameters (compared to 124M parameters for GPT2). On average, DistilGPT2 is two times faster than GPT2.
- `distilroberta-base`: DistilRoBERTa English language model pretrained with the supervision of `roberta-base` solely on [OpenWebTextCorpus](https://skylion007.github.io/OpenWebTextCorpus/), a reproduction of OpenAI's WebText dataset (it is ~4 times less training data than the teacher RoBERTa). The model has 6 layers, 768 dimension and 12 heads, totalizing 82M parameters (compared to 125M parameters for RoBERTa-base). On average DistilRoBERTa is twice as fast as Roberta-base.
- and more to come! 🤗🤗🤗
Using DistilBERT is very similar to using BERT. DistilBERT share the same tokenizer as BERT's `bert-base-uncased` even though we provide a link to this tokenizer under the `DistilBertTokenizer` name to have a consistent naming between the library models. Using DistilBERT is very similar to using BERT. DistilBERT share the same tokenizer as BERT's `bert-base-uncased` even though we provide a link to this tokenizer under the `DistilBertTokenizer` name to have a consistent naming between the library models.
...@@ -42,9 +64,14 @@ outputs = model(input_ids) ...@@ -42,9 +64,14 @@ outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
``` ```
## How to train DistilBERT Similarly, using the other Distil* models simply consists in calling the base classes with a different pretrained checkpoint:
- DistilGPT2: `model = GPT2Model.from_pretrained('distilgpt2')`
- DistilRoBERTa: `model = RobertaModel.from_pretrained('distilroberta-base')`
In the following, we will explain how you can train your own compressed model.
## How to train Distil*
In the following, we will explain how you can train DistilBERT.
### A. Preparing the data ### A. Preparing the data
...@@ -57,7 +84,8 @@ First, we will binarize the data, i.e. tokenize the data and convert each token ...@@ -57,7 +84,8 @@ First, we will binarize the data, i.e. tokenize the data and convert each token
```bash ```bash
python scripts/binarized_data.py \ python scripts/binarized_data.py \
--file_path data/dump.txt \ --file_path data/dump.txt \
--bert_tokenizer bert-base-uncased \ --tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file data/binarized_text --dump_file data/binarized_text
``` ```
...@@ -66,7 +94,8 @@ Our implementation of masked language modeling loss follows [XLM](https://github ...@@ -66,7 +94,8 @@ Our implementation of masked language modeling loss follows [XLM](https://github
```bash ```bash
python scripts/token_counts.py \ python scripts/token_counts.py \
--data_file data/binarized_text.bert-base-uncased.pickle \ --data_file data/binarized_text.bert-base-uncased.pickle \
--token_counts_dump data/token_counts.bert-base-uncased.pickle --token_counts_dump data/token_counts.bert-base-uncased.pickle \
--vocab_size 30522
``` ```
### B. Training ### B. Training
...@@ -75,6 +104,12 @@ Training with distillation is really simple once you have pre-processed the data ...@@ -75,6 +104,12 @@ Training with distillation is really simple once you have pre-processed the data
```bash ```bash
python train.py \ python train.py \
--student_type distilbert \
--student_config training_configs/distilbert-base-uncased.json \
--teacher_type bert \
--teacher_name bert-base-uncased \
--alpha_ce 5.0 --alpha_mlm 2.0 --alpha_cos 1.0 --alpha_clm 0.0 --mlm \
--freeze_pos_embs \
--dump_path serialization_dir/my_first_training \ --dump_path serialization_dir/my_first_training \
--data_file data/binarized_text.bert-base-uncased.pickle \ --data_file data/binarized_text.bert-base-uncased.pickle \
--token_counts data/token_counts.bert-base-uncased.pickle \ --token_counts data/token_counts.bert-base-uncased.pickle \
...@@ -83,7 +118,7 @@ python train.py \ ...@@ -83,7 +118,7 @@ python train.py \
By default, this will launch a training on a single GPU (even if more are available on the cluster). Other parameters are available in the command line, please look in `train.py` or run `python train.py --help` to list them. By default, this will launch a training on a single GPU (even if more are available on the cluster). Other parameters are available in the command line, please look in `train.py` or run `python train.py --help` to list them.
We highly encourage you to use distributed training for training DistilBert as the training corpus is quite large. Here's an example that runs a distributed training on a single node having 4 GPUs: We highly encourage you to use distributed training for training DistilBERT as the training corpus is quite large. Here's an example that runs a distributed training on a single node having 4 GPUs:
```bash ```bash
export NODE_RANK=0 export NODE_RANK=0
...@@ -105,11 +140,30 @@ python -m torch.distributed.launch \ ...@@ -105,11 +140,30 @@ python -m torch.distributed.launch \
train.py \ train.py \
--force \ --force \
--n_gpu $WORLD_SIZE \ --n_gpu $WORLD_SIZE \
--student_type distilbert \
--student_config training_configs/distilbert-base-uncased.json \
--teacher_type bert \
--teacher_name bert-base-uncased \
--alpha_ce 0.33 --alpha_mlm 0.33 --alpha_cos 0.33 --alpha_clm 0.0 --mlm \
--freeze_pos_embs \
--dump_path serialization_dir/my_first_training \
--data_file data/binarized_text.bert-base-uncased.pickle \ --data_file data/binarized_text.bert-base-uncased.pickle \
--token_counts data/token_counts.bert-base-uncased.pickle \ --token_counts data/token_counts.bert-base-uncased.pickle
--dump_path serialization_dir/my_first_distillation
``` ```
**Tips:** Starting distillated training with good initialization of the model weights is crucial to reach decent performance. In our experiments, we initialized our model from a few layers of the teacher (Bert) itself! Please refer to `scripts/extract_for_distil.py` to create a valid initialization checkpoint and use `--from_pretrained_weights` and `--from_pretrained_config` arguments to use this initialization for the distilled training! **Tips:** Starting distillated training with good initialization of the model weights is crucial to reach decent performance. In our experiments, we initialized our model from a few layers of the teacher (Bert) itself! Please refer to `scripts/extract.py` and `scripts/extract_distilbert.py` to create a valid initialization checkpoint and use `--student_pretrained_weights` argument to use this initialization for the distilled training!
Happy distillation! Happy distillation!
## Citation
If you find the ressource useful, you should cite the following paper:
```
@inproceedings{sanh2019distilbert,
title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
author={Sanh, Victor and Debut, Lysandre and Chaumond, Julien and Wolf, Thomas},
booktitle={NeurIPS EMC^2 Workshop},
year={2019}
}
```
...@@ -12,14 +12,13 @@ ...@@ -12,14 +12,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
""" The distiller to distil DistilBERT """ The distiller to distil the student.
adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM) Adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
""" """
import os import os
import math import math
import psutil import psutil
import time import time
from tensorboardX import SummaryWriter
from tqdm import trange, tqdm from tqdm import trange, tqdm
import numpy as np import numpy as np
import psutil import psutil
...@@ -28,16 +27,24 @@ import torch ...@@ -28,16 +27,24 @@ import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from torch.optim import AdamW from torch.optim import AdamW
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import RandomSampler, BatchSampler, DataLoader
from pytorch_transformers import WarmupLinearSchedule try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
from transformers import WarmupLinearSchedule
from utils import logger from utils import logger
from dataset import Dataset from lm_seqs_dataset import LmSeqsDataset
from grouped_batch_sampler import GroupedBatchSampler, create_lengths_groups
class Distiller: class Distiller:
def __init__(self, def __init__(self,
params: dict, params: dict,
dataloader: Dataset, dataset: LmSeqsDataset,
token_probs: torch.tensor, token_probs: torch.tensor,
student: nn.Module, student: nn.Module,
teacher: nn.Module): teacher: nn.Module):
...@@ -50,33 +57,47 @@ class Distiller: ...@@ -50,33 +57,47 @@ class Distiller:
self.student = student self.student = student
self.teacher = teacher self.teacher = teacher
self.dataloader = dataloader self.student_config = student.config
if self.params.n_gpu > 1: self.vocab_size = student.config.vocab_size
self.dataloader.split()
self.get_iterator(seed=params.seed) if params.n_gpu <= 1:
sampler = RandomSampler(dataset)
else:
sampler = DistributedSampler(dataset)
if params.group_by_size:
groups = create_lengths_groups(lengths=dataset.lengths, k=params.max_model_input_size)
sampler = GroupedBatchSampler(sampler=sampler, group_ids=groups, batch_size=params.batch_size)
else:
sampler = BatchSampler(sampler=sampler, batch_size=params.batch_size, drop_last=False)
self.dataloader = DataLoader(dataset=dataset,
batch_sampler=sampler,
collate_fn=dataset.batch_sequences)
self.temperature = params.temperature self.temperature = params.temperature
assert self.temperature > 0. assert self.temperature > 0.
self.alpha_ce = params.alpha_ce self.alpha_ce = params.alpha_ce
self.alpha_mlm = params.alpha_mlm self.alpha_mlm = params.alpha_mlm
self.alpha_clm = params.alpha_clm
self.alpha_mse = params.alpha_mse self.alpha_mse = params.alpha_mse
self.alpha_cos = params.alpha_cos self.alpha_cos = params.alpha_cos
assert self.alpha_ce >= 0.
assert self.alpha_mlm >= 0. self.mlm = params.mlm
assert self.alpha_mse >= 0. if self.mlm:
assert self.alpha_cos >= 0. logger.info(f'Using MLM loss for LM step.')
assert self.alpha_ce + self.alpha_mlm + self.alpha_mse + self.alpha_cos > 0. self.mlm_mask_prop = params.mlm_mask_prop
assert 0.0 <= self.mlm_mask_prop <= 1.0
self.mlm_mask_prop = params.mlm_mask_prop assert params.word_mask + params.word_keep + params.word_rand == 1.0
assert 0.0 <= self.mlm_mask_prop <= 1.0 self.pred_probs = torch.FloatTensor([params.word_mask, params.word_keep, params.word_rand])
assert params.word_mask + params.word_keep + params.word_rand == 1.0 self.pred_probs = self.pred_probs.to(f'cuda:{params.local_rank}') if params.n_gpu > 0 else self.pred_probs
self.pred_probs = torch.FloatTensor([params.word_mask, params.word_keep, params.word_rand]) self.token_probs = token_probs.to(f'cuda:{params.local_rank}') if params.n_gpu > 0 else token_probs
self.pred_probs = self.pred_probs.to(f'cuda:{params.local_rank}') if params.n_gpu > 0 else self.pred_probs if self.fp16:
self.token_probs = token_probs.to(f'cuda:{params.local_rank}') if params.n_gpu > 0 else token_probs self.pred_probs = self.pred_probs.half()
if self.fp16: self.token_probs = self.token_probs.half()
self.pred_probs = self.pred_probs.half() else:
self.token_probs = self.token_probs.half() logger.info(f'Using CLM loss for LM step.')
self.epoch = 0 self.epoch = 0
self.n_iter = 0 self.n_iter = 0
...@@ -86,12 +107,13 @@ class Distiller: ...@@ -86,12 +107,13 @@ class Distiller:
self.last_loss = 0 self.last_loss = 0
self.last_loss_ce = 0 self.last_loss_ce = 0
self.last_loss_mlm = 0 self.last_loss_mlm = 0
self.last_loss_clm = 0
if self.alpha_mse > 0.: self.last_loss_mse = 0 if self.alpha_mse > 0.: self.last_loss_mse = 0
if self.alpha_cos > 0.: self.last_loss_cos = 0 if self.alpha_cos > 0.: self.last_loss_cos = 0
self.last_log = 0 self.last_log = 0
self.ce_loss_fct = nn.KLDivLoss(reduction='batchmean') self.ce_loss_fct = nn.KLDivLoss(reduction='batchmean')
self.mlm_loss_fct = nn.CrossEntropyLoss(ignore_index=-1) self.lm_loss_fct = nn.CrossEntropyLoss(ignore_index=-1)
if self.alpha_mse > 0.: if self.alpha_mse > 0.:
self.mse_loss_fct = nn.MSELoss(reduction='sum') self.mse_loss_fct = nn.MSELoss(reduction='sum')
if self.alpha_cos > 0.: if self.alpha_cos > 0.:
...@@ -99,7 +121,7 @@ class Distiller: ...@@ -99,7 +121,7 @@ class Distiller:
logger.info('--- Initializing model optimizer') logger.info('--- Initializing model optimizer')
assert params.gradient_accumulation_steps >= 1 assert params.gradient_accumulation_steps >= 1
self.num_steps_epoch = int(len(self.dataloader) / params.batch_size) + 1 self.num_steps_epoch = len(self.dataloader)
num_train_optimization_steps = int(self.num_steps_epoch / params.gradient_accumulation_steps * params.n_epoch) + 1 num_train_optimization_steps = int(self.num_steps_epoch / params.gradient_accumulation_steps * params.n_epoch) + 1
no_decay = ['bias', 'LayerNorm.weight'] no_decay = ['bias', 'LayerNorm.weight']
...@@ -140,43 +162,18 @@ class Distiller: ...@@ -140,43 +162,18 @@ class Distiller:
logger.info("Using nn.parallel.DistributedDataParallel for distributed training.") logger.info("Using nn.parallel.DistributedDataParallel for distributed training.")
self.student = DistributedDataParallel(self.student, self.student = DistributedDataParallel(self.student,
device_ids=[params.local_rank], device_ids=[params.local_rank],
output_device=params.local_rank) output_device=params.local_rank,
find_unused_parameters=True)
self.is_master = params.is_master self.is_master = params.is_master
if self.is_master: if self.is_master:
logger.info('--- Initializing Tensorboard') logger.info('--- Initializing Tensorboard')
self.tensorboard = SummaryWriter(log_dir=os.path.join(self.dump_path, 'log', 'train')) self.tensorboard = SummaryWriter(log_dir=os.path.join(self.dump_path, 'log', 'train'))
self.tensorboard.add_text(tag='config', text_string=str(self.params), global_step=0) self.tensorboard.add_text(tag='config/training', text_string=str(self.params), global_step=0)
self.tensorboard.add_text(tag='config/student', text_string=str(self.student_config), global_step=0)
def get_iterator(self, def prepare_batch_mlm(self,
seed: int = None): batch):
"""
Initialize the data iterator.
Each process has its own data iterator (iterating on his own random portion of the dataset).
Input:
------
seed: `int` - The random seed.
"""
logger.info('--- Initializing Data Iterator')
self.data_iterator = self.dataloader.get_iterator(seed=seed)
def get_batch(self):
"""
Call the data iterator to output a new batch.
If the data iterator went through the whole dataset, create a new iterator.
"""
assert hasattr(self, 'data_iterator')
try:
x = next(self.data_iterator)
except StopIteration:
logger.warning('--- Went through the whole dataset. Creating new data iterator.')
self.data_iterator = self.dataloader.get_iterator()
x = next(self.data_iterator)
return x
def prepare_batch(self,
batch):
""" """
Prepare the batch: from the token_ids and the lenghts, compute the attention mask and the masked label for MLM. Prepare the batch: from the token_ids and the lenghts, compute the attention mask and the masked label for MLM.
...@@ -222,7 +219,7 @@ class Distiller: ...@@ -222,7 +219,7 @@ class Distiller:
assert pred_mask.sum().item() % 8 == 0, pred_mask.sum().item() assert pred_mask.sum().item() % 8 == 0, pred_mask.sum().item()
_token_ids_real = token_ids[pred_mask] _token_ids_real = token_ids[pred_mask]
_token_ids_rand = _token_ids_real.clone().random_(self.params.vocab_size) _token_ids_rand = _token_ids_real.clone().random_(self.vocab_size)
_token_ids_mask = _token_ids_real.clone().fill_(self.params.special_tok_ids['mask_token']) _token_ids_mask = _token_ids_real.clone().fill_(self.params.special_tok_ids['mask_token'])
probs = torch.multinomial(self.pred_probs, len(_token_ids_real), replacement=True) probs = torch.multinomial(self.pred_probs, len(_token_ids_real), replacement=True)
_token_ids = _token_ids_mask * (probs == 0).long() + _token_ids_real * (probs == 1).long() + _token_ids_rand * (probs == 2).long() _token_ids = _token_ids_mask * (probs == 0).long() + _token_ids_real * (probs == 1).long() + _token_ids_rand * (probs == 2).long()
...@@ -230,8 +227,41 @@ class Distiller: ...@@ -230,8 +227,41 @@ class Distiller:
mlm_labels[~pred_mask] = -1 # previously `mlm_labels[1-pred_mask] = -1`, cf pytorch 1.2.0 compatibility mlm_labels[~pred_mask] = -1 # previously `mlm_labels[1-pred_mask] = -1`, cf pytorch 1.2.0 compatibility
# sanity checks
assert 0 <= token_ids.min() <= token_ids.max() < self.vocab_size
return token_ids, attn_mask, mlm_labels return token_ids, attn_mask, mlm_labels
def prepare_batch_clm(self,
batch):
"""
Prepare the batch: from the token_ids and the lenghts, compute the attention mask and the labels for CLM.
Input:
------
batch: `Tuple`
token_ids: `torch.tensor(bs, seq_length)` - The token ids for each of the sequence. It is padded.
lengths: `torch.tensor(bs)` - The lengths of each of the sequences in the batch.
Output:
-------
token_ids: `torch.tensor(bs, seq_length)` - The token ids after the modifications for MLM.
attn_mask: `torch.tensor(bs, seq_length)` - The attention mask for the self-attention.
clm_labels: `torch.tensor(bs, seq_length)` - The causal languge modeling labels. There is a -1 where there is nothing to predict.
"""
token_ids, lengths = batch
token_ids, lengths = self.round_batch(x=token_ids, lengths=lengths)
assert token_ids.size(0) == lengths.size(0)
attn_mask = (torch.arange(token_ids.size(1), dtype=torch.long, device=lengths.device) < lengths[:, None])
clm_labels = token_ids.new(token_ids.size()).copy_(token_ids)
clm_labels[~attn_mask] = -1 # previously `clm_labels[1-attn_mask] = -1`, cf pytorch 1.2.0 compatibility
# sanity checks
assert 0 <= token_ids.min() <= token_ids.max() < self.vocab_size
return token_ids, attn_mask, clm_labels
def round_batch(self, def round_batch(self,
x: torch.tensor, x: torch.tensor,
lengths: torch.tensor): lengths: torch.tensor):
...@@ -269,7 +299,10 @@ class Distiller: ...@@ -269,7 +299,10 @@ class Distiller:
if ml1 % 8 != 0: if ml1 % 8 != 0:
pad = 8 - (ml1 % 8) pad = 8 - (ml1 % 8)
ml2 = ml1 + pad ml2 = ml1 + pad
pad_id = self.params.special_tok_ids['pad_token'] if self.mlm:
pad_id = self.params.special_tok_ids['pad_token']
else:
pad_id = self.params.special_tok_ids['unk_token']
padding_tensor = torch.zeros(bs2, pad, dtype=torch.long, device=x.device).fill_(pad_id) padding_tensor = torch.zeros(bs2, pad, dtype=torch.long, device=x.device).fill_(pad_id)
x = torch.cat([x, padding_tensor], 1) x = torch.cat([x, padding_tensor], 1)
assert x.size() == (bs2, ml2) assert x.size() == (bs2, ml2)
...@@ -292,14 +325,16 @@ class Distiller: ...@@ -292,14 +325,16 @@ class Distiller:
if self.multi_gpu: if self.multi_gpu:
torch.distributed.barrier() torch.distributed.barrier()
iter_bar = trange(self.num_steps_epoch, desc="-Iter", disable=self.params.local_rank not in [-1, 0]) iter_bar = tqdm(self.dataloader, desc="-Iter", disable=self.params.local_rank not in [-1, 0])
for __ in range(self.num_steps_epoch): for batch in iter_bar:
batch = self.get_batch()
if self.params.n_gpu > 0: if self.params.n_gpu > 0:
batch = tuple(t.to(f'cuda:{self.params.local_rank}') for t in batch) batch = tuple(t.to(f'cuda:{self.params.local_rank}') for t in batch)
token_ids, attn_mask, mlm_labels = self.prepare_batch(batch=batch)
self.step(input_ids=token_ids, attention_mask=attn_mask, mlm_labels=mlm_labels) if self.mlm:
token_ids, attn_mask, lm_labels = self.prepare_batch_mlm(batch=batch)
else:
token_ids, attn_mask, lm_labels = self.prepare_batch_clm(batch=batch)
self.step(input_ids=token_ids, attention_mask=attn_mask, lm_labels=lm_labels)
iter_bar.update() iter_bar.update()
iter_bar.set_postfix({'Last_loss': f'{self.last_loss:.2f}', iter_bar.set_postfix({'Last_loss': f'{self.last_loss:.2f}',
...@@ -317,7 +352,7 @@ class Distiller: ...@@ -317,7 +352,7 @@ class Distiller:
def step(self, def step(self,
input_ids: torch.tensor, input_ids: torch.tensor,
attention_mask: torch.tensor, attention_mask: torch.tensor,
mlm_labels: torch.tensor): lm_labels: torch.tensor):
""" """
One optimization step: forward of student AND teacher, backward on the loss (for gradient accumulation), One optimization step: forward of student AND teacher, backward on the loss (for gradient accumulation),
and possibly a parameter update (depending on the gradient accumulation). and possibly a parameter update (depending on the gradient accumulation).
...@@ -326,17 +361,22 @@ class Distiller: ...@@ -326,17 +361,22 @@ class Distiller:
------ ------
input_ids: `torch.tensor(bs, seq_length)` - The token ids. input_ids: `torch.tensor(bs, seq_length)` - The token ids.
attention_mask: `torch.tensor(bs, seq_length)` - The attention mask for self attention. attention_mask: `torch.tensor(bs, seq_length)` - The attention mask for self attention.
mlm_labels: `torch.tensor(bs, seq_length)` - The masked language modeling labels. lm_labels: `torch.tensor(bs, seq_length)` - The language modeling labels (mlm labels for MLM and clm labels for CLM).
""" """
s_logits, s_hidden_states = self.student(input_ids=input_ids, attention_mask=attention_mask) # (bs, seq_length, voc_size) if self.mlm:
with torch.no_grad(): s_logits, s_hidden_states = self.student(input_ids=input_ids, attention_mask=attention_mask) # (bs, seq_length, voc_size)
t_logits, t_hidden_states = self.teacher(input_ids=input_ids, attention_mask=attention_mask) # (bs, seq_length, voc_size) with torch.no_grad():
t_logits, t_hidden_states = self.teacher(input_ids=input_ids, attention_mask=attention_mask) # (bs, seq_length, voc_size)
else:
s_logits, _, s_hidden_states = self.student(input_ids=input_ids, attention_mask=None) # (bs, seq_length, voc_size)
with torch.no_grad():
t_logits, _, t_hidden_states = self.teacher(input_ids=input_ids, attention_mask=None) # (bs, seq_length, voc_size)
assert s_logits.size() == t_logits.size() assert s_logits.size() == t_logits.size()
#https://github.com/peterliht/knowledge-distillation-pytorch/blob/master/model/net.py#L100 #https://github.com/peterliht/knowledge-distillation-pytorch/blob/master/model/net.py#L100
#https://github.com/peterliht/knowledge-distillation-pytorch/issues/2 #https://github.com/peterliht/knowledge-distillation-pytorch/issues/2
if self.params.restrict_ce_to_mask: if self.params.restrict_ce_to_mask:
mask = (mlm_labels>-1).unsqueeze(-1).expand_as(s_logits) # (bs, seq_lenth, voc_size) mask = (lm_labels>-1).unsqueeze(-1).expand_as(s_logits) # (bs, seq_lenth, voc_size)
else: else:
mask = attention_mask.unsqueeze(-1).expand_as(s_logits) # (bs, seq_lenth, voc_size) mask = attention_mask.unsqueeze(-1).expand_as(s_logits) # (bs, seq_lenth, voc_size)
s_logits_slct = torch.masked_select(s_logits, mask) # (bs * seq_length * voc_size) modulo the 1s in mask s_logits_slct = torch.masked_select(s_logits, mask) # (bs * seq_length * voc_size) modulo the 1s in mask
...@@ -348,13 +388,20 @@ class Distiller: ...@@ -348,13 +388,20 @@ class Distiller:
loss_ce = self.ce_loss_fct(F.log_softmax(s_logits_slct/self.temperature, dim=-1), loss_ce = self.ce_loss_fct(F.log_softmax(s_logits_slct/self.temperature, dim=-1),
F.softmax(t_logits_slct/self.temperature, dim=-1)) * (self.temperature)**2 F.softmax(t_logits_slct/self.temperature, dim=-1)) * (self.temperature)**2
loss = self.alpha_ce*loss_ce loss = self.alpha_ce*loss_ce
if self.alpha_mlm > 0.: if self.alpha_mlm > 0.:
loss_mlm = self.mlm_loss_fct(s_logits.view(-1, s_logits.size(-1)), mlm_labels.view(-1)) loss_mlm = self.lm_loss_fct(s_logits.view(-1, s_logits.size(-1)), lm_labels.view(-1))
loss += self.alpha_mlm * loss_mlm loss += self.alpha_mlm * loss_mlm
if self.alpha_clm > 0.:
shift_logits = s_logits[..., :-1, :].contiguous()
shift_labels = lm_labels[..., 1:].contiguous()
loss_clm = self.lm_loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1))
loss += self.alpha_clm * loss_clm
if self.alpha_mse > 0.: if self.alpha_mse > 0.:
loss_mse = self.mse_loss_fct(s_logits_slct, t_logits_slct)/s_logits_slct.size(0) # Reproducing batchmean reduction loss_mse = self.mse_loss_fct(s_logits_slct, t_logits_slct)/s_logits_slct.size(0) # Reproducing batchmean reduction
loss += self.alpha_mse * loss_mse loss += self.alpha_mse * loss_mse
if self.alpha_cos > 0.: if self.alpha_cos > 0.:
s_hidden_states = s_hidden_states[-1] # (bs, seq_length, dim) s_hidden_states = s_hidden_states[-1] # (bs, seq_length, dim)
t_hidden_states = t_hidden_states[-1] # (bs, seq_length, dim) t_hidden_states = t_hidden_states[-1] # (bs, seq_length, dim)
...@@ -376,6 +423,8 @@ class Distiller: ...@@ -376,6 +423,8 @@ class Distiller:
self.last_loss_ce = loss_ce.item() self.last_loss_ce = loss_ce.item()
if self.alpha_mlm > 0.: if self.alpha_mlm > 0.:
self.last_loss_mlm = loss_mlm.item() self.last_loss_mlm = loss_mlm.item()
if self.alpha_clm > 0.:
self.last_loss_clm = loss_clm.item()
if self.alpha_mse > 0.: if self.alpha_mse > 0.:
self.last_loss_mse = loss_mse.item() self.last_loss_mse = loss_mse.item()
if self.alpha_cos > 0.: if self.alpha_cos > 0.:
...@@ -452,6 +501,8 @@ class Distiller: ...@@ -452,6 +501,8 @@ class Distiller:
self.tensorboard.add_scalar(tag="losses/loss_ce", scalar_value=self.last_loss_ce, global_step=self.n_total_iter) self.tensorboard.add_scalar(tag="losses/loss_ce", scalar_value=self.last_loss_ce, global_step=self.n_total_iter)
if self.alpha_mlm > 0.: if self.alpha_mlm > 0.:
self.tensorboard.add_scalar(tag="losses/loss_mlm", scalar_value=self.last_loss_mlm, global_step=self.n_total_iter) self.tensorboard.add_scalar(tag="losses/loss_mlm", scalar_value=self.last_loss_mlm, global_step=self.n_total_iter)
if self.alpha_clm > 0.:
self.tensorboard.add_scalar(tag="losses/loss_clm", scalar_value=self.last_loss_clm, global_step=self.n_total_iter)
if self.alpha_mse > 0.: if self.alpha_mse > 0.:
self.tensorboard.add_scalar(tag="losses/loss_mse", scalar_value=self.last_loss_mse, global_step=self.n_total_iter) self.tensorboard.add_scalar(tag="losses/loss_mse", scalar_value=self.last_loss_mse, global_step=self.n_total_iter)
if self.alpha_cos > 0.: if self.alpha_cos > 0.:
......
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Adapted from PyTorch Vision (https://github.com/pytorch/vision/blob/master/references/detection/group_by_aspect_ratio.py)
"""
import bisect
import copy
from collections import defaultdict
import numpy as np
from torch.utils.data.sampler import BatchSampler, Sampler
from utils import logger
def _quantize(x, bins):
bins = copy.deepcopy(bins)
bins = sorted(bins)
quantized = list(map(lambda y: bisect.bisect_right(bins, y), x))
return quantized
def create_lengths_groups(lengths, k=0):
bins = np.arange(start=3, stop=k, step=4).tolist() if k > 0 else [10]
groups = _quantize(lengths, bins)
# count number of elements per group
counts = np.unique(groups, return_counts=True)[1]
fbins = [0] + bins + [np.inf]
logger.info("Using {} as bins for aspect lengths quantization".format(fbins))
logger.info("Count of instances per bin: {}".format(counts))
return groups
class GroupedBatchSampler(BatchSampler):
"""
Wraps another sampler to yield a mini-batch of indices.
It enforces that the batch only contain elements from the same group.
It also tries to provide mini-batches which follows an ordering which is
as close as possible to the ordering from the original sampler.
Arguments:
sampler (Sampler): Base sampler.
group_ids (list[int]): If the sampler produces indices in range [0, N),
`group_ids` must be a list of `N` ints which contains the group id of each sample.
The group ids must be a continuous set of integers starting from
0, i.e. they must be in the range [0, num_groups).
batch_size (int): Size of mini-batch.
"""
def __init__(self, sampler, group_ids, batch_size):
if not isinstance(sampler, Sampler):
raise ValueError(
"sampler should be an instance of "
"torch.utils.data.Sampler, but got sampler={}".format(sampler)
)
self.sampler = sampler
self.group_ids = group_ids
self.batch_size = batch_size
def __iter__(self):
buffer_per_group = defaultdict(list)
samples_per_group = defaultdict(list)
num_batches = 0
for idx in self.sampler:
group_id = self.group_ids[idx]
buffer_per_group[group_id].append(idx)
samples_per_group[group_id].append(idx)
if len(buffer_per_group[group_id]) == self.batch_size:
yield buffer_per_group[group_id] #TODO
num_batches += 1
del buffer_per_group[group_id]
assert len(buffer_per_group[group_id]) < self.batch_size
# now we have run out of elements that satisfy
# the group criteria, let's return the remaining
# elements so that the size of the sampler is
# deterministic
expected_num_batches = len(self)
num_remaining = expected_num_batches - num_batches
if num_remaining > 0:
# for the remaining batches, group the batches by similar lengths
batch_idx = []
for group_id, idxs in sorted(buffer_per_group.items(), key=lambda x: x[0]):
batch_idx.extend(idxs)
if len(batch_idx) >= self.batch_size:
yield batch_idx[:self.batch_size]
batch_idx = batch_idx[self.batch_size:]
num_remaining -= 1
if len(batch_idx) > 0:
yield batch_idx
num_remaining -= 1
assert num_remaining == 0
def __len__(self):
"""
Return the number of mini-batches rather than the number of samples.
"""
return (len(self.sampler) + self.batch_size - 1) // self.batch_size
...@@ -12,30 +12,33 @@ ...@@ -12,30 +12,33 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
""" Dataloaders to train DistilBERT """ Dataset to distilled models
adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM) adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
""" """
from typing import List
import math
from itertools import chain
from collections import Counter
import numpy as np
import torch import torch
from torch.utils.data import Dataset
import numpy as np
from utils import logger from utils import logger
class Dataset: class LmSeqsDataset(Dataset):
"""Custom Dataset wrapping language modeling sequences.
Each sample will be retrieved by indexing the list of token_ids and their corresponding lengths.
Input:
------
params: `NameSpace` parameters
data: `List[np.array[int]]
"""
def __init__(self, def __init__(self,
params, params,
data): data):
self.params = params self.params = params
self.tokens_per_batch = params.tokens_per_batch
self.batch_size = params.batch_size
self.shuffle = params.shuffle
self.group_by_size = params.group_by_size
self.token_ids = np.array(data) self.token_ids = np.array(data)
self.lengths = np.uint16([len(t) for t in data]) self.lengths = np.array([len(t) for t in data])
self.check() self.check()
self.remove_long_sequences() self.remove_long_sequences()
...@@ -43,6 +46,9 @@ class Dataset: ...@@ -43,6 +46,9 @@ class Dataset:
self.check() self.check()
self.print_statistics() self.print_statistics()
def __getitem__(self, index):
return (self.token_ids[index], self.lengths[index])
def __len__(self): def __len__(self):
return len(self.lengths) return len(self.lengths)
...@@ -51,12 +57,14 @@ class Dataset: ...@@ -51,12 +57,14 @@ class Dataset:
Some sanity checks Some sanity checks
""" """
assert len(self.token_ids) == len(self.lengths) assert len(self.token_ids) == len(self.lengths)
assert all(self.lengths[i] == len(self.token_ids[i]) for i in range(len(self.lengths)))
def remove_long_sequences(self): def remove_long_sequences(self):
""" """
Sequences that are too long are splitted by chunk of max_position_embeddings. Sequences that are too long are splitted by chunk of max_model_input_size.
""" """
indices = self.lengths >= self.params.max_position_embeddings max_len = self.params.max_model_input_size
indices = self.lengths > max_len
logger.info(f'Splitting {sum(indices)} too long sequences.') logger.info(f'Splitting {sum(indices)} too long sequences.')
def divide_chunks(l, n): def divide_chunks(l, n):
...@@ -64,10 +72,13 @@ class Dataset: ...@@ -64,10 +72,13 @@ class Dataset:
new_tok_ids = [] new_tok_ids = []
new_lengths = [] new_lengths = []
cls_id, sep_id = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] if self.params.mlm:
max_len = self.params.max_position_embeddings cls_id, sep_id = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token']
else:
cls_id, sep_id = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token']
for seq_, len_ in zip(self.token_ids, self.lengths): for seq_, len_ in zip(self.token_ids, self.lengths):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len: if len_ <= max_len:
new_tok_ids.append(seq_) new_tok_ids.append(seq_)
new_lengths.append(len_) new_lengths.append(len_)
...@@ -79,6 +90,7 @@ class Dataset: ...@@ -79,6 +90,7 @@ class Dataset:
if sub_s[-1] != sep_id: if sub_s[-1] != sep_id:
sub_s = np.insert(sub_s, len(sub_s), sep_id) sub_s = np.insert(sub_s, len(sub_s), sep_id)
assert len(sub_s) <= max_len assert len(sub_s) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(sub_s) sub_seqs.append(sub_s)
new_tok_ids.extend(sub_seqs) new_tok_ids.extend(sub_seqs)
...@@ -113,89 +125,27 @@ class Dataset: ...@@ -113,89 +125,27 @@ class Dataset:
# nb_unkown = sum([(t==unk_idx).sum() for t in self.token_ids]) # nb_unkown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unkown} unknown tokens (covering {100*nb_unkown/data_len:.2f}% of the data)') # logger.info(f'{nb_unkown} unknown tokens (covering {100*nb_unkown/data_len:.2f}% of the data)')
def select_data(self, a: int, b: int):
"""
Select a subportion of the data.
"""
n_sequences = len(self)
assert 0 <= a < b <= n_sequences, ValueError(f'`0 <= a < b <= n_sequences` is not met with a={a} and b={b}')
logger.info(f'Selecting sequences from {a} to {b} (excluded).')
self.token_ids = self.token_ids[a:b]
self.lengths = self.lengths[a:b]
self.check()
def split(self):
"""
Distributed training: split the data accross the processes.
"""
assert self.params.n_gpu > 1
logger.info('Splitting the data accross the processuses.')
n_seq = len(self)
n_seq_per_procesus = n_seq // self.params.world_size
a = n_seq_per_procesus * self.params.global_rank
b = a + n_seq_per_procesus
self.select_data(a=a, b=b)
def batch_sequences(self, def batch_sequences(self,
token_ids: List[List[int]], batch):
lengths: List[int]):
""" """
Do the padding and transform into torch.tensor. Do the padding and transform into torch.tensor.
""" """
token_ids = [t[0] for t in batch]
lengths = [t[1] for t in batch]
assert len(token_ids) == len(lengths) assert len(token_ids) == len(lengths)
# Max for paddings # Max for paddings
max_seq_len_ = max(lengths) max_seq_len_ = max(lengths)
# Pad token ids # Pad token ids
pad_idx = self.params.special_tok_ids['pad_token'] if self.params.mlm:
pad_idx = self.params.special_tok_ids['pad_token']
else:
pad_idx = self.params.special_tok_ids['unk_token']
tk_ = [list(t.astype(int)) + [pad_idx]*(max_seq_len_-len(t)) for t in token_ids] tk_ = [list(t.astype(int)) + [pad_idx]*(max_seq_len_-len(t)) for t in token_ids]
assert len(tk_) == len(token_ids) assert len(tk_) == len(token_ids)
assert all(len(t) == max_seq_len_ for t in tk_) assert all(len(t) == max_seq_len_ for t in tk_)
tk_t = torch.tensor(tk_) # (bs, max_seq_len_) tk_t = torch.tensor(tk_) # (bs, max_seq_len_)
lg_t = torch.tensor(lengths.astype(int)) # (bs) lg_t = torch.tensor(lengths) # (bs)
return tk_t, lg_t return tk_t, lg_t
def get_batches_iterator(self,
batches):
"""
Return an iterator over batches.
"""
for sequences_ids in batches:
token_ids, lengths = self.batch_sequences(self.token_ids[sequences_ids],
self.lengths[sequences_ids])
yield (token_ids, lengths)
def get_iterator(self,
seed: int = None):
"""
Return a data iterator.
"""
rng = np.random.RandomState(seed)
n_sequences = len(self)
indices = np.arange(n_sequences)
if self.group_by_size:
indices = indices[np.argsort(self.lengths[indices], kind='mergesort')]
if self.tokens_per_batch == -1:
batches = np.array_split(indices, math.ceil(len(indices) * 1. / self.batch_size))
else:
assert self.tokens_per_batch > 0
batch_ids = np.cumsum(self.lengths[indices]) // self.tokens_per_batch
_, bounds = np.unique(batch_ids, return_index=True)
batches = [indices[bounds[i]:bounds[i + 1]] for i in range(len(bounds) - 1)]
if bounds[-1] < len(indices):
batches.append(indices[bounds[-1]:])
if self.shuffle:
rng.shuffle(batches)
assert n_sequences == sum([len(x) for x in batches])
assert self.lengths[indices].sum() == sum([self.lengths[x].sum() for x in batches])
return self.get_batches_iterator(batches=batches)
...@@ -3,4 +3,4 @@ tensorboard>=1.14.0 ...@@ -3,4 +3,4 @@ tensorboard>=1.14.0
tensorboardX==1.8 tensorboardX==1.8
psutil==5.6.3 psutil==5.6.3
scipy==1.3.1 scipy==1.3.1
pytorch_transformers==1.2.0 transformers==2.0.0
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" This is the exact same script as `examples/run_squad.py` (as of 2019, October 4th) with an additional and optional step of distillation."""
from __future__ import absolute_import, division, print_function
import argparse
import logging
import os
import random
import glob
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
import torch.nn.functional as F
import torch.nn as nn
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange
from transformers import (WEIGHTS_NAME, BertConfig,
BertForQuestionAnswering, BertTokenizer,
XLMConfig, XLMForQuestionAnswering,
XLMTokenizer, XLNetConfig,
XLNetForQuestionAnswering,
XLNetTokenizer,
DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
from transformers import AdamW, WarmupLinearSchedule
from ..utils_squad import (read_squad_examples, convert_examples_to_features,
RawResult, write_predictions,
RawResultExtended, write_predictions_extended)
# The follwing import is the official SQuAD evaluation script (2.0).
# You can remove it from the dependencies if you are using this script outside of the library
# We've added it here for automated tests (see examples/test_examples.py file)
from ..utils_squad_evaluate import EVAL_OPTS, main as evaluate_on_squad
logger = logging.getLogger(__name__)
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \
for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
MODEL_CLASSES = {
'bert': (BertConfig, BertForQuestionAnswering, BertTokenizer),
'xlnet': (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
'distilbert': (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
}
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def to_list(tensor):
return tensor.detach().cpu().tolist()
def train(args, train_dataset, model, tokenizer, teacher=None):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
model.train()
if teacher is not None:
teacher.eval()
batch = tuple(t.to(args.device) for t in batch)
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'start_positions': batch[3],
'end_positions': batch[4]}
if args.model_type != 'distilbert':
inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]
if args.model_type in ['xlnet', 'xlm']:
inputs.update({'cls_index': batch[5],
'p_mask': batch[6]})
outputs = model(**inputs)
loss, start_logits_stu, end_logits_stu = outputs
# Distillation loss
if teacher is not None:
if 'token_type_ids' not in inputs:
inputs['token_type_ids'] = None if args.teacher_type == 'xlm' else batch[2]
with torch.no_grad():
start_logits_tea, end_logits_tea = teacher(input_ids=inputs['input_ids'],
token_type_ids=inputs['token_type_ids'],
attention_mask=inputs['attention_mask'])
assert start_logits_tea.size() == start_logits_stu.size()
assert end_logits_tea.size() == end_logits_stu.size()
loss_fct = nn.KLDivLoss(reduction='batchmean')
loss_start = loss_fct(F.log_softmax(start_logits_stu/args.temperature, dim=-1),
F.softmax(start_logits_tea/args.temperature, dim=-1)) * (args.temperature**2)
loss_end = loss_fct(F.log_softmax(end_logits_stu/args.temperature, dim=-1),
F.softmax(end_logits_tea/args.temperature, dim=-1)) * (args.temperature**2)
loss_ce = (loss_start + loss_end)/2.
loss = args.alpha_ce*loss_ce + args.alpha_squad*loss
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
all_results = []
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {'input_ids': batch[0],
'attention_mask': batch[1]
}
if args.model_type != 'distilbert':
inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2] # XLM don't use segment_ids
example_indices = batch[3]
if args.model_type in ['xlnet', 'xlm']:
inputs.update({'cls_index': batch[4],
'p_mask': batch[5]})
outputs = model(**inputs)
for i, example_index in enumerate(example_indices):
eval_feature = features[example_index.item()]
unique_id = int(eval_feature.unique_id)
if args.model_type in ['xlnet', 'xlm']:
# XLNet uses a more complex post-processing procedure
result = RawResultExtended(unique_id = unique_id,
start_top_log_probs = to_list(outputs[0][i]),
start_top_index = to_list(outputs[1][i]),
end_top_log_probs = to_list(outputs[2][i]),
end_top_index = to_list(outputs[3][i]),
cls_logits = to_list(outputs[4][i]))
else:
result = RawResult(unique_id = unique_id,
start_logits = to_list(outputs[0][i]),
end_logits = to_list(outputs[1][i]))
all_results.append(result)
# Compute predictions
output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
if args.version_2_with_negative:
output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
else:
output_null_log_odds_file = None
if args.model_type in ['xlnet', 'xlm']:
# XLNet uses a more complex post-processing procedure
write_predictions_extended(examples, features, all_results, args.n_best_size,
args.max_answer_length, output_prediction_file,
output_nbest_file, output_null_log_odds_file, args.predict_file,
model.config.start_n_top, model.config.end_n_top,
args.version_2_with_negative, tokenizer, args.verbose_logging)
else:
write_predictions(examples, features, all_results, args.n_best_size,
args.max_answer_length, args.do_lower_case, output_prediction_file,
output_nbest_file, output_null_log_odds_file, args.verbose_logging,
args.version_2_with_negative, args.null_score_diff_threshold)
# Evaluate with the official SQuAD script
evaluate_options = EVAL_OPTS(data_file=args.predict_file,
pred_file=output_prediction_file,
na_prob_file=output_null_log_odds_file)
results = evaluate_on_squad(evaluate_options)
return results
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
if args.local_rank not in [-1, 0] and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Load data features from cache or dataset file
input_file = args.predict_file if evaluate else args.train_file
cached_features_file = os.path.join(os.path.dirname(input_file), 'cached_{}_{}_{}'.format(
'dev' if evaluate else 'train',
list(filter(None, args.model_name_or_path.split('/'))).pop(),
str(args.max_seq_length)))
if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", input_file)
examples = read_squad_examples(input_file=input_file,
is_training=not evaluate,
version_2_with_negative=args.version_2_with_negative)
features = convert_examples_to_features(examples=examples,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
doc_stride=args.doc_stride,
max_query_length=args.max_query_length,
is_training=not evaluate)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0 and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long)
all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float)
if evaluate:
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
all_example_index, all_cls_index, all_p_mask)
else:
all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
all_start_positions, all_end_positions,
all_cls_index, all_p_mask)
if output_examples:
return dataset, examples, features
return dataset
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--train_file", default=None, type=str, required=True,
help="SQuAD json for training. E.g., train-v1.1.json")
parser.add_argument("--predict_file", default=None, type=str, required=True,
help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model checkpoints and predictions will be written.")
# Distillation parameters (optional)
parser.add_argument('--teacher_type', default=None, type=str,
help="Teacher type. Teacher tokenizer and student (model) tokenizer must output the same tokenization. Only for distillation.")
parser.add_argument('--teacher_name_or_path', default=None, type=str,
help="Path to the already SQuAD fine-tuned teacher model. Only for distillation.")
parser.add_argument('--alpha_ce', default=0.5, type=float,
help="Distillation loss linear weight. Only for distillation.")
parser.add_argument('--alpha_squad', default=0.5, type=float,
help="True SQuAD loss linear weight. Only for distillation.")
parser.add_argument('--temperature', default=2.0, type=float,
help="Distillation temperature. Only for distillation.")
## Other parameters
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument('--version_2_with_negative', action='store_true',
help='If true, the SQuAD examples contain some that do not have an answer.')
parser.add_argument('--null_score_diff_threshold', type=float, default=0.0,
help="If null_score - best_non_null is greater than the threshold predict null.")
parser.add_argument("--max_seq_length", default=384, type=int,
help="The maximum total input sequence length after WordPiece tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded.")
parser.add_argument("--doc_stride", default=128, type=int,
help="When splitting up a long document into chunks, how much stride to take between chunks.")
parser.add_argument("--max_query_length", default=64, type=int,
help="The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length.")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Rul evaluation during training at each logging step.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=3.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument("--n_best_size", default=20, type=int,
help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
parser.add_argument("--max_answer_length", default=30, type=int,
help="The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another.")
parser.add_argument("--verbose_logging", action='store_true',
help="If true, all of the warnings related to data processing will be printed. "
"A number of warnings are expected for a normal SQuAD evaluation.")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=50,
help="Save checkpoint every X updates steps.")
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument("--local_rank", type=int, default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
args = parser.parse_args()
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
set_seed(args)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
if args.teacher_type is not None:
assert args.teacher_name_or_path is not None
assert args.alpha_ce > 0.
assert args.alpha_ce + args.alpha_squad > 0.
assert args.teacher_type != 'distilbert', "We constraint teachers not to be of type DistilBERT."
teacher_config_class, teacher_model_class, _ = MODEL_CLASSES[args.teacher_type]
teacher_config = teacher_config_class.from_pretrained(args.teacher_name_or_path)
teacher = teacher_model_class.from_pretrained(args.teacher_name_or_path, config=teacher_config)
teacher.to(args.device)
else:
teacher = None
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
global_step, tr_loss = train(args, train_dataset, model, tokenizer, teacher=teacher)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Save the trained model and the tokenizer
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model.to(args.device)
# Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce model loading logs
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
# Reload the model
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
# Evaluate
result = evaluate(args, model, tokenizer, prefix=global_step)
result = dict((k + ('_{}'.format(global_step) if global_step else ''), v) for k, v in result.items())
results.update(result)
logger.info("Results: {}".format(results))
return results
if __name__ == "__main__":
main()
...@@ -13,14 +13,14 @@ ...@@ -13,14 +13,14 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
""" """
Preprocessing script before training DistilBERT. Preprocessing script before distillation.
""" """
import argparse import argparse
import pickle import pickle
import random import random
import time import time
import numpy as np import numpy as np
from pytorch_transformers import BertTokenizer, RobertaTokenizer from transformers import BertTokenizer, RobertaTokenizer, GPT2Tokenizer
import logging import logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
...@@ -32,7 +32,7 @@ def main(): ...@@ -32,7 +32,7 @@ def main():
parser = argparse.ArgumentParser(description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).") parser = argparse.ArgumentParser(description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).")
parser.add_argument('--file_path', type=str, default='data/dump.txt', parser.add_argument('--file_path', type=str, default='data/dump.txt',
help='The path to the data.') help='The path to the data.')
parser.add_argument('--tokenizer_type', type=str, default='bert', choices=['bert', 'roberta']) parser.add_argument('--tokenizer_type', type=str, default='bert', choices=['bert', 'roberta', 'gpt2'])
parser.add_argument('--tokenizer_name', type=str, default='bert-base-uncased', parser.add_argument('--tokenizer_name', type=str, default='bert-base-uncased',
help="The tokenizer to use.") help="The tokenizer to use.")
parser.add_argument('--dump_file', type=str, default='data/dump', parser.add_argument('--dump_file', type=str, default='data/dump',
...@@ -43,10 +43,16 @@ def main(): ...@@ -43,10 +43,16 @@ def main():
logger.info(f'Loading Tokenizer ({args.tokenizer_name})') logger.info(f'Loading Tokenizer ({args.tokenizer_name})')
if args.tokenizer_type == 'bert': if args.tokenizer_type == 'bert':
tokenizer = BertTokenizer.from_pretrained(args.tokenizer_name) tokenizer = BertTokenizer.from_pretrained(args.tokenizer_name)
bos = tokenizer.special_tokens_map['cls_token'] # `[CLS]`
sep = tokenizer.special_tokens_map['sep_token'] # `[SEP]`
elif args.tokenizer_type == 'roberta': elif args.tokenizer_type == 'roberta':
tokenizer = RobertaTokenizer.from_pretrained(args.tokenizer_name) tokenizer = RobertaTokenizer.from_pretrained(args.tokenizer_name)
bos = tokenizer.special_tokens_map['bos_token'] # `[CLS]` for bert, `<s>` for roberta bos = tokenizer.special_tokens_map['cls_token'] # `<s>`
sep = tokenizer.special_tokens_map['sep_token'] # `[SEP]` for bert, `</s>` for roberta sep = tokenizer.special_tokens_map['sep_token'] # `</s>`
elif args.tokenizer_type == 'gpt2':
tokenizer = GPT2Tokenizer.from_pretrained(args.tokenizer_name)
bos = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>`
sep = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>`
logger.info(f'Loading text from {args.file_path}') logger.info(f'Loading text from {args.file_path}')
with open(args.file_path, 'r', encoding='utf8') as fp: with open(args.file_path, 'r', encoding='utf8') as fp:
...@@ -62,7 +68,7 @@ def main(): ...@@ -62,7 +68,7 @@ def main():
start = time.time() start = time.time()
for text in data: for text in data:
text = f'{bos} {text.strip()} {sep}' text = f'{bos} {text.strip()} {sep}'
token_ids = tokenizer.encode(text) token_ids = tokenizer.encode(text, add_special_tokens=False)
rslt.append(token_ids) rslt.append(token_ids)
iter += 1 iter += 1
......
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocessing script before training the distilled model.
Specific to RoBERTa -> DistilRoBERTa and GPT2 -> DistilGPT2.
"""
from transformers import BertForMaskedLM, RobertaForMaskedLM, GPT2LMHeadModel
import torch
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned Distillation")
parser.add_argument("--model_type", default="roberta", choices=["roberta", "gpt2"])
parser.add_argument("--model_name", default='roberta-large', type=str)
parser.add_argument("--dump_checkpoint", default='serialization_dir/tf_roberta_048131723.pth', type=str)
parser.add_argument("--vocab_transform", action='store_true')
args = parser.parse_args()
if args.model_type == 'roberta':
model = RobertaForMaskedLM.from_pretrained(args.model_name)
prefix = 'roberta'
elif args.model_type == 'gpt2':
model = GPT2LMHeadModel.from_pretrained(args.model_name)
prefix = 'transformer'
state_dict = model.state_dict()
compressed_sd = {}
### Embeddings ###
if args.model_type == 'gpt2':
for param_name in ['wte.weight', 'wpe.weight']:
compressed_sd[f'{prefix}.{param_name}'] = state_dict[f'{prefix}.{param_name}']
else:
for w in ['word_embeddings', 'position_embeddings', 'token_type_embeddings']:
param_name = f'{prefix}.embeddings.{w}.weight'
compressed_sd[param_name] = state_dict[param_name]
for w in ['weight', 'bias']:
param_name = f'{prefix}.embeddings.LayerNorm.{w}'
compressed_sd[param_name] = state_dict[param_name]
### Transformer Blocks ###
std_idx = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
if args.model_type == 'gpt2':
for layer in ['ln_1', 'attn.c_attn', 'attn.c_proj', 'ln_2', 'mlp.c_fc', 'mlp.c_proj']:
for w in ['weight', 'bias']:
compressed_sd[f'{prefix}.h.{std_idx}.{layer}.{w}'] = \
state_dict[f'{prefix}.h.{teacher_idx}.{layer}.{w}']
compressed_sd[f'{prefix}.h.{std_idx}.attn.bias'] = state_dict[f'{prefix}.h.{teacher_idx}.attn.bias']
else:
for layer in ['attention.self.query', 'attention.self.key', 'attention.self.value',
'attention.output.dense', 'attention.output.LayerNorm',
'intermediate.dense', 'output.dense', 'output.LayerNorm']:
for w in ['weight', 'bias']:
compressed_sd[f'{prefix}.encoder.layer.{std_idx}.{layer}.{w}'] = \
state_dict[f'{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}']
std_idx += 1
### Language Modeling Head ###s
if args.model_type == 'roberta':
for layer in ['lm_head.decoder.weight', 'lm_head.bias']:
compressed_sd[f'{layer}'] = state_dict[f'{layer}']
if args.vocab_transform:
for w in ['weight', 'bias']:
compressed_sd[f'lm_head.dense.{w}'] = state_dict[f'lm_head.dense.{w}']
compressed_sd[f'lm_head.layer_norm.{w}'] = state_dict[f'lm_head.layer_norm.{w}']
elif args.model_type == 'gpt2':
for w in ['weight', 'bias']:
compressed_sd[f'{prefix}.ln_f.{w}'] = state_dict[f'{prefix}.ln_f.{w}']
compressed_sd[f'lm_head.weight'] = state_dict[f'lm_head.weight']
print(f'N layers selected for distillation: {std_idx}')
print(f'Number of params transfered for distillation: {len(compressed_sd.keys())}')
print(f'Save transfered checkpoint to {args.dump_checkpoint}.')
torch.save(compressed_sd, args.dump_checkpoint)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment