Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
3c17c529
"...lm-evaluation-harness.git" did not exist on "9eec7ce89f4ee3f0491e5ca045e6888dbe8286c0"
Unverified
Commit
3c17c529
authored
Mar 20, 2024
by
amyeroberts
Committed by
GitHub
Mar 20, 2024
Browse files
SuperPointModel -> SuperPointForKeypointDetection (#29757)
parent
1248f092
Changes
11
Show whitespace changes
Inline
Side-by-side
Showing
11 changed files
with
63 additions
and
30 deletions
+63
-30
docs/source/en/model_doc/auto.md
docs/source/en/model_doc/auto.md
+4
-0
docs/source/en/model_doc/superpoint.md
docs/source/en/model_doc/superpoint.md
+3
-5
src/transformers/__init__.py
src/transformers/__init__.py
+6
-2
src/transformers/models/auto/__init__.py
src/transformers/models/auto/__init__.py
+3
-1
src/transformers/models/auto/modeling_auto.py
src/transformers/models/auto/modeling_auto.py
+16
-1
src/transformers/models/superpoint/__init__.py
src/transformers/models/superpoint/__init__.py
+2
-2
src/transformers/models/superpoint/configuration_superpoint.py
...ransformers/models/superpoint/configuration_superpoint.py
+3
-3
src/transformers/models/superpoint/convert_superpoint_to_pytorch.py
...ormers/models/superpoint/convert_superpoint_to_pytorch.py
+2
-2
src/transformers/models/superpoint/modeling_superpoint.py
src/transformers/models/superpoint/modeling_superpoint.py
+1
-1
src/transformers/utils/dummy_pt_objects.py
src/transformers/utils/dummy_pt_objects.py
+11
-1
tests/models/superpoint/test_modeling_superpoint.py
tests/models/superpoint/test_modeling_superpoint.py
+12
-12
No files found.
docs/source/en/model_doc/auto.md
View file @
3c17c529
...
...
@@ -250,6 +250,10 @@ The following auto classes are available for the following computer vision tasks
[[autodoc]] AutoModelForVideoClassification
### AutoModelForKeypointDetection
[[autodoc]] AutoModelForKeypointDetection
### AutoModelForMaskedImageModeling
[[autodoc]] AutoModelForMaskedImageModeling
...
...
docs/source/en/model_doc/superpoint.md
View file @
3c17c529
...
...
@@ -113,10 +113,8 @@ The original code can be found [here](https://github.com/magicleap/SuperPointPre
-
preprocess
## SuperPoint
Model
## SuperPoint
ForKeypointDetection
[[autodoc]] SuperPoint
Model
[[autodoc]] SuperPoint
ForKeypointDetection
-
forward
src/transformers/__init__.py
View file @
3c17c529
...
...
@@ -1487,6 +1487,7 @@ else:
"MODEL_FOR_IMAGE_SEGMENTATION_MAPPING"
,
"MODEL_FOR_IMAGE_TO_IMAGE_MAPPING"
,
"MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING"
,
"MODEL_FOR_KEYPOINT_DETECTION_MAPPING"
,
"MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING"
,
"MODEL_FOR_MASKED_LM_MAPPING"
,
"MODEL_FOR_MASK_GENERATION_MAPPING"
,
...
...
@@ -1527,6 +1528,7 @@ else:
"AutoModelForImageSegmentation"
,
"AutoModelForImageToImage"
,
"AutoModelForInstanceSegmentation"
,
"AutoModelForKeypointDetection"
,
"AutoModelForMaskedImageModeling"
,
"AutoModelForMaskedLM"
,
"AutoModelForMaskGeneration"
,
...
...
@@ -3341,7 +3343,7 @@ else:
_import_structure
[
"models.superpoint"
].
extend
(
[
"SUPERPOINT_PRETRAINED_MODEL_ARCHIVE_LIST"
,
"SuperPoint
Model
"
,
"SuperPoint
ForKeypointDetection
"
,
"SuperPointPreTrainedModel"
,
]
)
...
...
@@ -6319,6 +6321,7 @@ if TYPE_CHECKING:
MODEL_FOR_IMAGE_SEGMENTATION_MAPPING
,
MODEL_FOR_IMAGE_TO_IMAGE_MAPPING
,
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING
,
MODEL_FOR_KEYPOINT_DETECTION_MAPPING
,
MODEL_FOR_MASK_GENERATION_MAPPING
,
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING
,
MODEL_FOR_MASKED_LM_MAPPING
,
...
...
@@ -6359,6 +6362,7 @@ if TYPE_CHECKING:
AutoModelForImageSegmentation
,
AutoModelForImageToImage
,
AutoModelForInstanceSegmentation
,
AutoModelForKeypointDetection
,
AutoModelForMaskedImageModeling
,
AutoModelForMaskedLM
,
AutoModelForMaskGeneration
,
...
...
@@ -7852,7 +7856,7 @@ if TYPE_CHECKING:
)
from
.models.superpoint
import
(
SUPERPOINT_PRETRAINED_MODEL_ARCHIVE_LIST
,
SuperPoint
Model
,
SuperPoint
ForKeypointDetection
,
SuperPointPreTrainedModel
,
)
from
.models.swiftformer
import
(
...
...
src/transformers/models/auto/__init__.py
View file @
3c17c529
...
...
@@ -52,6 +52,7 @@ else:
"MODEL_FOR_IMAGE_MAPPING"
,
"MODEL_FOR_IMAGE_SEGMENTATION_MAPPING"
,
"MODEL_FOR_IMAGE_TO_IMAGE_MAPPING"
,
"MODEL_FOR_KEYPOINT_DETECTION_MAPPING"
,
"MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING"
,
"MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING"
,
"MODEL_FOR_MASKED_LM_MAPPING"
,
...
...
@@ -92,6 +93,7 @@ else:
"AutoModelForImageSegmentation"
,
"AutoModelForImageToImage"
,
"AutoModelForInstanceSegmentation"
,
"AutoModelForKeypointDetection"
,
"AutoModelForMaskGeneration"
,
"AutoModelForTextEncoding"
,
"AutoModelForMaskedImageModeling"
,
...
...
@@ -117,7 +119,6 @@ else:
"AutoModelWithLMHead"
,
"AutoModelForZeroShotImageClassification"
,
"AutoModelForZeroShotObjectDetection"
,
"AutoModelForKeypointDetection"
,
]
try
:
...
...
@@ -239,6 +240,7 @@ if TYPE_CHECKING:
MODEL_FOR_IMAGE_SEGMENTATION_MAPPING
,
MODEL_FOR_IMAGE_TO_IMAGE_MAPPING
,
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING
,
MODEL_FOR_KEYPOINT_DETECTION_MAPPING
,
MODEL_FOR_MASK_GENERATION_MAPPING
,
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING
,
MODEL_FOR_MASKED_LM_MAPPING
,
...
...
src/transformers/models/auto/modeling_auto.py
View file @
3c17c529
...
...
@@ -207,7 +207,6 @@ MODEL_MAPPING_NAMES = OrderedDict(
(
"squeezebert"
,
"SqueezeBertModel"
),
(
"stablelm"
,
"StableLmModel"
),
(
"starcoder2"
,
"Starcoder2Model"
),
(
"superpoint"
,
"SuperPointModel"
),
(
"swiftformer"
,
"SwiftFormerModel"
),
(
"swin"
,
"SwinModel"
),
(
"swin2sr"
,
"Swin2SRModel"
),
...
...
@@ -1225,6 +1224,14 @@ MODEL_FOR_MASK_GENERATION_MAPPING_NAMES = OrderedDict(
]
)
MODEL_FOR_KEYPOINT_DETECTION_MAPPING_NAMES
=
OrderedDict
(
[
(
"superpoint"
,
"SuperPointForKeypointDetection"
),
]
)
MODEL_FOR_TEXT_ENCODING_MAPPING_NAMES
=
OrderedDict
(
[
(
"albert"
,
"AlbertModel"
),
...
...
@@ -1360,6 +1367,10 @@ MODEL_FOR_BACKBONE_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_BA
MODEL_FOR_MASK_GENERATION_MAPPING
=
_LazyAutoMapping
(
CONFIG_MAPPING_NAMES
,
MODEL_FOR_MASK_GENERATION_MAPPING_NAMES
)
MODEL_FOR_KEYPOINT_DETECTION_MAPPING
=
_LazyAutoMapping
(
CONFIG_MAPPING_NAMES
,
MODEL_FOR_KEYPOINT_DETECTION_MAPPING_NAMES
)
MODEL_FOR_TEXT_ENCODING_MAPPING
=
_LazyAutoMapping
(
CONFIG_MAPPING_NAMES
,
MODEL_FOR_TEXT_ENCODING_MAPPING_NAMES
)
MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING
=
_LazyAutoMapping
(
...
...
@@ -1377,6 +1388,10 @@ class AutoModelForMaskGeneration(_BaseAutoModelClass):
_model_mapping
=
MODEL_FOR_MASK_GENERATION_MAPPING
class
AutoModelForKeypointDetection
(
_BaseAutoModelClass
):
_model_mapping
=
MODEL_FOR_KEYPOINT_DETECTION_MAPPING
class
AutoModelForTextEncoding
(
_BaseAutoModelClass
):
_model_mapping
=
MODEL_FOR_TEXT_ENCODING_MAPPING
...
...
src/transformers/models/superpoint/__init__.py
View file @
3c17c529
...
...
@@ -40,7 +40,7 @@ except OptionalDependencyNotAvailable:
else
:
_import_structure
[
"modeling_superpoint"
]
=
[
"SUPERPOINT_PRETRAINED_MODEL_ARCHIVE_LIST"
,
"SuperPoint
Model
"
,
"SuperPoint
ForKeypointDetection
"
,
"SuperPointPreTrainedModel"
,
]
...
...
@@ -67,7 +67,7 @@ if TYPE_CHECKING:
else
:
from
.modeling_superpoint
import
(
SUPERPOINT_PRETRAINED_MODEL_ARCHIVE_LIST
,
SuperPoint
Model
,
SuperPoint
ForKeypointDetection
,
SuperPointPreTrainedModel
,
)
...
...
src/transformers/models/superpoint/configuration_superpoint.py
View file @
3c17c529
...
...
@@ -26,7 +26,7 @@ SUPERPOINT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
class
SuperPointConfig
(
PretrainedConfig
):
r
"""
This is the configuration class to store the configuration of a [`SuperPoint
Model
`]. It is used to instantiate a
This is the configuration class to store the configuration of a [`SuperPoint
ForKeypointDetection
`]. It is used to instantiate a
SuperPoint model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the SuperPoint
[magic-leap-community/superpoint](https://huggingface.co/magic-leap-community/superpoint) architecture.
...
...
@@ -53,12 +53,12 @@ class SuperPointConfig(PretrainedConfig):
Example:
```python
>>> from transformers import SuperPointConfig, SuperPoint
Model
>>> from transformers import SuperPointConfig, SuperPoint
ForKeypointDetection
>>> # Initializing a SuperPoint superpoint style configuration
>>> configuration = SuperPointConfig()
>>> # Initializing a model from the superpoint style configuration
>>> model = SuperPoint
Model
(configuration)
>>> model = SuperPoint
ForKeypointDetection
(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
...
...
src/transformers/models/superpoint/convert_superpoint_to_pytorch.py
View file @
3c17c529
...
...
@@ -18,7 +18,7 @@ import requests
import
torch
from
PIL
import
Image
from
transformers
import
SuperPointConfig
,
SuperPoint
ImageProcessor
,
SuperPointModel
from
transformers
import
SuperPointConfig
,
SuperPoint
ForKeypointDetection
,
SuperPointImageProcessor
def
get_superpoint_config
():
...
...
@@ -106,7 +106,7 @@ def convert_superpoint_checkpoint(checkpoint_url, pytorch_dump_folder_path, save
rename_key
(
new_state_dict
,
src
,
dest
)
# Load HuggingFace model
model
=
SuperPoint
Model
(
config
)
model
=
SuperPoint
ForKeypointDetection
(
config
)
model
.
load_state_dict
(
new_state_dict
)
model
.
eval
()
print
(
"Successfully loaded weights in the model"
)
...
...
src/transformers/models/superpoint/modeling_superpoint.py
View file @
3c17c529
...
...
@@ -390,7 +390,7 @@ Args:
"SuperPoint model outputting keypoints and descriptors."
,
SUPERPOINT_START_DOCSTRING
,
)
class
SuperPoint
Model
(
SuperPointPreTrainedModel
):
class
SuperPoint
ForKeypointDetection
(
SuperPointPreTrainedModel
):
"""
SuperPoint model. It consists of a SuperPointEncoder, a SuperPointInterestPointDecoder and a
SuperPointDescriptorDecoder. SuperPoint was proposed in `SuperPoint: Self-Supervised Interest Point Detection and
...
...
src/transformers/utils/dummy_pt_objects.py
View file @
3c17c529
...
...
@@ -606,6 +606,9 @@ MODEL_FOR_IMAGE_TO_IMAGE_MAPPING = None
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING
=
None
MODEL_FOR_KEYPOINT_DETECTION_MAPPING
=
None
MODEL_FOR_MASK_GENERATION_MAPPING
=
None
...
...
@@ -778,6 +781,13 @@ class AutoModelForInstanceSegmentation(metaclass=DummyObject):
requires_backends
(
self
,
[
"torch"
])
class
AutoModelForKeypointDetection
(
metaclass
=
DummyObject
):
_backends
=
[
"torch"
]
def
__init__
(
self
,
*
args
,
**
kwargs
):
requires_backends
(
self
,
[
"torch"
])
class
AutoModelForMaskedImageModeling
(
metaclass
=
DummyObject
):
_backends
=
[
"torch"
]
...
...
@@ -8029,7 +8039,7 @@ class Starcoder2PreTrainedModel(metaclass=DummyObject):
SUPERPOINT_PRETRAINED_MODEL_ARCHIVE_LIST
=
None
class
SuperPoint
Model
(
metaclass
=
DummyObject
):
class
SuperPoint
ForKeypointDetection
(
metaclass
=
DummyObject
):
_backends
=
[
"torch"
]
def
__init__
(
self
,
*
args
,
**
kwargs
):
...
...
tests/models/superpoint/test_modeling_superpoint.py
View file @
3c17c529
...
...
@@ -28,7 +28,7 @@ if is_torch_available():
from
transformers
import
(
SUPERPOINT_PRETRAINED_MODEL_ARCHIVE_LIST
,
SuperPoint
Model
,
SuperPoint
ForKeypointDetection
,
)
if
is_vision_available
():
...
...
@@ -86,7 +86,7 @@ class SuperPointModelTester:
)
def
create_and_check_model
(
self
,
config
,
pixel_values
):
model
=
SuperPoint
Model
(
config
=
config
)
model
=
SuperPoint
ForKeypointDetection
(
config
=
config
)
model
.
to
(
torch_device
)
model
.
eval
()
result
=
model
(
pixel_values
)
...
...
@@ -109,7 +109,7 @@ class SuperPointModelTester:
@
require_torch
class
SuperPointModelTest
(
ModelTesterMixin
,
unittest
.
TestCase
):
all_model_classes
=
(
SuperPoint
Model
,)
if
is_torch_available
()
else
()
all_model_classes
=
(
SuperPoint
ForKeypointDetection
,)
if
is_torch_available
()
else
()
all_generative_model_classes
=
()
if
is_torch_available
()
else
()
fx_compatible
=
False
...
...
@@ -134,31 +134,31 @@ class SuperPointModelTest(ModelTesterMixin, unittest.TestCase):
def
create_and_test_config_common_properties
(
self
):
return
@
unittest
.
skip
(
reason
=
"SuperPoint
Model
does not use inputs_embeds"
)
@
unittest
.
skip
(
reason
=
"SuperPoint
ForKeypointDetection
does not use inputs_embeds"
)
def
test_inputs_embeds
(
self
):
pass
@
unittest
.
skip
(
reason
=
"SuperPoint
Model
does not support input and output embeddings"
)
@
unittest
.
skip
(
reason
=
"SuperPoint
ForKeypointDetection
does not support input and output embeddings"
)
def
test_model_common_attributes
(
self
):
pass
@
unittest
.
skip
(
reason
=
"SuperPoint
Model
does not use feedforward chunking"
)
@
unittest
.
skip
(
reason
=
"SuperPoint
ForKeypointDetection
does not use feedforward chunking"
)
def
test_feed_forward_chunking
(
self
):
pass
@
unittest
.
skip
(
reason
=
"SuperPoint
Model
is not trainable"
)
@
unittest
.
skip
(
reason
=
"SuperPoint
ForKeypointDetection
is not trainable"
)
def
test_training
(
self
):
pass
@
unittest
.
skip
(
reason
=
"SuperPoint
Model
is not trainable"
)
@
unittest
.
skip
(
reason
=
"SuperPoint
ForKeypointDetection
is not trainable"
)
def
test_training_gradient_checkpointing
(
self
):
pass
@
unittest
.
skip
(
reason
=
"SuperPoint
Model
is not trainable"
)
@
unittest
.
skip
(
reason
=
"SuperPoint
ForKeypointDetection
is not trainable"
)
def
test_training_gradient_checkpointing_use_reentrant
(
self
):
pass
@
unittest
.
skip
(
reason
=
"SuperPoint
Model
is not trainable"
)
@
unittest
.
skip
(
reason
=
"SuperPoint
ForKeypointDetection
is not trainable"
)
def
test_training_gradient_checkpointing_use_reentrant_false
(
self
):
pass
...
...
@@ -219,7 +219,7 @@ class SuperPointModelTest(ModelTesterMixin, unittest.TestCase):
@
slow
def
test_model_from_pretrained
(
self
):
for
model_name
in
SUPERPOINT_PRETRAINED_MODEL_ARCHIVE_LIST
[:
1
]:
model
=
SuperPoint
Model
.
from_pretrained
(
model_name
)
model
=
SuperPoint
ForKeypointDetection
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
model
)
def
test_forward_labels_should_be_none
(
self
):
...
...
@@ -254,7 +254,7 @@ class SuperPointModelIntegrationTest(unittest.TestCase):
@
slow
def
test_inference
(
self
):
model
=
SuperPoint
Model
.
from_pretrained
(
"magic-leap-community/superpoint"
).
to
(
torch_device
)
model
=
SuperPoint
ForKeypointDetection
.
from_pretrained
(
"magic-leap-community/superpoint"
).
to
(
torch_device
)
preprocessor
=
self
.
default_image_processor
images
=
prepare_imgs
()
inputs
=
preprocessor
(
images
=
images
,
return_tensors
=
"pt"
).
to
(
torch_device
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment