Unverified Commit 3b3024da authored by Matt's avatar Matt Committed by GitHub
Browse files

TF port of ESM (#19587)



* Partial TF port for ESM model

* Add ESM-TF tests

* Add the various imports for TF-ESM

* TF weight conversion almost ready

* Stop ignoring the decoder weights in PT

* Add tests and lots of fixes

* fix-copies

* Fix imports, add model docs

* Add get_vocab() to tokenizer

* Fix vocab links for pretrained files

* Allow multiple inputs with a sep

* Use EOS as SEP token because ESM vocab lacks SEP

* Correctly return special tokens mask from ESM tokenizer

* make fixup

* Stop testing unsupported embedding resizing

* Handle TF bias correctly

* Skip all models with slow tokenizers in the token classification test

* Fixing the batch/unbatcher of pipelines to accomodate the `None` being

passed around.

* Fixing pipeline bug caused by slow tokenizer  being different.

* Update src/transformers/models/esm/modeling_tf_esm.py
Co-authored-by: default avatarJoao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/esm/modeling_tf_esm.py
Co-authored-by: default avatarJoao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/esm/modeling_tf_esm.py
Co-authored-by: default avatarJoao Gante <joaofranciscocardosogante@gmail.com>

* Update set_input_embeddings and the copyright notices
Co-authored-by: default avatarYour Name <you@example.com>
Co-authored-by: default avatarNicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: default avatarJoao Gante <joaofranciscocardosogante@gmail.com>
parent d7754c43
......@@ -243,7 +243,7 @@ Flax), PyTorch, and/or TensorFlow.
| ELECTRA | ✅ | ✅ | ✅ | ✅ | ✅ |
| Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ |
| ERNIE | ❌ | ❌ | ✅ | ❌ | ❌ |
| ESM | ✅ | ❌ | ✅ | | ❌ |
| ESM | ✅ | ❌ | ✅ | | ❌ |
| FairSeq Machine-Translation | ✅ | ❌ | ✅ | ❌ | ❌ |
| FlauBERT | ✅ | ❌ | ✅ | ✅ | ❌ |
| FLAVA | ❌ | ❌ | ✅ | ❌ | ❌ |
......
......@@ -107,3 +107,23 @@ and [Matt](https://huggingface.co/Rocketknight1).
[[autodoc]] EsmForTokenClassification
- forward
## TFEsmModel
[[autodoc]] TFEsmModel
- call
## TFEsmForMaskedLM
[[autodoc]] TFEsmForMaskedLM
- call
## TFEsmForSequenceClassification
[[autodoc]] TFEsmForSequenceClassification
- call
## TFEsmForTokenClassification
[[autodoc]] TFEsmForTokenClassification
- call
......@@ -2462,6 +2462,16 @@ else:
]
)
_import_structure["models.encoder_decoder"].append("TFEncoderDecoderModel")
_import_structure["models.esm"].extend(
[
"ESM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFEsmForMaskedLM",
"TFEsmForSequenceClassification",
"TFEsmForTokenClassification",
"TFEsmModel",
"TFEsmPreTrainedModel",
]
)
_import_structure["models.flaubert"].extend(
[
"TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
......@@ -5134,6 +5144,14 @@ if TYPE_CHECKING:
TFElectraPreTrainedModel,
)
from .models.encoder_decoder import TFEncoderDecoderModel
from .models.esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
TFEsmModel,
TFEsmPreTrainedModel,
)
from .models.flaubert import (
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFlaubertForMultipleChoice,
......
......@@ -47,6 +47,7 @@ TF_MODEL_MAPPING_NAMES = OrderedDict(
("distilbert", "TFDistilBertModel"),
("dpr", "TFDPRQuestionEncoder"),
("electra", "TFElectraModel"),
("esm", "TFEsmModel"),
("flaubert", "TFFlaubertModel"),
("funnel", ("TFFunnelModel", "TFFunnelBaseModel")),
("gpt2", "TFGPT2Model"),
......@@ -129,6 +130,7 @@ TF_MODEL_WITH_LM_HEAD_MAPPING_NAMES = OrderedDict(
("ctrl", "TFCTRLLMHeadModel"),
("distilbert", "TFDistilBertForMaskedLM"),
("electra", "TFElectraForMaskedLM"),
("esm", "TFEsmForMaskedLM"),
("flaubert", "TFFlaubertWithLMHeadModel"),
("funnel", "TFFunnelForMaskedLM"),
("gpt2", "TFGPT2LMHeadModel"),
......@@ -223,6 +225,7 @@ TF_MODEL_FOR_MASKED_LM_MAPPING_NAMES = OrderedDict(
("deberta-v2", "TFDebertaV2ForMaskedLM"),
("distilbert", "TFDistilBertForMaskedLM"),
("electra", "TFElectraForMaskedLM"),
("esm", "TFEsmForMaskedLM"),
("flaubert", "TFFlaubertWithLMHeadModel"),
("funnel", "TFFunnelForMaskedLM"),
("layoutlm", "TFLayoutLMForMaskedLM"),
......@@ -273,6 +276,7 @@ TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
("deberta-v2", "TFDebertaV2ForSequenceClassification"),
("distilbert", "TFDistilBertForSequenceClassification"),
("electra", "TFElectraForSequenceClassification"),
("esm", "TFEsmForSequenceClassification"),
("flaubert", "TFFlaubertForSequenceClassification"),
("funnel", "TFFunnelForSequenceClassification"),
("gpt2", "TFGPT2ForSequenceClassification"),
......@@ -346,6 +350,7 @@ TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
("deberta-v2", "TFDebertaV2ForTokenClassification"),
("distilbert", "TFDistilBertForTokenClassification"),
("electra", "TFElectraForTokenClassification"),
("esm", "TFEsmForTokenClassification"),
("flaubert", "TFFlaubertForTokenClassification"),
("funnel", "TFFunnelForTokenClassification"),
("layoutlm", "TFLayoutLMForTokenClassification"),
......
......@@ -122,6 +122,7 @@ else:
),
("electra", ("ElectraTokenizer", "ElectraTokenizerFast" if is_tokenizers_available() else None)),
("ernie", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("esm", ("EsmTokenizer", None)),
("flaubert", ("FlaubertTokenizer", None)),
("fnet", ("FNetTokenizer", "FNetTokenizerFast" if is_tokenizers_available() else None)),
("fsmt", ("FSMTTokenizer", None)),
......
......@@ -17,7 +17,7 @@
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_import_structure = {
......@@ -40,6 +40,21 @@ else:
"EsmPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_esm"] = [
"TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFEsmForMaskedLM",
"TFEsmForSequenceClassification",
"TFEsmForTokenClassification",
"TFEsmModel",
"TFEsmPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_esm import ESM_PRETRAINED_CONFIG_ARCHIVE_MAP, EsmConfig
......@@ -60,6 +75,21 @@ if TYPE_CHECKING:
EsmPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_esm import (
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
TFEsmModel,
TFEsmPreTrainedModel,
)
else:
import sys
......
# coding=utf-8
# Copyright 2022 Facebook and The HuggingFace Inc. team. All rights reserved.
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -42,12 +42,14 @@ from .configuration_esm import EsmConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/esm-1b"
_CHECKPOINT_FOR_DOC = "Rocketknight1/esm2_t6_8M_UR50D"
_CONFIG_FOR_DOC = "EsmConfig"
_TOKENIZER_FOR_DOC = "EsmTokenizer"
ESM_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/esm-1b",
"Rocketknight1/esm2_t6_8M_UR50D",
"Rocketknight1/esm2_t12_35M_UR50D",
# This is not a complete list of all ESM models!
# See all ESM models at https://huggingface.co/models?filter=esm
]
......@@ -115,7 +117,6 @@ class EsmEmbeddings(nn.Module):
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
if config.emb_layer_norm_before:
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
......@@ -658,15 +659,6 @@ class EsmPreTrainedModel(PreTrainedModel):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def update_keys_to_ignore(self, config, del_keys_to_ignore):
"""Remove some keys from ignore list"""
if not config.tie_word_embeddings:
# must make a new list, or the class variable gets modified!
self._keys_to_ignore_on_save = [k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore]
self._keys_to_ignore_on_load_missing = [
k for k in self._keys_to_ignore_on_load_missing if k not in del_keys_to_ignore
]
ESM_START_DOCSTRING = r"""
......@@ -907,8 +899,7 @@ class EsmModel(EsmPreTrainedModel):
@add_start_docstrings("""ESM Model with a `language modeling` head on top.""", ESM_START_DOCSTRING)
class EsmForMaskedLM(EsmPreTrainedModel):
_keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
_keys_to_ignore_on_load_missing = [r"position_ids"]
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):
......@@ -923,9 +914,6 @@ class EsmForMaskedLM(EsmPreTrainedModel):
self.esm = EsmModel(config, add_pooling_layer=False)
self.lm_head = EsmLMHead(config)
# The LM head weights require special treatment only when they are tied with the word embeddings
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
self.init_weights()
def get_output_embeddings(self):
......@@ -944,17 +932,17 @@ class EsmForMaskedLM(EsmPreTrainedModel):
)
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
......@@ -1009,17 +997,13 @@ class EsmLMHead(nn.Module):
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, features, **kwargs):
x = self.dense(features)
x = gelu(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
x = self.decoder(x)
x = self.decoder(x) + self.bias
return x
......@@ -1052,15 +1036,15 @@ class EsmForSequenceClassification(EsmPreTrainedModel):
)
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
......@@ -1148,15 +1132,15 @@ class EsmForTokenClassification(EsmPreTrainedModel):
)
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
......
# coding=utf-8
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch ESM model."""
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from tensorflow.keras.activations import gelu
from tensorflow.keras.layers import Dense, Dropout, Embedding, Layer, LayerNormalization
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithPastAndCrossAttentions,
TFBaseModelOutputWithPoolingAndCrossAttentions,
TFMaskedLMOutput,
TFSequenceClassifierOutput,
TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
TFMaskedLanguageModelingLoss,
TFModelInputType,
TFPreTrainedModel,
TFSequenceClassificationLoss,
TFTokenClassificationLoss,
get_initializer,
get_tf_activation,
shape_list,
unpack_inputs,
)
from ...tf_utils import stable_softmax
from ...utils import logging
from .configuration_esm import EsmConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "Rocketknight1/esm2_t6_8M_UR50D"
_CONFIG_FOR_DOC = "EsmConfig"
_TOKENIZER_FOR_DOC = "EsmTokenizer"
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST = [
"Rocketknight1/esm2_t6_8M_UR50D",
"Rocketknight1/esm2_t12_35M_UR50D",
# This is not a complete list of all ESM models!
# See all ESM models at https://huggingface.co/models?filter=esm
]
def rotate_half(x):
x1, x2 = tf.split(x, 2, axis=-1)
return tf.concat((-x2, x1), axis=-1)
def apply_rotary_pos_emb(x, cos, sin):
cos = cos[:, :, : tf.shape(x)[-2], :]
sin = sin[:, :, : tf.shape(x)[-2], :]
return (x * cos) + (rotate_half(x) * sin)
class TFRotaryEmbedding(Layer):
"""
Rotary position embeddings based on those in
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
matrices which depend on their relative positions.
"""
def __init__(self, dim: int, name=None):
super().__init__(name=name)
# Matt: The PyTorch version of this layer does a lot of work to cache values, but we just rely on TF compilation
# and/or XLA to sort out constants like that. It actually may not seem like this layer needs to be stateful at
# all when we benefit from TF compilation, but it does. The reason is that self.inv_freq is a buffer in the
# original implementation, but all the shared ESM checkpoints were trained with fp16 params. This means that
# the inv_freq tensor was stored as a float16, and we need to replicate those lower-precision values or our
# models give different outputs from the original.
self.dim = dim
def build(self, input_shape):
super().build(input_shape)
self.inv_freq = self.add_weight(
"inv_freq", shape=(self.dim // 2,), dtype=tf.float32, initializer=get_initializer(1.0)
)
self.inv_freq.assign(
1.0 / (10000 ** (tf.range(start=0, limit=self.dim, delta=2, dtype=tf.float32) / self.dim))
)
def _compute_cos_sin(self, x, seq_dimension=2):
seq_len = tf.shape(x)[seq_dimension]
t = tf.range(seq_len, dtype=self.inv_freq.dtype)
freqs = tf.einsum("i, j -> ij", t, self.inv_freq) # Outer multiplication
emb = tf.concat((freqs, freqs), axis=-1)[None, None, :, :]
return tf.cos(emb), tf.sin(emb)
def call(self, q: tf.Tensor, k: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]:
cos_emb, sin_emb = self._compute_cos_sin(k, seq_dimension=-2)
return (
apply_rotary_pos_emb(q, cos_emb, sin_emb),
apply_rotary_pos_emb(k, cos_emb, sin_emb),
)
class TFEsmEmbeddings(Layer):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
"""
def __init__(self, config, name=None):
super().__init__(name=name)
self.word_embeddings = Embedding(
config.vocab_size,
config.hidden_size,
embeddings_initializer=get_initializer(config.initializer_range),
name="word_embeddings",
)
self.position_embeddings = Embedding(
config.max_position_embeddings,
config.hidden_size,
embeddings_initializer=get_initializer(config.initializer_range),
name="position_embeddings",
)
if config.emb_layer_norm_before:
self.layer_norm = LayerNormalization(epsilon=config.layer_norm_eps)
else:
self.layer_norm = None
# Matt: I think this line was copied incorrectly from BERT, disabling for now
# self.dropout = Dropout(config.hidden_dropout_prob)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.position_ids = tf.range(config.max_position_embeddings)[None, :]
self.padding_idx = config.pad_token_id
self.token_dropout = config.token_dropout
self.mask_token_id = config.mask_token_id
self.vocab_size = config.vocab_size
def call(
self, input_ids=None, attention_mask=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
):
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
if inputs_embeds is None:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf.debugging.assert_less(
input_ids,
tf.cast(self.vocab_size, dtype=input_ids.dtype),
message=(
"input_ids must be smaller than the embedding layer's input dimension (got"
f" {tf.math.reduce_max(input_ids)} >= {self.vocab_size})"
),
)
inputs_embeds = self.word_embeddings(input_ids)
# Note that if we want to support ESM-1 (not 1b!) in future then we need to support an
# embedding_scale factor here.
embeddings = inputs_embeds
# Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout
# flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however,
# masked tokens are treated as if they were selected for input dropout and zeroed out.
# This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by
# a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample).
# This is analogous to the way that dropout layers scale down outputs during evaluation when not
# actually dropping out values (or, equivalently, scale up their un-dropped outputs in training).
if self.token_dropout:
embeddings = tf.where((input_ids == self.mask_token_id)[:, :, None], 0.0, embeddings)
mask_ratio_train = 0.15 * 0.8 # Hardcoded as the ratio used in all ESM model training runs
src_lengths = tf.cast(tf.reduce_sum(attention_mask, axis=-1), tf.float32)
masked_tokens = input_ids == self.mask_token_id
mask_ratio_observed = tf.math.count_nonzero(masked_tokens, dtype=tf.float32, axis=-1) / src_lengths
embeddings = embeddings * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None]
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
if self.layer_norm is not None:
embeddings = self.layer_norm(embeddings)
if attention_mask is not None:
embeddings = embeddings * tf.cast(tf.expand_dims(attention_mask, -1), embeddings.dtype)
# Matt: I think this line was copied incorrectly from BERT, disabling it for now.
# embeddings = self.dropout(embeddings)
return embeddings
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: tf.Tensor
Returns: tf.Tensor
"""
input_shape = shape_list(inputs_embeds)[:-1]
sequence_length = input_shape[1]
position_ids = tf.range(
start=self.padding_idx + 1, limit=sequence_length + self.padding_idx + 1, dtype=tf.int64
)
return tf.broadcast_to(tf.expand_dims(position_ids, 0), input_shape)
class TFEsmSelfAttention(Layer):
def __init__(self, config, position_embedding_type=None, name=None):
super().__init__(name=name)
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
)
self.key = Dense(self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key")
self.value = Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
)
self.dropout = Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
self.rotary_embeddings = None
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = Embedding(
2 * config.max_position_embeddings - 1,
self.attention_head_size,
embeddings_initializer=get_initializer(config.initializer_range),
)
elif self.position_embedding_type == "rotary":
self.rotary_embeddings = TFRotaryEmbedding(dim=self.attention_head_size, name="rotary_embeddings")
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: tf.Tensor) -> tf.Tensor:
new_x_shape = shape_list(x)[:-1] + [self.num_attention_heads, self.attention_head_size]
x = tf.reshape(x, new_x_shape)
return tf.transpose(x, perm=(0, 2, 1, 3))
def call(
self,
hidden_states: tf.Tensor,
attention_mask: Optional[tf.Tensor] = None,
head_mask: Optional[tf.Tensor] = None,
encoder_hidden_states: Optional[tf.Tensor] = None,
encoder_attention_mask: Optional[tf.Tensor] = None,
past_key_value: Optional[Tuple[Tuple[tf.Tensor]]] = None,
output_attentions: Optional[bool] = False,
training: bool = False,
) -> Tuple[tf.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim).
# ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent,
# but not when rotary embeddings get involved. Therefore, we scale the query here to match the original
# ESM code and fix rotary embeddings.
query_layer = query_layer * self.attention_head_size**-0.5
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
if self.position_embedding_type == "rotary":
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
seq_length = shape_list(hidden_states)[1]
position_ids_l = tf.expand_dims(tf.range(seq_length, dtype=tf.int64), -1)
position_ids_r = tf.expand_dims(tf.range(seq_length, dtype=tf.int64), 0)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = tf.cast(positional_embedding, query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = tf.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in EsmModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = stable_softmax(attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs, training=training)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = attention_probs @ value_layer
context_layer = tf.transpose(context_layer, perm=(0, 2, 1, 3))
new_context_layer_shape = shape_list(context_layer)[:-2] + [self.all_head_size]
context_layer = tf.reshape(context_layer, new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
class TFEsmSelfOutput(Layer):
def __init__(self, config, name=None):
super().__init__(name=name)
self.dense = Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.dropout = Dropout(config.hidden_dropout_prob)
def call(self, hidden_states, input_tensor, training=False):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states += input_tensor
return hidden_states
class TFEsmAttention(Layer):
def __init__(self, config, name=None):
super().__init__(name=name)
self.self = TFEsmSelfAttention(config, name="self")
self.output_layer = TFEsmSelfOutput(config, name="output")
self.pruned_heads = set()
self.LayerNorm = LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
def prune_heads(self, heads):
raise NotImplementedError
def call(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
training=False,
):
hidden_states_ln = self.LayerNorm(hidden_states)
self_outputs = self.self(
hidden_states_ln,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
training,
)
attention_output = self.output_layer(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Esm
class TFEsmIntermediate(tf.keras.layers.Layer):
def __init__(self, config: EsmConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class TFEsmOutput(Layer):
def __init__(self, config, name=None):
super().__init__(name=name)
self.dense = Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.dropout = Dropout(config.hidden_dropout_prob)
def call(self, hidden_states, input_tensor, training=False):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states += input_tensor
return hidden_states
class TFEsmLayer(Layer):
def __init__(self, config, name=None):
super().__init__(name=name)
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = TFEsmAttention(config, name="attention")
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise RuntimeError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = TFEsmAttention(config)
self.intermediate = TFEsmIntermediate(config, name="intermediate")
self.output_layer = TFEsmOutput(config, name="output")
self.LayerNorm = LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
def call(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
training=False,
):
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
training=training,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise AttributeError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated"
" with cross-attention layers by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
training=training,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layernorm_output = self.LayerNorm(attention_output)
intermediate_output = self.intermediate(hidden_states=layernorm_output)
layer_output = self.output_layer(
hidden_states=intermediate_output, input_tensor=attention_output, training=training
)
outputs = (layer_output,) + outputs # add attentions if we output them
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
class TFEsmEncoder(Layer):
def __init__(self, config, name=None):
super().__init__(name=name)
self.config = config
self.layer = [TFEsmLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
self.emb_layer_norm_after = LayerNormalization(epsilon=config.layer_norm_eps, name="emb_layer_norm_after")
def call(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
training=False,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
training,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if self.emb_layer_norm_after:
hidden_states = self.emb_layer_norm_after(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Esm
class TFEsmPooler(Layer):
def __init__(self, config: EsmConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(inputs=first_token_tensor)
return pooled_output
class TFEsmPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = EsmConfig
base_model_prefix = "esm"
ESM_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Keras [Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a
regular Keras model and refer to the TF/Keras documentation for all matters related to general usage and behavior.
Parameters:
config ([`EsmConfig`]): Model configuration class with all the parameters of the
model. Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
ESM_INPUTS_DOCSTRING = r"""
Args:
input_ids (`tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`EsmTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`tf.Tensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare ESM Model transformer outputting raw hidden-states without any specific head on top.",
ESM_START_DOCSTRING,
)
class TFEsmMainLayer(Layer):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
"""
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config, add_pooling_layer=True, name=None, **kwargs):
super().__init__(name=name, **kwargs)
self.config = config
self.is_decoder = config.is_decoder
self.embeddings = TFEsmEmbeddings(config, name="embeddings")
self.encoder = TFEsmEncoder(config, name="encoder")
self.pooler = TFEsmPooler(config, name="pooler") if add_pooling_layer else None
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value: tf.Variable):
self.embeddings.word_embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
raise NotImplementedError
def call(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_hidden_states: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
if not self.config.is_decoder:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
if past_key_values is None:
past_key_values_length = 0
past_key_values = [None] * len(self.encoder.layer)
else:
past_key_values_length = shape_list(past_key_values[0][0])[-2]
if attention_mask is None:
attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
embedding_output = self.embeddings(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
training=training,
)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask_shape = shape_list(attention_mask)
mask_seq_length = seq_length + past_key_values_length
# Copied from `modeling_tf_t5.py`
# Provided a padding mask of dimensions [batch_size, mask_seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
if self.is_decoder:
seq_ids = tf.range(mask_seq_length)
causal_mask = tf.less_equal(
tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)),
seq_ids[None, :, None],
)
causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype)
extended_attention_mask = causal_mask * attention_mask[:, None, :]
attention_mask_shape = shape_list(extended_attention_mask)
extended_attention_mask = tf.reshape(
extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2])
)
if past_key_values[0] is not None:
# attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length]
extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :]
else:
extended_attention_mask = tf.reshape(
attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1])
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
# Copied from `modeling_tf_t5.py` with -1e9 -> -10000
if self.is_decoder and encoder_attention_mask is not None:
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype)
num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
if num_dims_encoder_attention_mask == 3:
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
if num_dims_encoder_attention_mask == 2:
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
# tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.config.num_hidden_layers
encoder_outputs = self.encoder(
hidden_states=embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
if not return_dict:
return (
sequence_output,
pooled_output,
) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings(
"The bare ESM Model transformer outputting raw hidden-states without any specific head on top.",
ESM_START_DOCSTRING,
)
class TFEsmModel(TFEsmPreTrainedModel):
def __init__(self, config: EsmConfig, add_pooling_layer=True, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.esm = TFEsmMainLayer(config, add_pooling_layer=add_pooling_layer, name="esm")
@unpack_inputs
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPoolingAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_hidden_states: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`). Set to `False` during training, `True` during generation
"""
outputs = self.esm(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
@tf.function(
input_signature=[
{
"input_ids": tf.TensorSpec((None, None), tf.int64, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None), tf.int64, name="attention_mask"),
}
]
)
def serving(self, inputs):
output = self.call(inputs)
return self.serving_output(output)
def serving_output(
self, output: TFBaseModelOutputWithPoolingAndCrossAttentions
) -> TFBaseModelOutputWithPoolingAndCrossAttentions:
output_cache = self.config.use_cache and self.config.is_decoder
pkv = tf.convert_to_tensor(output.past_key_values) if output_cache else None
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if output.cross_attentions is not None else None
if not (self.config.output_attentions and self.config.add_cross_attention):
cross_attns = None
return TFBaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=output.last_hidden_state,
pooler_output=output.pooler_output,
past_key_values=pkv,
hidden_states=hs,
attentions=attns,
cross_attentions=cross_attns,
)
@add_start_docstrings("""ESM Model with a `language modeling` head on top.""", ESM_START_DOCSTRING)
class TFEsmForMaskedLM(TFEsmPreTrainedModel, TFMaskedLanguageModelingLoss):
_keys_to_ignore_on_load_missing = [r"position_ids"]
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm")
self.lm_head = TFEsmLMHead(config, name="lm_head")
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
def get_lm_head(self):
return self.lm_head
@unpack_inputs
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="<mask>",
)
def call(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_hidden_states: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
Used to hide legacy arguments that have been deprecated.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
masked_lm_loss = None
if labels is not None:
masked_lm_loss = self.hf_compute_loss(labels=labels, logits=prediction_scores)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return TFMaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Copied from transformers.models.bert.modeling_tf_bert.TFBertForMaskedLM.serving_output
def serving_output(self, output: TFMaskedLMOutput) -> TFMaskedLMOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFMaskedLMOutput(logits=output.logits, hidden_states=hs, attentions=attns)
@tf.function(
input_signature=[
{
"input_ids": tf.TensorSpec((None, None), tf.int64, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None), tf.int64, name="attention_mask"),
}
]
)
def serving(self, inputs):
output = self.call(inputs)
return self.serving_output(output)
class TFEsmLMHead(Layer):
"""ESM Head for masked language modeling."""
def __init__(self, config, name=None):
super().__init__(name=name)
self.dense = Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.layer_norm = LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.decoder = Dense(
config.vocab_size,
use_bias=False,
kernel_initializer=get_initializer(config.initializer_range),
name="decoder",
)
self.vocab_size = config.vocab_size
def build(self, input_shape):
super().build(input_shape)
# Separate bias to match the PT model and allow weight cross-loading to work
# Put it in the build so it gets the right name when adding it as a weight
self.bias = self.add_weight("bias", shape=(self.vocab_size,), initializer="zeros", trainable=True)
def get_bias(self):
return {"bias": self.bias}
def call(self, features):
x = self.dense(features)
x = gelu(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
x = self.decoder(x)
x = x + self.bias
return x
@add_start_docstrings(
"""
ESM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
ESM_START_DOCSTRING,
)
class TFEsmForSequenceClassification(TFEsmPreTrainedModel, TFSequenceClassificationLoss):
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm")
self.classifier = TFEsmClassificationHead(config, name="classifier")
@unpack_inputs
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Copied from transformers.models.bert.modeling_tf_bert.TFBertForSequenceClassification.serving_output
def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFSequenceClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)
@tf.function(
input_signature=[
{
"input_ids": tf.TensorSpec((None, None, None), tf.int64, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None, None), tf.int64, name="attention_mask"),
}
]
)
def serving(self, inputs):
output = self.call(inputs)
return self.serving_output(output)
@add_start_docstrings(
"""
ESM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
ESM_START_DOCSTRING,
)
class TFEsmForTokenClassification(TFEsmPreTrainedModel, TFTokenClassificationLoss):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm")
self.dropout = Dropout(config.hidden_dropout_prob)
self.classifier = Dense(config.num_labels, name="classifier")
@unpack_inputs
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output, training=training)
logits = self.classifier(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Copied from transformers.models.bert.modeling_tf_bert.TFBertForTokenClassification.serving_output
def serving_output(self, output: TFTokenClassifierOutput) -> TFTokenClassifierOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFTokenClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)
@tf.function(
input_signature=[
{
"input_ids": tf.TensorSpec((None, None), tf.int64, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None), tf.int64, name="attention_mask"),
}
]
)
def serving(self, inputs):
output = self.call(inputs)
return self.serving_output(output)
class TFEsmClassificationHead(Layer):
"""Head for sentence-level classification tasks."""
def __init__(self, config, name=None):
super().__init__(name=name)
self.dense = Dense(
config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
self.dropout = Dropout(config.hidden_dropout_prob)
self.out_proj = Dense(
config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
activation="linear",
name="out_proj",
)
def call(self, features, training=False):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x, training=training)
x = self.dense(x)
x = self.dropout(x, training=training)
x = self.out_proj(x)
return x
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: tf.Tensor x:
Returns: tf.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = tf.cast(input_ids != padding_idx, tf.int64)
incremental_indices = (tf.cumsum(mask, axis=1) + past_key_values_length) * mask
return incremental_indices + padding_idx
# coding=utf-8
# Copyright Facebook and The HuggingFace Inc. team. All rights reserved.
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -27,12 +27,18 @@ VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"facebook/esm1b": "https://huggingface.co/facebook/esm1b/resolve/main/vocab.txt",
"Rocketknight1/esm2_t6_8M_UR50D": (
"https://huggingface.co/Rocketknight1/esm2_t6_8M_UR50D/resolve/main/vocab.txt"
),
"Rocketknight1/esm2_t12_35M_UR50D": (
"https://huggingface.co/Rocketknight1/esm2_t12_35M_UR50D/resolve/main/vocab.txt"
),
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"facebook/esm1b": 1024,
"Rocketknight1/esm2_t6_8M_UR50D": 1024,
"Rocketknight1/esm2_t12_35M_UR50D": 1024,
}
......@@ -77,6 +83,9 @@ class EsmTokenizer(PreTrainedTokenizer):
def get_vocab_size(self, with_added_tokens=False):
return len(self._id_to_token)
def get_vocab(self):
return {token: i for i, token in enumerate(self.all_tokens)}
def token_to_id(self, token: str) -> int:
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
......@@ -86,11 +95,42 @@ class EsmTokenizer(PreTrainedTokenizer):
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.eos_token_id]
cls = [self.cls_token_id]
sep = [self.eos_token_id] # No sep token in ESM vocabulary
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of ids of the first sequence.
token_ids_1 (`List[int]`, *optional*):
List of ids of the second sequence.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model."
)
return [1 if token in self.all_special_ids else 0 for token in token_ids_0]
mask = [1] + ([0] * len(token_ids_0)) + [1]
if token_ids_1 is not None:
raise ValueError("Multiple input sentences are not supported!")
cls_: List[int] = [self.cls_token_id]
eos_: List[int] = [self.eos_token_id]
return cls_ + token_ids_0 + eos_
mask += [0] * len(token_ids_1) + [1]
return mask
def save_vocabulary(self, save_directory, filename_prefix):
vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + "vocab.txt")
......
......@@ -138,7 +138,7 @@ class FillMaskPipeline(Pipeline):
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
sequence = self.tokenizer.decode(tokens, skip_special_tokens=single_mask)
proposition = {"score": v, "token": p, "token_str": self.tokenizer.decode(p), "sequence": sequence}
proposition = {"score": v, "token": p, "token_str": self.tokenizer.decode([p]), "sequence": sequence}
row.append(proposition)
result.append(row)
if single_mask:
......
......@@ -83,7 +83,10 @@ class PipelineIterator(IterableDataset):
elif isinstance(element[0], np.ndarray):
loader_batched[k] = tuple(np.expand_dims(el[self._loader_batch_index], 0) for el in element)
continue
if isinstance(element[self._loader_batch_index], torch.Tensor):
if element is None:
# This can happen for optional data that get passed around
loader_batched[k] = None
elif isinstance(element[self._loader_batch_index], torch.Tensor):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
......
......@@ -1142,6 +1142,44 @@ class TFEncoderDecoderModel(metaclass=DummyObject):
requires_backends(self, ["tf"])
ESM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFEsmForMaskedLM(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFEsmForSequenceClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFEsmForTokenClassification(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFEsmModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
class TFEsmPreTrainedModel(metaclass=DummyObject):
_backends = ["tf"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tf"])
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
......
......@@ -240,6 +240,14 @@ class EsmModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
self.assertEqual(position_ids.shape, expected_positions.shape)
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
@unittest.skip("Esm does not support embedding resizing")
def test_resize_embeddings_untied(self):
pass
@unittest.skip("Esm does not support embedding resizing")
def test_resize_tokens_embeddings(self):
pass
@require_torch
class EsmModelIntegrationTest(TestCasePlus):
......@@ -270,24 +278,3 @@ class EsmModelIntegrationTest(TestCasePlus):
[[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
def test_lm_head_ignore_keys(self):
from copy import deepcopy
keys_to_ignore_on_save_tied = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
keys_to_ignore_on_save_untied = [r"lm_head.decoder.bias"]
config = EsmConfig.from_pretrained("Rocketknight1/esm2_t6_8M_UR50D")
config_tied = deepcopy(config)
config_tied.tie_word_embeddings = True
config_untied = deepcopy(config)
config_untied.tie_word_embeddings = False
for cls in [EsmForMaskedLM]:
model = cls(config_tied)
self.assertEqual(model._keys_to_ignore_on_save, keys_to_ignore_on_save_tied, cls)
# the keys should be different when embeddings aren't tied
model = cls(config_untied)
self.assertEqual(model._keys_to_ignore_on_save, keys_to_ignore_on_save_untied, cls)
# test that saving works with updated ignore keys - just testing that it doesn't fail
model.save_pretrained(self.get_auto_remove_tmp_dir())
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import EsmConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_tf_available():
import numpy
import tensorflow as tf
from transformers.models.esm.modeling_tf_esm import (
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
TFEsmModel,
)
# copied from tests.test_modeling_tf_roberta
class TFEsmModelTester:
def __init__(
self,
parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_mask = True
self.use_labels = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = EsmConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
pad_token_id=1,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
)
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = TFEsmModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask}
result = model(inputs)
inputs = [input_ids, input_mask]
result = model(inputs)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = TFEsmModel(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"encoder_hidden_states": encoder_hidden_states,
"encoder_attention_mask": encoder_attention_mask,
}
result = model(inputs)
inputs = [input_ids, input_mask]
result = model(inputs, encoder_hidden_states=encoder_hidden_states)
# Also check the case where encoder outputs are not passed
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_masked_lm(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFEsmForMaskedLM(config=config)
result = model([input_ids, input_mask])
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_token_classification(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFEsmForTokenClassification(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class TFEsmModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
TFEsmModel,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
)
if is_tf_available()
else ()
)
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFEsmModelTester(self)
self.config_tester = ConfigTester(self, config_class=EsmConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
"""Test the base model"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_as_decoder(self):
"""Test the base model as a decoder (of an encoder-decoder architecture)
is_deocder=True + cross_attention + pass encoder outputs
"""
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TFEsmModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@unittest.skip("Protein models do not support embedding resizing.")
def test_resize_token_embeddings(self):
pass
@unittest.skip("Protein models do not support embedding resizing.")
def test_save_load_after_resize_token_embeddings(self):
pass
@require_tf
class TFEsmModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_masked_lm(self):
model = TFEsmForMaskedLM.from_pretrained("Rocketknight1/esm2_t6_8M_UR50D")
input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
output = model(input_ids)[0]
expected_shape = [1, 6, 33]
self.assertEqual(list(output.numpy().shape), expected_shape)
# compare the actual values for a slice.
expected_slice = tf.constant(
[[[15.0963, -6.6414, -1.1346], [-0.2209, -9.9633, 4.2082], [-1.6045, -10.0011, 1.5882]]]
)
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
@slow
def test_inference_no_head(self):
model = TFEsmModel.from_pretrained("Rocketknight1/esm2_t6_8M_UR50D")
input_ids = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]])
output = model(input_ids)[0]
# compare the actual values for a slice.
expected_slice = tf.constant(
[
[
[0.144337, 0.541198, 0.32479298],
[0.30328932, 0.00519154, 0.31089523],
[0.32273883, -0.24992886, 0.34143737],
]
]
)
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
......@@ -44,6 +44,8 @@ class TokenClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTest
def run_pipeline_test(self, token_classifier, _):
model = token_classifier.model
tokenizer = token_classifier.tokenizer
if not tokenizer.is_fast:
return # Slow tokenizers do not return offsets mappings, so this test will fail
outputs = token_classifier("A simple string")
self.assertIsInstance(outputs, list)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment