Commit 3a527fa8 authored by thomwolf's avatar thomwolf
Browse files

OpenAI GPT tests ok

parent 556442af
...@@ -56,8 +56,6 @@ class XLMConfig(PretrainedConfig): ...@@ -56,8 +56,6 @@ class XLMConfig(PretrainedConfig):
dropout: The dropout probabilitiy for all fully connected dropout: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler. layers in the embeddings, encoder, and pooler.
dropatt: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048). (e.g., 512 or 1024 or 2048).
...@@ -66,7 +64,6 @@ class XLMConfig(PretrainedConfig): ...@@ -66,7 +64,6 @@ class XLMConfig(PretrainedConfig):
layer_norm_eps: The epsilon used by LayerNorm. layer_norm_eps: The epsilon used by LayerNorm.
dropout: float, dropout rate. dropout: float, dropout rate.
dropatt: float, dropout rate on attention probabilities.
init: str, the initialization scheme, either "normal" or "uniform". init: str, the initialization scheme, either "normal" or "uniform".
init_range: float, initialize the parameters with a uniform distribution init_range: float, initialize the parameters with a uniform distribution
in [-init_range, init_range]. Only effective when init="uniform". in [-init_range, init_range]. Only effective when init="uniform".
......
...@@ -49,14 +49,11 @@ class XLNetConfig(PretrainedConfig): ...@@ -49,14 +49,11 @@ class XLNetConfig(PretrainedConfig):
dropout: The dropout probabilitiy for all fully connected dropout: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler. layers in the embeddings, encoder, and pooler.
dropatt: The dropout ratio for the attention
probabilities.
initializer_range: The sttdev of the truncated_normal_initializer for initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices. initializing all weight matrices.
layer_norm_eps: The epsilon used by LayerNorm. layer_norm_eps: The epsilon used by LayerNorm.
dropout: float, dropout rate. dropout: float, dropout rate.
dropatt: float, dropout rate on attention probabilities.
init: str, the initialization scheme, either "normal" or "uniform". init: str, the initialization scheme, either "normal" or "uniform".
init_range: float, initialize the parameters with a uniform distribution init_range: float, initialize the parameters with a uniform distribution
in [-init_range, init_range]. Only effective when init="uniform". in [-init_range, init_range]. Only effective when init="uniform".
...@@ -80,6 +77,7 @@ class XLNetConfig(PretrainedConfig): ...@@ -80,6 +77,7 @@ class XLNetConfig(PretrainedConfig):
n_layer=24, n_layer=24,
n_head=16, n_head=16,
d_inner=4096, d_inner=4096,
max_position_embeddings=512,
ff_activation="gelu", ff_activation="gelu",
untie_r=True, untie_r=True,
attn_type="bi", attn_type="bi",
......
...@@ -249,7 +249,7 @@ class TFGPT2MainLayer(tf.keras.layers.Layer): ...@@ -249,7 +249,7 @@ class TFGPT2MainLayer(tf.keras.layers.Layer):
token_type_ids = inputs.get('token_type_ids', None) token_type_ids = inputs.get('token_type_ids', None)
position_ids = inputs.get('position_ids', None) position_ids = inputs.get('position_ids', None)
head_mask = inputs.get('head_mask', None) head_mask = inputs.get('head_mask', None)
assert len(inputs) <= 5, "Too many inputs." assert len(inputs) <= 6, "Too many inputs."
if past is None: if past is None:
past_length = 0 past_length = 0
...@@ -551,7 +551,6 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel): ...@@ -551,7 +551,6 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
self.transformer = TFGPT2MainLayer(config, name='transformer') self.transformer = TFGPT2MainLayer(config, name='transformer')
self.multiple_choice_head = TFSequenceSummary(config, name='multiple_choice_head') self.multiple_choice_head = TFSequenceSummary(config, name='multiple_choice_head')
def call(self, inputs, training=False): def call(self, inputs, training=False):
if not isinstance(inputs, (dict, tuple, list)): if not isinstance(inputs, (dict, tuple, list)):
input_ids = inputs input_ids = inputs
...@@ -573,7 +572,7 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel): ...@@ -573,7 +572,7 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
token_type_ids = inputs.get('token_type_ids', None) token_type_ids = inputs.get('token_type_ids', None)
position_ids = inputs.get('position_ids', None) position_ids = inputs.get('position_ids', None)
head_mask = inputs.get('head_mask', None) head_mask = inputs.get('head_mask', None)
assert len(inputs) <= 5, "Too many inputs." assert len(inputs) <= 7, "Too many inputs."
input_shapes = shape_list(input_ids) input_shapes = shape_list(input_ids)
...@@ -598,4 +597,4 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel): ...@@ -598,4 +597,4 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
outputs = (lm_logits, mc_logits) + transformer_outputs[1:] outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
return outputs # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions) return outputs # lm logits, mc logits, presents, (all hidden_states), (attentions)
This diff is collapsed.
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import shutil
import pytest
import sys
from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from pytorch_transformers import OpenAIGPTConfig, is_tf_available
if is_tf_available():
import tensorflow as tf
from pytorch_transformers.modeling_tf_openai import (TFOpenAIGPTModel, TFOpenAIGPTLMHeadModel,
TFOpenAIGPTDoubleHeadsModel,
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP)
else:
pytestmark = pytest.mark.skip("Require TensorFlow")
class TFOpenAIGPTModelTest(TFCommonTestCases.TFCommonModelTester):
all_model_classes = (TFOpenAIGPTModel, TFOpenAIGPTLMHeadModel,
TFOpenAIGPTDoubleHeadsModel) if is_tf_available() else ()
class TFOpenAIGPTModelTester(object):
def __init__(self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_token_type_ids=True,
use_input_mask=True,
use_labels=True,
use_mc_token_ids=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_token_type_ids = use_token_type_ids
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.use_mc_token_ids = use_mc_token_ids
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
mc_token_ids = None
if self.use_mc_token_ids:
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = OpenAIGPTConfig(
vocab_size_or_config_json_file=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
n_ctx=self.max_position_embeddings
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels
def create_and_check_openai_gpt_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFOpenAIGPTModel(config=config)
inputs = {'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids}
sequence_output = model(inputs)[0]
inputs = [input_ids, input_mask]
sequence_output = model(inputs)[0]
sequence_output = model(input_ids)[0]
result = {
"sequence_output": sequence_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape),
[self.batch_size, self.seq_length, self.hidden_size])
def create_and_check_openai_gpt_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFOpenAIGPTLMHeadModel(config=config)
inputs = {'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids}
prediction_scores = model(inputs)[0]
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape),
[self.batch_size, self.seq_length, self.vocab_size])
def create_and_check_openai_gpt_double_head(self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args):
model = TFOpenAIGPTDoubleHeadsModel(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
inputs = {'input_ids': multiple_choice_inputs_ids,
'mc_token_ids': mc_token_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids}
lm_logits, mc_logits = model(inputs)[:2]
result = {
"lm_logits": lm_logits.numpy(),
"mc_logits": mc_logits.numpy()
}
self.parent.assertListEqual(
list(result["lm_logits"].shape),
[self.batch_size, self.num_choices, self.seq_length, self.vocab_size])
self.parent.assertListEqual(
list(result["mc_logits"].shape),
[self.batch_size, self.num_choices])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids, input_mask, head_mask, token_type_ids,
mc_token_ids, sequence_labels, token_labels, choice_labels) = config_and_inputs
inputs_dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
def setUp(self):
self.model_tester = TFOpenAIGPTModelTest.TFOpenAIGPTModelTester(self)
self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_openai_gpt_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*config_and_inputs)
def test_openai_gpt_lm_head(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_lm_head(*config_and_inputs)
def test_openai_gpt_double_head(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_double_head(*config_and_inputs)
@pytest.mark.slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/pytorch_transformers_test/"
for model_name in list(TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = TFOpenAIGPTModel.from_pretrained(model_name, cache_dir=cache_dir)
shutil.rmtree(cache_dir)
self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment