Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
3a527fa8
Commit
3a527fa8
authored
Sep 18, 2019
by
thomwolf
Browse files
OpenAI GPT tests ok
parent
556442af
Changes
5
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
793 additions
and
10 deletions
+793
-10
pytorch_transformers/configuration_xlm.py
pytorch_transformers/configuration_xlm.py
+0
-3
pytorch_transformers/configuration_xlnet.py
pytorch_transformers/configuration_xlnet.py
+1
-3
pytorch_transformers/modeling_tf_gpt2.py
pytorch_transformers/modeling_tf_gpt2.py
+3
-4
pytorch_transformers/modeling_tf_openai.py
pytorch_transformers/modeling_tf_openai.py
+558
-0
pytorch_transformers/tests/modeling_tf_openai_gpt_test.py
pytorch_transformers/tests/modeling_tf_openai_gpt_test.py
+231
-0
No files found.
pytorch_transformers/configuration_xlm.py
View file @
3a527fa8
...
@@ -56,8 +56,6 @@ class XLMConfig(PretrainedConfig):
...
@@ -56,8 +56,6 @@ class XLMConfig(PretrainedConfig):
dropout: The dropout probabilitiy for all fully connected
dropout: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
layers in the embeddings, encoder, and pooler.
dropatt: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might
max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
(e.g., 512 or 1024 or 2048).
...
@@ -66,7 +64,6 @@ class XLMConfig(PretrainedConfig):
...
@@ -66,7 +64,6 @@ class XLMConfig(PretrainedConfig):
layer_norm_eps: The epsilon used by LayerNorm.
layer_norm_eps: The epsilon used by LayerNorm.
dropout: float, dropout rate.
dropout: float, dropout rate.
dropatt: float, dropout rate on attention probabilities.
init: str, the initialization scheme, either "normal" or "uniform".
init: str, the initialization scheme, either "normal" or "uniform".
init_range: float, initialize the parameters with a uniform distribution
init_range: float, initialize the parameters with a uniform distribution
in [-init_range, init_range]. Only effective when init="uniform".
in [-init_range, init_range]. Only effective when init="uniform".
...
...
pytorch_transformers/configuration_xlnet.py
View file @
3a527fa8
...
@@ -49,14 +49,11 @@ class XLNetConfig(PretrainedConfig):
...
@@ -49,14 +49,11 @@ class XLNetConfig(PretrainedConfig):
dropout: The dropout probabilitiy for all fully connected
dropout: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
layers in the embeddings, encoder, and pooler.
dropatt: The dropout ratio for the attention
probabilities.
initializer_range: The sttdev of the truncated_normal_initializer for
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
initializing all weight matrices.
layer_norm_eps: The epsilon used by LayerNorm.
layer_norm_eps: The epsilon used by LayerNorm.
dropout: float, dropout rate.
dropout: float, dropout rate.
dropatt: float, dropout rate on attention probabilities.
init: str, the initialization scheme, either "normal" or "uniform".
init: str, the initialization scheme, either "normal" or "uniform".
init_range: float, initialize the parameters with a uniform distribution
init_range: float, initialize the parameters with a uniform distribution
in [-init_range, init_range]. Only effective when init="uniform".
in [-init_range, init_range]. Only effective when init="uniform".
...
@@ -80,6 +77,7 @@ class XLNetConfig(PretrainedConfig):
...
@@ -80,6 +77,7 @@ class XLNetConfig(PretrainedConfig):
n_layer
=
24
,
n_layer
=
24
,
n_head
=
16
,
n_head
=
16
,
d_inner
=
4096
,
d_inner
=
4096
,
max_position_embeddings
=
512
,
ff_activation
=
"gelu"
,
ff_activation
=
"gelu"
,
untie_r
=
True
,
untie_r
=
True
,
attn_type
=
"bi"
,
attn_type
=
"bi"
,
...
...
pytorch_transformers/modeling_tf_gpt2.py
View file @
3a527fa8
...
@@ -249,7 +249,7 @@ class TFGPT2MainLayer(tf.keras.layers.Layer):
...
@@ -249,7 +249,7 @@ class TFGPT2MainLayer(tf.keras.layers.Layer):
token_type_ids
=
inputs
.
get
(
'token_type_ids'
,
None
)
token_type_ids
=
inputs
.
get
(
'token_type_ids'
,
None
)
position_ids
=
inputs
.
get
(
'position_ids'
,
None
)
position_ids
=
inputs
.
get
(
'position_ids'
,
None
)
head_mask
=
inputs
.
get
(
'head_mask'
,
None
)
head_mask
=
inputs
.
get
(
'head_mask'
,
None
)
assert
len
(
inputs
)
<=
5
,
"Too many inputs."
assert
len
(
inputs
)
<=
6
,
"Too many inputs."
if
past
is
None
:
if
past
is
None
:
past_length
=
0
past_length
=
0
...
@@ -551,7 +551,6 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
...
@@ -551,7 +551,6 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
self
.
transformer
=
TFGPT2MainLayer
(
config
,
name
=
'transformer'
)
self
.
transformer
=
TFGPT2MainLayer
(
config
,
name
=
'transformer'
)
self
.
multiple_choice_head
=
TFSequenceSummary
(
config
,
name
=
'multiple_choice_head'
)
self
.
multiple_choice_head
=
TFSequenceSummary
(
config
,
name
=
'multiple_choice_head'
)
def
call
(
self
,
inputs
,
training
=
False
):
def
call
(
self
,
inputs
,
training
=
False
):
if
not
isinstance
(
inputs
,
(
dict
,
tuple
,
list
)):
if
not
isinstance
(
inputs
,
(
dict
,
tuple
,
list
)):
input_ids
=
inputs
input_ids
=
inputs
...
@@ -573,7 +572,7 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
...
@@ -573,7 +572,7 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
token_type_ids
=
inputs
.
get
(
'token_type_ids'
,
None
)
token_type_ids
=
inputs
.
get
(
'token_type_ids'
,
None
)
position_ids
=
inputs
.
get
(
'position_ids'
,
None
)
position_ids
=
inputs
.
get
(
'position_ids'
,
None
)
head_mask
=
inputs
.
get
(
'head_mask'
,
None
)
head_mask
=
inputs
.
get
(
'head_mask'
,
None
)
assert
len
(
inputs
)
<=
5
,
"Too many inputs."
assert
len
(
inputs
)
<=
7
,
"Too many inputs."
input_shapes
=
shape_list
(
input_ids
)
input_shapes
=
shape_list
(
input_ids
)
...
@@ -598,4 +597,4 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
...
@@ -598,4 +597,4 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
outputs
=
(
lm_logits
,
mc_logits
)
+
transformer_outputs
[
1
:]
outputs
=
(
lm_logits
,
mc_logits
)
+
transformer_outputs
[
1
:]
return
outputs
#
(lm loss), (mc loss),
lm logits, mc logits, presents, (all hidden_states), (attentions)
return
outputs
# lm logits, mc logits, presents, (all hidden_states), (attentions)
pytorch_transformers/modeling_tf_openai.py
0 → 100644
View file @
3a527fa8
This diff is collapsed.
Click to expand it.
pytorch_transformers/tests/modeling_tf_openai_gpt_test.py
0 → 100644
View file @
3a527fa8
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
unittest
import
shutil
import
pytest
import
sys
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
pytorch_transformers
import
OpenAIGPTConfig
,
is_tf_available
if
is_tf_available
():
import
tensorflow
as
tf
from
pytorch_transformers.modeling_tf_openai
import
(
TFOpenAIGPTModel
,
TFOpenAIGPTLMHeadModel
,
TFOpenAIGPTDoubleHeadsModel
,
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
class
TFOpenAIGPTModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
all_model_classes
=
(
TFOpenAIGPTModel
,
TFOpenAIGPTLMHeadModel
,
TFOpenAIGPTDoubleHeadsModel
)
if
is_tf_available
()
else
()
class
TFOpenAIGPTModelTester
(
object
):
def
__init__
(
self
,
parent
,
batch_size
=
13
,
seq_length
=
7
,
is_training
=
True
,
use_token_type_ids
=
True
,
use_input_mask
=
True
,
use_labels
=
True
,
use_mc_token_ids
=
True
,
vocab_size
=
99
,
hidden_size
=
32
,
num_hidden_layers
=
5
,
num_attention_heads
=
4
,
intermediate_size
=
37
,
hidden_act
=
"gelu"
,
hidden_dropout_prob
=
0.1
,
attention_probs_dropout_prob
=
0.1
,
max_position_embeddings
=
512
,
type_vocab_size
=
16
,
type_sequence_label_size
=
2
,
initializer_range
=
0.02
,
num_labels
=
3
,
num_choices
=
4
,
scope
=
None
,
):
self
.
parent
=
parent
self
.
batch_size
=
batch_size
self
.
seq_length
=
seq_length
self
.
is_training
=
is_training
self
.
use_token_type_ids
=
use_token_type_ids
self
.
use_input_mask
=
use_input_mask
self
.
use_labels
=
use_labels
self
.
use_mc_token_ids
=
use_mc_token_ids
self
.
vocab_size
=
vocab_size
self
.
hidden_size
=
hidden_size
self
.
num_hidden_layers
=
num_hidden_layers
self
.
num_attention_heads
=
num_attention_heads
self
.
intermediate_size
=
intermediate_size
self
.
hidden_act
=
hidden_act
self
.
hidden_dropout_prob
=
hidden_dropout_prob
self
.
attention_probs_dropout_prob
=
attention_probs_dropout_prob
self
.
max_position_embeddings
=
max_position_embeddings
self
.
type_vocab_size
=
type_vocab_size
self
.
type_sequence_label_size
=
type_sequence_label_size
self
.
initializer_range
=
initializer_range
self
.
num_labels
=
num_labels
self
.
num_choices
=
num_choices
self
.
scope
=
scope
def
prepare_config_and_inputs
(
self
):
input_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
input_mask
=
None
if
self
.
use_input_mask
:
input_mask
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
vocab_size
=
2
)
token_type_ids
=
None
if
self
.
use_token_type_ids
:
token_type_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
type_vocab_size
)
mc_token_ids
=
None
if
self
.
use_mc_token_ids
:
mc_token_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
num_choices
],
self
.
seq_length
)
sequence_labels
=
None
token_labels
=
None
choice_labels
=
None
if
self
.
use_labels
:
sequence_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
type_sequence_label_size
)
token_labels
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
num_labels
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
OpenAIGPTConfig
(
vocab_size_or_config_json_file
=
self
.
vocab_size
,
n_embd
=
self
.
hidden_size
,
n_layer
=
self
.
num_hidden_layers
,
n_head
=
self
.
num_attention_heads
,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions
=
self
.
max_position_embeddings
,
n_ctx
=
self
.
max_position_embeddings
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
)
head_mask
=
ids_tensor
([
self
.
num_hidden_layers
,
self
.
num_attention_heads
],
2
)
return
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
mc_token_ids
,
sequence_labels
,
token_labels
,
choice_labels
def
create_and_check_openai_gpt_model
(
self
,
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
*
args
):
model
=
TFOpenAIGPTModel
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
,
'token_type_ids'
:
token_type_ids
}
sequence_output
=
model
(
inputs
)[
0
]
inputs
=
[
input_ids
,
input_mask
]
sequence_output
=
model
(
inputs
)[
0
]
sequence_output
=
model
(
input_ids
)[
0
]
result
=
{
"sequence_output"
:
sequence_output
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"sequence_output"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
])
def
create_and_check_openai_gpt_lm_head
(
self
,
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
*
args
):
model
=
TFOpenAIGPTLMHeadModel
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
,
'token_type_ids'
:
token_type_ids
}
prediction_scores
=
model
(
inputs
)[
0
]
result
=
{
"prediction_scores"
:
prediction_scores
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"prediction_scores"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
])
def
create_and_check_openai_gpt_double_head
(
self
,
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
mc_token_ids
,
*
args
):
model
=
TFOpenAIGPTDoubleHeadsModel
(
config
=
config
)
multiple_choice_inputs_ids
=
tf
.
tile
(
tf
.
expand_dims
(
input_ids
,
1
),
(
1
,
self
.
num_choices
,
1
))
multiple_choice_input_mask
=
tf
.
tile
(
tf
.
expand_dims
(
input_mask
,
1
),
(
1
,
self
.
num_choices
,
1
))
multiple_choice_token_type_ids
=
tf
.
tile
(
tf
.
expand_dims
(
token_type_ids
,
1
),
(
1
,
self
.
num_choices
,
1
))
inputs
=
{
'input_ids'
:
multiple_choice_inputs_ids
,
'mc_token_ids'
:
mc_token_ids
,
'attention_mask'
:
multiple_choice_input_mask
,
'token_type_ids'
:
multiple_choice_token_type_ids
}
lm_logits
,
mc_logits
=
model
(
inputs
)[:
2
]
result
=
{
"lm_logits"
:
lm_logits
.
numpy
(),
"mc_logits"
:
mc_logits
.
numpy
()
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"lm_logits"
].
shape
),
[
self
.
batch_size
,
self
.
num_choices
,
self
.
seq_length
,
self
.
vocab_size
])
self
.
parent
.
assertListEqual
(
list
(
result
[
"mc_logits"
].
shape
),
[
self
.
batch_size
,
self
.
num_choices
])
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
(
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
mc_token_ids
,
sequence_labels
,
token_labels
,
choice_labels
)
=
config_and_inputs
inputs_dict
=
{
'input_ids'
:
input_ids
,
'token_type_ids'
:
token_type_ids
,
'attention_mask'
:
input_mask
}
return
config
,
inputs_dict
def
setUp
(
self
):
self
.
model_tester
=
TFOpenAIGPTModelTest
.
TFOpenAIGPTModelTester
(
self
)
self
.
config_tester
=
ConfigTester
(
self
,
config_class
=
OpenAIGPTConfig
,
n_embd
=
37
)
def
test_config
(
self
):
self
.
config_tester
.
run_common_tests
()
def
test_openai_gpt_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_openai_gpt_model
(
*
config_and_inputs
)
def
test_openai_gpt_lm_head
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_openai_gpt_lm_head
(
*
config_and_inputs
)
def
test_openai_gpt_double_head
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_openai_gpt_double_head
(
*
config_and_inputs
)
@
pytest
.
mark
.
slow
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/pytorch_transformers_test/"
for
model_name
in
list
(
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
TFOpenAIGPTModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
self
.
assertIsNotNone
(
model
)
if
__name__
==
"__main__"
:
unittest
.
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment