Commit 3a527fa8 authored by thomwolf's avatar thomwolf
Browse files

OpenAI GPT tests ok

parent 556442af
...@@ -56,8 +56,6 @@ class XLMConfig(PretrainedConfig): ...@@ -56,8 +56,6 @@ class XLMConfig(PretrainedConfig):
dropout: The dropout probabilitiy for all fully connected dropout: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler. layers in the embeddings, encoder, and pooler.
dropatt: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048). (e.g., 512 or 1024 or 2048).
...@@ -66,7 +64,6 @@ class XLMConfig(PretrainedConfig): ...@@ -66,7 +64,6 @@ class XLMConfig(PretrainedConfig):
layer_norm_eps: The epsilon used by LayerNorm. layer_norm_eps: The epsilon used by LayerNorm.
dropout: float, dropout rate. dropout: float, dropout rate.
dropatt: float, dropout rate on attention probabilities.
init: str, the initialization scheme, either "normal" or "uniform". init: str, the initialization scheme, either "normal" or "uniform".
init_range: float, initialize the parameters with a uniform distribution init_range: float, initialize the parameters with a uniform distribution
in [-init_range, init_range]. Only effective when init="uniform". in [-init_range, init_range]. Only effective when init="uniform".
......
...@@ -49,14 +49,11 @@ class XLNetConfig(PretrainedConfig): ...@@ -49,14 +49,11 @@ class XLNetConfig(PretrainedConfig):
dropout: The dropout probabilitiy for all fully connected dropout: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler. layers in the embeddings, encoder, and pooler.
dropatt: The dropout ratio for the attention
probabilities.
initializer_range: The sttdev of the truncated_normal_initializer for initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices. initializing all weight matrices.
layer_norm_eps: The epsilon used by LayerNorm. layer_norm_eps: The epsilon used by LayerNorm.
dropout: float, dropout rate. dropout: float, dropout rate.
dropatt: float, dropout rate on attention probabilities.
init: str, the initialization scheme, either "normal" or "uniform". init: str, the initialization scheme, either "normal" or "uniform".
init_range: float, initialize the parameters with a uniform distribution init_range: float, initialize the parameters with a uniform distribution
in [-init_range, init_range]. Only effective when init="uniform". in [-init_range, init_range]. Only effective when init="uniform".
...@@ -80,6 +77,7 @@ class XLNetConfig(PretrainedConfig): ...@@ -80,6 +77,7 @@ class XLNetConfig(PretrainedConfig):
n_layer=24, n_layer=24,
n_head=16, n_head=16,
d_inner=4096, d_inner=4096,
max_position_embeddings=512,
ff_activation="gelu", ff_activation="gelu",
untie_r=True, untie_r=True,
attn_type="bi", attn_type="bi",
......
...@@ -249,7 +249,7 @@ class TFGPT2MainLayer(tf.keras.layers.Layer): ...@@ -249,7 +249,7 @@ class TFGPT2MainLayer(tf.keras.layers.Layer):
token_type_ids = inputs.get('token_type_ids', None) token_type_ids = inputs.get('token_type_ids', None)
position_ids = inputs.get('position_ids', None) position_ids = inputs.get('position_ids', None)
head_mask = inputs.get('head_mask', None) head_mask = inputs.get('head_mask', None)
assert len(inputs) <= 5, "Too many inputs." assert len(inputs) <= 6, "Too many inputs."
if past is None: if past is None:
past_length = 0 past_length = 0
...@@ -551,7 +551,6 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel): ...@@ -551,7 +551,6 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
self.transformer = TFGPT2MainLayer(config, name='transformer') self.transformer = TFGPT2MainLayer(config, name='transformer')
self.multiple_choice_head = TFSequenceSummary(config, name='multiple_choice_head') self.multiple_choice_head = TFSequenceSummary(config, name='multiple_choice_head')
def call(self, inputs, training=False): def call(self, inputs, training=False):
if not isinstance(inputs, (dict, tuple, list)): if not isinstance(inputs, (dict, tuple, list)):
input_ids = inputs input_ids = inputs
...@@ -573,7 +572,7 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel): ...@@ -573,7 +572,7 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
token_type_ids = inputs.get('token_type_ids', None) token_type_ids = inputs.get('token_type_ids', None)
position_ids = inputs.get('position_ids', None) position_ids = inputs.get('position_ids', None)
head_mask = inputs.get('head_mask', None) head_mask = inputs.get('head_mask', None)
assert len(inputs) <= 5, "Too many inputs." assert len(inputs) <= 7, "Too many inputs."
input_shapes = shape_list(input_ids) input_shapes = shape_list(input_ids)
...@@ -598,4 +597,4 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel): ...@@ -598,4 +597,4 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
outputs = (lm_logits, mc_logits) + transformer_outputs[1:] outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
return outputs # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions) return outputs # lm logits, mc logits, presents, (all hidden_states), (attentions)
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 OpenAI GPT model."""
from __future__ import absolute_import, division, print_function, unicode_literals
import collections
import json
import logging
import math
import os
import sys
from io import open
import numpy as np
import tensorflow as tf
from .modeling_tf_utils import (TFPreTrainedModel, TFConv1D, TFSharedEmbeddings,
TFSequenceSummary, shape_list)
from .configuration_openai import OpenAIGPTConfig
from .file_utils import add_start_docstrings
from .modeling_tf_pytorch_utils import load_pytorch_checkpoint_in_tf2_model
logger = logging.getLogger(__name__)
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-tf_model.h5"}
def load_openai_gpt_pt_weights_in_tf2(tf_model, pytorch_checkpoint_path):
# build the network
inputs_list = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
tf_inputs = tf.constant(inputs_list)
tfo = tf_model(tf_inputs, training=False)
return load_pytorch_checkpoint_in_tf2_model(tf_model, pytorch_checkpoint_path, tf_inputs=tf_inputs)
def gelu(x):
"""Gaussian Error Linear Unit.
This is a smoother version of the RELU.
Original paper: https://arxiv.org/abs/1606.08415
Args:
x: float Tensor to perform activation.
Returns:
`x` with the GELU activation applied.
"""
cdf = 0.5 * (1.0 + tf.tanh(
(np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))))
return x * cdf
def swish(x):
return x * tf.math.sigmoid(x)
ACT_FNS = {"gelu": tf.keras.layers.Activation(gelu),
"relu": tf.keras.activations.relu,
"swish": tf.keras.layers.Activation(swish)}
class TFAttention(tf.keras.layers.Layer):
def __init__(self, nx, n_ctx, config, scale=False, **kwargs):
super(TFAttention, self).__init__(**kwargs)
self.output_attentions = config.output_attentions
n_state = nx # in Attention: n_state=768 (nx=n_embd)
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
assert n_state % config.n_head == 0
self.n_ctx = n_ctx
self.n_head = config.n_head
self.split_size = n_state
self.scale = scale
self.c_attn = TFConv1D(n_state * 3, nx, name='c_attn')
self.c_proj = TFConv1D(n_state, nx, name='c_proj')
self.attn_dropout = tf.keras.layers.Dropout(config.attn_pdrop)
self.resid_dropout = tf.keras.layers.Dropout(config.resid_pdrop)
self.pruned_heads = set()
def prune_heads(self, heads):
pass
@staticmethod
def causal_attention_mask(nd, ns, dtype):
"""1's in the lower triangle, counting from the lower right corner.
Same as tf.matrix_band_part(tf.ones([nd, ns]), -1, ns-nd), but doesn't produce garbage on TPUs.
"""
i = tf.range(nd)[:,None]
j = tf.range(ns)
m = i >= j - ns + nd
return tf.cast(m, dtype)
def _attn(self, inputs, training=False):
q, k, v, attention_mask, head_mask = inputs
# q, k, v have shape [batch, heads, sequence, features]
w = tf.matmul(q, k, transpose_b=True)
if self.scale:
dk = tf.cast(tf.shape(k)[-1], tf.float32) # scale attention_scores
w = w / tf.math.sqrt(dk)
# w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst.
_, _, nd, ns = shape_list(w)
b = self.causal_attention_mask(nd, ns, dtype=w.dtype)
b = tf.reshape(b, [1, 1, nd, ns])
w = w * b - 1e4 * (1 - b)
if attention_mask is not None:
# Apply the attention mask
w = w + attention_mask
w = tf.nn.softmax(w, axis=-1)
w = self.attn_dropout(w, training=training)
# Mask heads if we want to
if head_mask is not None:
w = w * head_mask
outputs = [tf.matmul(w, v)]
if self.output_attentions:
outputs.append(w)
return outputs
def merge_heads(self, x):
x = tf.transpose(x, [0, 2, 1, 3])
x_shape = shape_list(x)
new_x_shape = x_shape[:-2] + [x_shape[-2] * x_shape[-1]]
return tf.reshape(x, new_x_shape)
def split_heads(self, x):
x_shape = shape_list(x)
new_x_shape = x_shape[:-1] + [self.n_head, x_shape[-1] // self.n_head]
x = tf.reshape(x, new_x_shape)
return tf.transpose(x, (0, 2, 1, 3)) # (batch, head, seq_length, head_features)
def call(self, inputs, training=False):
x, attention_mask, head_mask = inputs
x = self.c_attn(x)
query, key, value = tf.split(x, 3, axis=2)
query = self.split_heads(query)
key = self.split_heads(key)
value = self.split_heads(value)
attn_outputs = self._attn([query, key, value, attention_mask, head_mask], training=training)
a = attn_outputs[0]
a = self.merge_heads(a)
a = self.c_proj(a)
a = self.resid_dropout(a, training=training)
outputs = [a] + attn_outputs[1:]
return outputs # a, (attentions)
class TFMLP(tf.keras.layers.Layer):
def __init__(self, n_state, config, **kwargs):
super(TFMLP, self).__init__(**kwargs)
nx = config.n_embd
self.c_fc = TFConv1D(n_state, nx, name='c_fc')
self.c_proj = TFConv1D(nx, n_state, name='c_proj')
self.act = gelu
self.dropout = tf.keras.layers.Dropout(config.resid_pdrop)
def call(self, x, training=False):
h = self.act(self.c_fc(x))
h2 = self.c_proj(h)
h2 = self.dropout(h2, training=training)
return h2
class TFBlock(tf.keras.layers.Layer):
def __init__(self, n_ctx, config, scale=False, **kwargs):
super(TFBlock, self).__init__(**kwargs)
nx = config.n_embd
self.attn = TFAttention(nx, n_ctx, config, scale, name='attn')
self.ln_1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name='ln_1')
self.mlp = TFMLP(4 * nx, config, name='mlp')
self.ln_2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name='ln_2')
def call(self, inputs, training=False):
x, attention_mask, head_mask = inputs
output_attn = self.attn([x, attention_mask, head_mask], training=training)
a = output_attn[0] # output_attn: a, (attentions)
n = self.ln_1(x + a)
m = self.mlp(n, training=training)
h = self.ln_2(n + m)
outputs = [h] + output_attn[1:]
return outputs # x, (attentions)
class TFOpenAIGPTMainLayer(tf.keras.layers.Layer):
def __init__(self, config, *inputs, **kwargs):
super(TFOpenAIGPTMainLayer, self).__init__(config, *inputs, **kwargs)
self.output_hidden_states = config.output_hidden_states
self.output_attentions = config.output_attentions
self.num_hidden_layers = config.n_layer
self.vocab_size = config.vocab_size
self.n_embd = config.n_embd
self.tokens_embed = TFSharedEmbeddings(config.vocab_size, config.n_embd, name='tokens_embed')
self.positions_embed = tf.keras.layers.Embedding(config.n_positions, config.n_embd, name='positions_embed')
self.drop = tf.keras.layers.Dropout(config.embd_pdrop)
self.h = [TFBlock(config.n_ctx,
config,
scale=True,
name='h_._{}'.format(i)) for i in range(config.n_layer)]
def _resize_token_embeddings(self, new_num_tokens):
raise NotImplementedError
def _prune_heads(self, heads_to_prune):
""" Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
"""
raise NotImplementedError
def call(self, inputs, training=False):
if not isinstance(inputs, (dict, tuple, list)):
input_ids = inputs
attention_mask, token_type_ids, position_ids, head_mask = None, None, None, None
elif isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
attention_mask = inputs[1] if len(inputs) > 1 else None
token_type_ids = inputs[2] if len(inputs) > 2 else None
position_ids = inputs[3] if len(inputs) > 3 else None
head_mask = inputs[4] if len(inputs) > 4 else None
assert len(inputs) <= 5, "Too many inputs."
else:
input_ids = inputs.get('input_ids')
attention_mask = inputs.get('attention_mask', None)
token_type_ids = inputs.get('token_type_ids', None)
position_ids = inputs.get('position_ids', None)
head_mask = inputs.get('head_mask', None)
assert len(inputs) <= 5, "Too many inputs."
if position_ids is None:
position_ids = tf.range(shape_list(input_ids)[-1], dtype=tf.int32)[tf.newaxis, :]
if attention_mask is not None:
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = attention_mask[:, tf.newaxis, tf.newaxis, :]
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = tf.cast(attention_mask, tf.float32)
attention_mask = (1.0 - attention_mask) * -10000.0
else:
attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if not head_mask is None:
raise NotImplementedError
else:
head_mask = [None] * self.num_hidden_layers
# head_mask = tf.constant([0] * self.num_hidden_layers)
input_shape = shape_list(input_ids)
input_ids = tf.reshape(input_ids, [-1, input_shape[-1]])
position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]])
inputs_embeds = self.tokens_embed(input_ids, mode='embedding')
position_embeds = self.positions_embed(position_ids)
if token_type_ids is not None:
token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
token_type_embeds = self.tokens_embed(token_type_ids, mode='embedding')
else:
token_type_embeds = 0
hidden_states = inputs_embeds + position_embeds + token_type_embeds
hidden_states = self.drop(hidden_states, training=training)
output_shape = input_shape + [shape_list(hidden_states)[-1]]
all_attentions = []
all_hidden_states = ()
for i, block in enumerate(self.h):
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),)
outputs = block([hidden_states, attention_mask, head_mask[i]], training=training)
hidden_states = outputs[0]
if self.output_attentions:
all_attentions.append(outputs[1])
hidden_states = tf.reshape(hidden_states, output_shape)
# Add last hidden state
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = (hidden_states,)
if self.output_hidden_states:
outputs = outputs + (all_hidden_states,)
if self.output_attentions:
# let the number of heads free (-1) so we can extract attention even after head pruning
attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:]
all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions)
outputs = outputs + (all_attentions,)
return outputs # last hidden state, (all hidden_states), (attentions)
class TFOpenAIGPTPreTrainedModel(TFPreTrainedModel):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
config_class = OpenAIGPTConfig
pretrained_model_archive_map = TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
load_pt_weights = load_openai_gpt_pt_weights_in_tf2
base_model_prefix = "transformer"
OPENAI_GPT_START_DOCSTRING = r""" OpenAI GPT model was proposed in
`Improving Language Understanding by Generative Pre-Training`_
by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
It's a causal (unidirectional) transformer pre-trained using language modeling on a large
corpus will long range dependencies, the Toronto Book Corpus.
This model is a tf.keras.Model `tf.keras.Model`_ sub-class. Use it as a regular TF 2.0 Keras Model and
refer to the TF 2.0 documentation for all matter related to general usage and behavior.
.. _`Improving Language Understanding by Generative Pre-Training`:
https://openai.com/blog/language-unsupervised/
.. _`tf.keras.Model`:
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/Model
Important note on the model inputs:
The inputs of the TF 2.0 models are slightly different from the PyTorch ones since
TF 2.0 Keras doesn't accept named arguments with defaults values for input Tensor.
More precisely, input Tensors are gathered in the first arguments of the model call function: `model(inputs)`.
There are three possibilities to gather and feed the inputs to the model:
- a single Tensor with input_ids only and nothing else: `model(inputs_ids)
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associaed to the input names given in the docstring:
`model({'input_ids': input_ids, 'token_type_ids': token_type_ids})`
Parameters:
config (:class:`~pytorch_transformers.OpenAIGPTConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
OPENAI_GPT_INPUTS_DOCSTRING = r""" Inputs:
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Indices of input sequence tokens in the vocabulary.
GPT is a model with absolute position embeddings so it's usually advised to pad the inputs on
the right rather than the left.
Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
:func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
**token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
A parallel sequence of tokens (can be used to indicate various portions of the inputs).
The embeddings from these tokens will be summed with the respective token embeddings.
Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices)
**position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Indices of positions of each input sequence tokens in the position embeddings.
Selected in the range ``[0, config.max_position_embeddings - 1]``.
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
Mask to nullify selected heads of the self-attention modules.
Mask values selected in ``[0, 1]``:
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""
@add_start_docstrings("The bare OpenAI GPT transformer model outputing raw hidden-states without any specific head on top.",
OPENAI_GPT_START_DOCSTRING, OPENAI_GPT_INPUTS_DOCSTRING)
class TFOpenAIGPTModel(TFOpenAIGPTPreTrainedModel):
r"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
Sequence of hidden-states at the last layer of the model.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
model = OpenAIGPTModel.from_pretrained('openai-gpt')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
def __init__(self, config, *inputs, **kwargs):
super(TFOpenAIGPTModel, self).__init__(config, *inputs, **kwargs)
self.transformer = TFOpenAIGPTMainLayer(config, name='transformer')
def call(self, inputs, training=False):
outputs = self.transformer(inputs, training=training)
return outputs
@add_start_docstrings("""OpenAI GPT Model transformer with a language modeling head on top
(linear layer with weights tied to the input embeddings). """, OPENAI_GPT_START_DOCSTRING, OPENAI_GPT_INPUTS_DOCSTRING)
class TFOpenAIGPTLMHeadModel(TFOpenAIGPTPreTrainedModel):
r"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Language modeling loss.
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
model = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=input_ids)
loss, logits = outputs[:2]
"""
def __init__(self, config, *inputs, **kwargs):
super(TFOpenAIGPTLMHeadModel, self).__init__(config, *inputs, **kwargs)
self.transformer = TFOpenAIGPTMainLayer(config, name='transformer')
def call(self, inputs, training=False):
transformer_outputs = self.transformer(inputs, training=training)
hidden_states = transformer_outputs[0]
lm_logits = self.transformer.tokens_embed(hidden_states, mode="linear")
outputs = (lm_logits,) + transformer_outputs[1:]
return outputs # lm_logits, (all hidden_states), (attentions)
@add_start_docstrings("""OpenAI GPT Model transformer with a language modeling and a multiple-choice classification
head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers.
The language modeling head has its weights tied to the input embeddings,
the classification head takes as input the input of a specified classification token index in the input sequence).
""", OPENAI_GPT_START_DOCSTRING, OPENAI_GPT_INPUTS_DOCSTRING)
class TFOpenAIGPTDoubleHeadsModel(TFOpenAIGPTPreTrainedModel):
r"""
**mc_token_ids**: (`optional`, default to index of the last token of the input) ``torch.LongTensor`` of shape ``(batch_size, num_choices)``:
Index of the classification token in each input sequence.
Selected in the range ``[0, input_ids.size(-1) - 1[``.
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**lm_loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Language modeling loss.
**mc_loss**: (`optional`, returned when ``multiple_choice_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Multiple choice classification loss.
**lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)``
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
**mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)``
Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax).
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
model = OpenAIGPTDoubleHeadsModel.from_pretrained('openai-gpt')
tokenizer.add_special_tokens({'cls_token': '[CLS]'}) # Add a [CLS] to the vocabulary (we should train it also!)
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
mc_token_ids = torch.tensor([input_ids.size(-1), input_ids.size(-1)]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, mc_token_ids=mc_token_ids)
lm_prediction_scores, mc_prediction_scores = outputs[:2]
"""
def __init__(self, config, *inputs, **kwargs):
super(TFOpenAIGPTDoubleHeadsModel, self).__init__(config, *inputs, **kwargs)
self.transformer = TFOpenAIGPTMainLayer(config, name='transformer')
self.multiple_choice_head = TFSequenceSummary(config, name='multiple_choice_head')
def call(self, inputs, training=False):
if not isinstance(inputs, (dict, tuple, list)):
input_ids = inputs
mc_token_ids, attention_mask, token_type_ids, position_ids, head_mask = None, None, None, None
elif isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
mc_token_ids = inputs[1] if len(inputs) > 1 else None
attention_mask = inputs[2] if len(inputs) > 2 else None
token_type_ids = inputs[3] if len(inputs) > 3 else None
position_ids = inputs[4] if len(inputs) > 4 else None
head_mask = inputs[5] if len(inputs) > 5 else None
assert len(inputs) <= 6, "Too many inputs."
else:
input_ids = inputs.get('input_ids')
mc_token_ids = inputs.get('mc_token_ids', None)
attention_mask = inputs.get('attention_mask', None)
token_type_ids = inputs.get('token_type_ids', None)
position_ids = inputs.get('position_ids', None)
head_mask = inputs.get('head_mask', None)
assert len(inputs) <= 6, "Too many inputs."
input_shapes = shape_list(input_ids)
seq_length = input_shapes[-1]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length))
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
flat_inputs = [flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask]
transformer_outputs = self.transformer(flat_inputs, training=training)
hidden_states = transformer_outputs[0]
hidden_states = tf.reshape(hidden_states, input_shapes + shape_list(hidden_states)[-1:])
lm_logits = self.transformer.tokens_embed(hidden_states, mode="linear")
mc_logits = self.multiple_choice_head([hidden_states, mc_token_ids], training=training)
mc_logits = tf.squeeze(mc_logits, axis=-1)
outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
return outputs # lm logits, mc logits, (all hidden_states), (attentions)
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import shutil
import pytest
import sys
from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from pytorch_transformers import OpenAIGPTConfig, is_tf_available
if is_tf_available():
import tensorflow as tf
from pytorch_transformers.modeling_tf_openai import (TFOpenAIGPTModel, TFOpenAIGPTLMHeadModel,
TFOpenAIGPTDoubleHeadsModel,
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP)
else:
pytestmark = pytest.mark.skip("Require TensorFlow")
class TFOpenAIGPTModelTest(TFCommonTestCases.TFCommonModelTester):
all_model_classes = (TFOpenAIGPTModel, TFOpenAIGPTLMHeadModel,
TFOpenAIGPTDoubleHeadsModel) if is_tf_available() else ()
class TFOpenAIGPTModelTester(object):
def __init__(self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_token_type_ids=True,
use_input_mask=True,
use_labels=True,
use_mc_token_ids=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_token_type_ids = use_token_type_ids
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.use_mc_token_ids = use_mc_token_ids
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
mc_token_ids = None
if self.use_mc_token_ids:
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = OpenAIGPTConfig(
vocab_size_or_config_json_file=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
n_ctx=self.max_position_embeddings
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels
def create_and_check_openai_gpt_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFOpenAIGPTModel(config=config)
inputs = {'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids}
sequence_output = model(inputs)[0]
inputs = [input_ids, input_mask]
sequence_output = model(inputs)[0]
sequence_output = model(input_ids)[0]
result = {
"sequence_output": sequence_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape),
[self.batch_size, self.seq_length, self.hidden_size])
def create_and_check_openai_gpt_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFOpenAIGPTLMHeadModel(config=config)
inputs = {'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids}
prediction_scores = model(inputs)[0]
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape),
[self.batch_size, self.seq_length, self.vocab_size])
def create_and_check_openai_gpt_double_head(self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args):
model = TFOpenAIGPTDoubleHeadsModel(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
inputs = {'input_ids': multiple_choice_inputs_ids,
'mc_token_ids': mc_token_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids}
lm_logits, mc_logits = model(inputs)[:2]
result = {
"lm_logits": lm_logits.numpy(),
"mc_logits": mc_logits.numpy()
}
self.parent.assertListEqual(
list(result["lm_logits"].shape),
[self.batch_size, self.num_choices, self.seq_length, self.vocab_size])
self.parent.assertListEqual(
list(result["mc_logits"].shape),
[self.batch_size, self.num_choices])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids, input_mask, head_mask, token_type_ids,
mc_token_ids, sequence_labels, token_labels, choice_labels) = config_and_inputs
inputs_dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
def setUp(self):
self.model_tester = TFOpenAIGPTModelTest.TFOpenAIGPTModelTester(self)
self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_openai_gpt_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*config_and_inputs)
def test_openai_gpt_lm_head(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_lm_head(*config_and_inputs)
def test_openai_gpt_double_head(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_double_head(*config_and_inputs)
@pytest.mark.slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/pytorch_transformers_test/"
for model_name in list(TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = TFOpenAIGPTModel.from_pretrained(model_name, cache_dir=cache_dir)
shutil.rmtree(cache_dir)
self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment