Unverified Commit 38a716cd authored by Daniel Stancl's avatar Daniel Stancl Committed by GitHub
Browse files

TF BART models - Add `cross_attentions` to model output and fix...

TF BART models - Add `cross_attentions` to model output and fix cross-attention head masking (#10699)

* Add cross_attn_head_mask to BART

* Fix cross_attentions in TFBart-like models

* This commit enables returning of `cross_attentions`
for TFBart-like models

* It also fixes attention head masking in cross-attenion module

* Update TF model templates

* Fix missing , in TF model templates

* Fix typo: congig -> config
parent 4bd6b54f
......@@ -116,6 +116,82 @@ class TFBaseModelOutputWithPast(ModelOutput):
attentions: Optional[Tuple[tf.Tensor]] = None
@dataclass
class TFBaseModelOutputWithCrossAttentions(ModelOutput):
"""
Base class for model's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (:obj:`tuple(tf.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
cross_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
"""
last_hidden_state: tf.Tensor = None
hidden_states: Optional[Tuple[tf.Tensor]] = None
attentions: Optional[Tuple[tf.Tensor]] = None
cross_attentions: Optional[Tuple[tf.Tensor]] = None
@dataclass
class TFBaseModelOutputWithPastAndCrossAttentions(ModelOutput):
"""
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
Args:
last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
If :obj:`past_key_values` is used only the last hidden-state of the sequences of shape :obj:`(batch_size,
1, hidden_size)` is output.
past_key_values (:obj:`List[tf.Tensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
List of :obj:`tf.Tensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, batch_size,
num_heads, sequence_length, embed_size_per_head)`).
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
:obj:`past_key_values` input) to speed up sequential decoding.
hidden_states (:obj:`tuple(tf.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
cross_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
"""
last_hidden_state: tf.Tensor = None
past_key_values: Optional[List[tf.Tensor]] = None
hidden_states: Optional[Tuple[tf.Tensor]] = None
attentions: Optional[Tuple[tf.Tensor]] = None
cross_attentions: Optional[Tuple[tf.Tensor]] = None
@dataclass
class TFSeq2SeqModelOutput(ModelOutput):
"""
......@@ -145,6 +221,12 @@ class TFSeq2SeqModelOutput(ModelOutput):
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
......@@ -164,6 +246,7 @@ class TFSeq2SeqModelOutput(ModelOutput):
past_key_values: Optional[List[tf.Tensor]] = None
decoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
decoder_attentions: Optional[Tuple[tf.Tensor]] = None
cross_attentions: Optional[Tuple[tf.Tensor]] = None
encoder_last_hidden_state: Optional[tf.Tensor] = None
encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
encoder_attentions: Optional[Tuple[tf.Tensor]] = None
......@@ -290,6 +373,12 @@ class TFSeq2SeqLMOutput(ModelOutput):
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
......@@ -310,6 +399,7 @@ class TFSeq2SeqLMOutput(ModelOutput):
past_key_values: Optional[List[tf.Tensor]] = None
decoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
decoder_attentions: Optional[Tuple[tf.Tensor]] = None
cross_attentions: Optional[Tuple[tf.Tensor]] = None
encoder_last_hidden_state: Optional[tf.Tensor] = None
encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
encoder_attentions: Optional[Tuple[tf.Tensor]] = None
......
......@@ -30,7 +30,7 @@ from ...file_utils import (
)
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFBaseModelOutputWithPast,
TFBaseModelOutputWithPastAndCrossAttentions,
TFSeq2SeqLMOutput,
TFSeq2SeqModelOutput,
)
......@@ -365,7 +365,7 @@ class TFBartDecoderLayer(tf.keras.layers.Layer):
encoder_hidden_states: Optional[tf.Tensor] = None,
encoder_attention_mask: Optional[tf.Tensor] = None,
layer_head_mask: Optional[tf.Tensor] = None,
encoder_layer_head_mask: Optional[tf.Tensor] = None,
cross_attn_layer_head_mask: Optional[tf.Tensor] = None,
past_key_value: Optional[Tuple[tf.Tensor]] = None,
training=False,
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
......@@ -379,8 +379,8 @@ class TFBartDecoderLayer(tf.keras.layers.Layer):
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (:obj:`tf.Tensor`): mask for attention heads in a given layer of size
`(decoder_attention_heads,)`
encoder_layer_head_mask (:obj:`tf.Tensor`): mask for encoder attention heads in a given layer of size
`(encoder_attention_heads,)`
cross_attn_layer_head_mask (:obj:`tf.Tensor`): mask for heads of the cross-attention module.
`(decoder_attention_heads,)`
past_key_value (:obj:`Tuple(tf.Tensor)`): cached past key and value projection states
"""
residual = hidden_states
......@@ -401,16 +401,17 @@ class TFBartDecoderLayer(tf.keras.layers.Layer):
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, _, cross_attn_present_key_value = self.encoder_attn(
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=encoder_layer_head_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
)
hidden_states = self.dropout(hidden_states, training=training)
......@@ -432,6 +433,7 @@ class TFBartDecoderLayer(tf.keras.layers.Layer):
return (
hidden_states,
self_attn_weights,
cross_attn_weights,
present_key_value,
)
......@@ -572,7 +574,7 @@ BART_INPUTS_DOCSTRING = r"""
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
decoder_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in ``[0, 1]``:
......@@ -580,6 +582,12 @@ BART_INPUTS_DOCSTRING = r"""
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (:obj:`tf.FloatTensor`, `optional`):
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape :obj:`(batch_size, sequence_length, hidden_size)` is a sequence of
......@@ -677,7 +685,7 @@ class TFBartEncoder(tf.keras.layers.Layer):
Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
inputs_embeds (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded
......@@ -814,7 +822,7 @@ class TFBartDecoder(tf.keras.layers.Layer):
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
encoder_head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
......@@ -856,14 +864,13 @@ class TFBartDecoder(tf.keras.layers.Layer):
Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
encoder_head_mask (:obj:`tf.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention
on hidden heads. Mask values selected in ``[0, 1]``:
cross_attn_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
past_key_values (:obj:`Tuple[Tuple[tf.Tensor]]` of length :obj:`config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
......@@ -894,7 +901,7 @@ class TFBartDecoder(tf.keras.layers.Layer):
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
encoder_head_mask=encoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
......@@ -949,16 +956,18 @@ class TFBartDecoder(tf.keras.layers.Layer):
# decoder layers
all_hidden_states = () if inputs["output_hidden_states"] else None
all_self_attns = () if inputs["output_attentions"] else None
all_cross_attns = () if (inputs["output_attentions"] and inputs["encoder_hidden_states"] is not None) else None
present_key_values = () if inputs["use_cache"] else None
# check if head_mask has a correct number of layers specified if desired
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if inputs["head_mask"] is not None and tf.executing_eagerly():
for attn_mask in ["head_mask", "cross_attn_head_mask"]:
if inputs[attn_mask] is not None and tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(inputs["head_mask"])[0],
shape_list(inputs[attn_mask])[0],
len(self.layers),
message=f"The head_mask should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs['head_mask'])[0]}.",
message=f"The {attn_mask} should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs[attn_mask])[0]}.",
)
for idx, decoder_layer in enumerate(self.layers):
......@@ -973,14 +982,14 @@ class TFBartDecoder(tf.keras.layers.Layer):
past_key_value = inputs["past_key_values"][idx] if inputs["past_key_values"] is not None else None
hidden_states, layer_self_attn, present_key_value = decoder_layer(
hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
encoder_hidden_states=inputs["encoder_hidden_states"],
encoder_attention_mask=inputs["encoder_attention_mask"],
layer_head_mask=inputs["head_mask"][idx] if inputs["head_mask"] is not None else None,
encoder_layer_head_mask=inputs["encoder_head_mask"][idx]
if inputs["encoder_head_mask"] is not None
cross_attn_layer_head_mask=inputs["cross_attn_head_mask"][idx]
if inputs["cross_attn_head_mask"] is not None
else None,
past_key_value=past_key_value,
)
......@@ -991,23 +1000,30 @@ class TFBartDecoder(tf.keras.layers.Layer):
if inputs["output_attentions"]:
all_self_attns += (layer_self_attn,)
if inputs["encoder_hidden_states"] is not None:
all_cross_attns += (layer_cross_attn,)
if inputs["output_hidden_states"]:
all_hidden_states += (hidden_states,)
if inputs["output_attentions"]:
all_self_attns = list(all_self_attns)
if inputs["encoder_hidden_states"] is not None:
all_cross_attns = list(all_cross_attns)
if inputs["use_cache"]:
present_key_values = (inputs["encoder_hidden_states"], present_key_values)
if not inputs["return_dict"]:
return hidden_states, present_key_values, all_hidden_states, all_self_attns
return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
else:
return TFBaseModelOutputWithPast(
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attns,
)
......@@ -1057,6 +1073,7 @@ class TFBartMainLayer(tf.keras.layers.Layer):
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values=None,
inputs_embeds=None,
......@@ -1077,6 +1094,7 @@ class TFBartMainLayer(tf.keras.layers.Layer):
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
......@@ -1131,7 +1149,7 @@ class TFBartMainLayer(tf.keras.layers.Layer):
encoder_hidden_states=inputs["encoder_outputs"][0],
encoder_attention_mask=inputs["attention_mask"],
head_mask=inputs["decoder_head_mask"],
encoder_head_mask=inputs["head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["decoder_inputs_embeds"],
use_cache=inputs["use_cache"],
......@@ -1149,6 +1167,7 @@ class TFBartMainLayer(tf.keras.layers.Layer):
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=inputs["encoder_outputs"].last_hidden_state,
encoder_hidden_states=inputs["encoder_outputs"].hidden_states,
encoder_attentions=inputs["encoder_outputs"].attentions,
......@@ -1189,6 +1208,7 @@ class TFBartModel(TFBartPretrainedModel):
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values=None,
inputs_embeds=None,
......@@ -1209,6 +1229,7 @@ class TFBartModel(TFBartPretrainedModel):
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
......@@ -1228,6 +1249,7 @@ class TFBartModel(TFBartPretrainedModel):
decoder_attention_mask=inputs["decoder_attention_mask"],
head_mask=inputs["head_mask"],
decoder_head_mask=inputs["decoder_head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
encoder_outputs=inputs["encoder_outputs"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["inputs_embeds"],
......@@ -1245,6 +1267,7 @@ class TFBartModel(TFBartPretrainedModel):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
......@@ -1253,6 +1276,7 @@ class TFBartModel(TFBartPretrainedModel):
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
......@@ -1309,6 +1333,7 @@ class TFBartForConditionalGeneration(TFBartPretrainedModel, TFCausalLanguageMode
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[TFBaseModelOutput] = None,
past_key_values=None,
inputs_embeds=None,
......@@ -1339,6 +1364,7 @@ class TFBartForConditionalGeneration(TFBartPretrainedModel, TFCausalLanguageMode
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
......@@ -1372,6 +1398,7 @@ class TFBartForConditionalGeneration(TFBartPretrainedModel, TFCausalLanguageMode
decoder_attention_mask=inputs["decoder_attention_mask"],
head_mask=inputs["head_mask"],
decoder_head_mask=inputs["decoder_head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["inputs_embeds"],
decoder_inputs_embeds=inputs["decoder_inputs_embeds"],
......@@ -1394,6 +1421,7 @@ class TFBartForConditionalGeneration(TFBartPretrainedModel, TFCausalLanguageMode
past_key_values=outputs.past_key_values, # index 1 of d outputs
decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
cross_attentions=outputs.cross_attentions, # index 4 of d outputs
encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
encoder_attentions=outputs.encoder_attentions, # 2 of e out
......@@ -1403,6 +1431,7 @@ class TFBartForConditionalGeneration(TFBartPretrainedModel, TFCausalLanguageMode
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
......@@ -1411,6 +1440,7 @@ class TFBartForConditionalGeneration(TFBartPretrainedModel, TFCausalLanguageMode
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
......
......@@ -32,7 +32,7 @@ from ...file_utils import (
)
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFBaseModelOutputWithPast,
TFBaseModelOutputWithPastAndCrossAttentions,
TFSeq2SeqLMOutput,
TFSeq2SeqModelOutput,
)
......@@ -370,7 +370,7 @@ class TFBlenderbotDecoderLayer(tf.keras.layers.Layer):
encoder_hidden_states: Optional[tf.Tensor] = None,
encoder_attention_mask: Optional[tf.Tensor] = None,
layer_head_mask: Optional[tf.Tensor] = None,
encoder_layer_head_mask: Optional[tf.Tensor] = None,
cross_attn_layer_head_mask: Optional[tf.Tensor] = None,
past_key_value: Optional[Tuple[tf.Tensor]] = None,
training=False,
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
......@@ -384,8 +384,8 @@ class TFBlenderbotDecoderLayer(tf.keras.layers.Layer):
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (:obj:`tf.Tensor`): mask for attention heads in a given layer of size
`(decoder_attention_heads,)`
encoder_layer_head_mask (:obj:`tf.Tensor`): mask for encoder attention heads in a given layer of size
`(encoder_attention_heads,)`
cross_attn_layer_head_mask (:obj:`tf.Tensor`): mask for heads of the cross-attention module.
`(decoder_attention_heads,)`
past_key_value (:obj:`Tuple(tf.Tensor)`): cached past key and value projection states
"""
residual = hidden_states
......@@ -406,17 +406,18 @@ class TFBlenderbotDecoderLayer(tf.keras.layers.Layer):
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, _, cross_attn_present_key_value = self.encoder_attn(
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=encoder_layer_head_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
)
hidden_states = self.dropout(hidden_states, training=training)
......@@ -437,6 +438,7 @@ class TFBlenderbotDecoderLayer(tf.keras.layers.Layer):
return (
hidden_states,
self_attn_weights,
cross_attn_weights,
present_key_value,
)
......@@ -569,7 +571,7 @@ BLENDERBOT_INPUTS_DOCSTRING = r"""
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
decoder_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in ``[0, 1]``:
......@@ -577,6 +579,12 @@ BLENDERBOT_INPUTS_DOCSTRING = r"""
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (:obj:`tf.FloatTensor`, `optional`):
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape :obj:`(batch_size, sequence_length, hidden_size)` is a sequence of
......@@ -674,7 +682,7 @@ class TFBlenderbotEncoder(tf.keras.layers.Layer):
Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
inputs_embeds (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded
......@@ -818,7 +826,7 @@ class TFBlenderbotDecoder(tf.keras.layers.Layer):
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
encoder_head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
......@@ -860,14 +868,13 @@ class TFBlenderbotDecoder(tf.keras.layers.Layer):
Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
encoder_head_mask (:obj:`tf.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention
on hidden heads. Mask values selected in ``[0, 1]``:
cross_attn_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
past_key_values (:obj:`Tuple[Tuple[tf.Tensor]]` of length :obj:`config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
......@@ -904,7 +911,7 @@ class TFBlenderbotDecoder(tf.keras.layers.Layer):
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
encoder_head_mask=encoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
......@@ -957,18 +964,20 @@ class TFBlenderbotDecoder(tf.keras.layers.Layer):
hidden_states = self.dropout(hidden_states, training=inputs["training"])
# decoder layers
all_hidden_states = ()
all_self_attns = ()
present_key_values = ()
all_hidden_states = () if inputs["output_hidden_states"] else None
all_self_attns = () if inputs["output_attentions"] else None
all_cross_attns = () if (inputs["output_attentions"] and inputs["encoder_hidden_states"] is not None) else None
present_key_values = () if inputs["use_cache"] else None
# check if head_mask has a correct number of layers specified if desired
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if inputs["head_mask"] is not None and tf.executing_eagerly():
for attn_mask in ["head_mask", "cross_attn_head_mask"]:
if inputs[attn_mask] is not None and tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(inputs["head_mask"])[0],
shape_list(inputs[attn_mask])[0],
len(self.layers),
message=f"The head_mask should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs['head_mask'])[0]}.",
message=f"The {attn_mask} should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs[attn_mask])[0]}.",
)
for idx, decoder_layer in enumerate(self.layers):
......@@ -982,14 +991,14 @@ class TFBlenderbotDecoder(tf.keras.layers.Layer):
past_key_value = inputs["past_key_values"][idx] if inputs["past_key_values"] is not None else None
hidden_states, layer_self_attn, present_key_value = decoder_layer(
hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
encoder_hidden_states=inputs["encoder_hidden_states"],
encoder_attention_mask=inputs["encoder_attention_mask"],
layer_head_mask=inputs["head_mask"][idx] if inputs["head_mask"] is not None else None,
encoder_layer_head_mask=inputs["encoder_head_mask"][idx]
if inputs["encoder_head_mask"] is not None
cross_attn_layer_head_mask=inputs["cross_attn_head_mask"][idx]
if inputs["cross_attn_head_mask"] is not None
else None,
past_key_value=past_key_value,
)
......@@ -1000,25 +1009,32 @@ class TFBlenderbotDecoder(tf.keras.layers.Layer):
if inputs["output_attentions"]:
all_self_attns += (layer_self_attn,)
if inputs["encoder_hidden_states"] is not None:
all_cross_attns += (layer_cross_attn,)
hidden_states = self.layer_norm(hidden_states)
if inputs["output_hidden_states"]:
all_hidden_states += (hidden_states,)
else:
all_hidden_states = None
all_self_attns = list(all_self_attns) if inputs["output_attentions"] else None
if inputs["output_attentions"]:
all_self_attns = list(all_self_attns)
if inputs["encoder_hidden_states"] is not None:
all_cross_attns = list(all_cross_attns)
present_key_values = (encoder_hidden_states, present_key_values) if inputs["use_cache"] else None
if inputs["use_cache"]:
present_key_values = (inputs["encoder_hidden_states"], present_key_values)
if not inputs["return_dict"]:
return hidden_states, present_key_values, all_hidden_states, all_self_attns
return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
else:
return TFBaseModelOutputWithPast(
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attns,
)
......@@ -1065,6 +1081,7 @@ class TFBlenderbotMainLayer(tf.keras.layers.Layer):
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values=None,
inputs_embeds=None,
......@@ -1085,6 +1102,7 @@ class TFBlenderbotMainLayer(tf.keras.layers.Layer):
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
......@@ -1131,7 +1149,7 @@ class TFBlenderbotMainLayer(tf.keras.layers.Layer):
encoder_hidden_states=inputs["encoder_outputs"][0],
encoder_attention_mask=inputs["attention_mask"],
head_mask=inputs["decoder_head_mask"],
encoder_head_mask=inputs["head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["decoder_inputs_embeds"],
use_cache=inputs["use_cache"],
......@@ -1149,6 +1167,7 @@ class TFBlenderbotMainLayer(tf.keras.layers.Layer):
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=inputs["encoder_outputs"].last_hidden_state,
encoder_hidden_states=inputs["encoder_outputs"].hidden_states,
encoder_attentions=inputs["encoder_outputs"].attentions,
......@@ -1199,6 +1218,7 @@ class TFBlenderbotModel(TFBlenderbotPreTrainedModel):
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values=None,
inputs_embeds=None,
......@@ -1219,6 +1239,7 @@ class TFBlenderbotModel(TFBlenderbotPreTrainedModel):
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
......@@ -1238,6 +1259,7 @@ class TFBlenderbotModel(TFBlenderbotPreTrainedModel):
decoder_attention_mask=inputs["decoder_attention_mask"],
head_mask=inputs["head_mask"],
decoder_head_mask=inputs["decoder_head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
encoder_outputs=inputs["encoder_outputs"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["inputs_embeds"],
......@@ -1256,6 +1278,7 @@ class TFBlenderbotModel(TFBlenderbotPreTrainedModel):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
......@@ -1264,6 +1287,7 @@ class TFBlenderbotModel(TFBlenderbotPreTrainedModel):
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
......@@ -1331,6 +1355,7 @@ class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausal
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[TFBaseModelOutput] = None,
past_key_values=None,
inputs_embeds=None,
......@@ -1361,6 +1386,7 @@ class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausal
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
......@@ -1394,6 +1420,7 @@ class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausal
decoder_attention_mask=inputs["decoder_attention_mask"],
head_mask=inputs["head_mask"],
decoder_head_mask=inputs["decoder_head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["inputs_embeds"],
decoder_inputs_embeds=inputs["decoder_inputs_embeds"],
......@@ -1416,6 +1443,7 @@ class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausal
past_key_values=outputs.past_key_values, # index 1 of d outputs
decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
cross_attentions=outputs.cross_attentions, # index 4 of d outputs
encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
encoder_attentions=outputs.encoder_attentions, # 2 of e out
......@@ -1426,6 +1454,7 @@ class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausal
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
......@@ -1434,6 +1463,7 @@ class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausal
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
......
......@@ -30,7 +30,7 @@ from ...file_utils import (
)
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFBaseModelOutputWithPast,
TFBaseModelOutputWithPastAndCrossAttentions,
TFSeq2SeqLMOutput,
TFSeq2SeqModelOutput,
)
......@@ -369,7 +369,7 @@ class TFBlenderbotSmallDecoderLayer(tf.keras.layers.Layer):
encoder_hidden_states: Optional[tf.Tensor] = None,
encoder_attention_mask: Optional[tf.Tensor] = None,
layer_head_mask: Optional[tf.Tensor] = None,
encoder_layer_head_mask: Optional[tf.Tensor] = None,
cross_attn_layer_head_mask: Optional[tf.Tensor] = None,
past_key_value: Optional[Tuple[tf.Tensor]] = None,
training=False,
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
......@@ -383,8 +383,8 @@ class TFBlenderbotSmallDecoderLayer(tf.keras.layers.Layer):
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (:obj:`tf.Tensor`): mask for attention heads in a given layer of size
`(decoder_attention_heads,)`
encoder_layer_head_mask (:obj:`tf.Tensor`): mask for encoder attention heads in a given layer of size
`(encoder_attention_heads,)`
cross_attn_layer_head_mask (:obj:`tf.Tensor`): mask for heads of the cross-attention module.
`(decoder_attention_heads,)`
past_key_value (:obj:`Tuple(tf.Tensor)`): cached past key and value projection states
"""
residual = hidden_states
......@@ -405,16 +405,17 @@ class TFBlenderbotSmallDecoderLayer(tf.keras.layers.Layer):
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, _, cross_attn_present_key_value = self.encoder_attn(
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=encoder_layer_head_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
)
hidden_states = self.dropout(hidden_states, training=training)
......@@ -436,6 +437,7 @@ class TFBlenderbotSmallDecoderLayer(tf.keras.layers.Layer):
return (
hidden_states,
self_attn_weights,
cross_attn_weights,
present_key_value,
)
......@@ -574,7 +576,7 @@ BLENDERBOT_SMALL_INPUTS_DOCSTRING = r"""
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
decoder_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in ``[0, 1]``:
......@@ -582,6 +584,12 @@ BLENDERBOT_SMALL_INPUTS_DOCSTRING = r"""
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (:obj:`tf.FloatTensor`, `optional`):
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape :obj:`(batch_size, sequence_length, hidden_size)` is a sequence of
......@@ -679,7 +687,7 @@ class TFBlenderbotSmallEncoder(tf.keras.layers.Layer):
Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
inputs_embeds (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded
......@@ -823,7 +831,7 @@ class TFBlenderbotSmallDecoder(tf.keras.layers.Layer):
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
encoder_head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
......@@ -865,14 +873,13 @@ class TFBlenderbotSmallDecoder(tf.keras.layers.Layer):
Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
encoder_head_mask (:obj:`tf.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention
on hidden heads. Mask values selected in ``[0, 1]``:
cross_attn_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
past_key_values (:obj:`Tuple[Tuple[tf.Tensor]]` of length :obj:`config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
......@@ -909,7 +916,7 @@ class TFBlenderbotSmallDecoder(tf.keras.layers.Layer):
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
encoder_head_mask=encoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
......@@ -960,18 +967,20 @@ class TFBlenderbotSmallDecoder(tf.keras.layers.Layer):
hidden_states = self.dropout(hidden_states, training=inputs["training"])
# decoder layers
all_hidden_states = ()
all_self_attns = ()
present_key_values = ()
all_hidden_states = () if inputs["output_hidden_states"] else None
all_self_attns = () if inputs["output_attentions"] else None
all_cross_attns = () if (inputs["output_attentions"] and inputs["encoder_hidden_states"] is not None) else None
present_key_values = () if inputs["use_cache"] else None
# check if head_mask has a correct number of layers specified if desired
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if inputs["head_mask"] is not None and tf.executing_eagerly():
for attn_mask in ["head_mask", "cross_attn_head_mask"]:
if inputs[attn_mask] is not None and tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(inputs["head_mask"])[0],
shape_list(inputs[attn_mask])[0],
len(self.layers),
message=f"The head_mask should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs['head_mask'])[0]}.",
message=f"The {attn_mask} should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs[attn_mask])[0]}.",
)
for idx, decoder_layer in enumerate(self.layers):
......@@ -985,14 +994,14 @@ class TFBlenderbotSmallDecoder(tf.keras.layers.Layer):
past_key_value = inputs["past_key_values"][idx] if inputs["past_key_values"] is not None else None
hidden_states, layer_self_attn, present_key_value = decoder_layer(
hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
encoder_hidden_states=inputs["encoder_hidden_states"],
encoder_attention_mask=inputs["encoder_attention_mask"],
layer_head_mask=inputs["head_mask"][idx] if inputs["head_mask"] is not None else None,
encoder_layer_head_mask=inputs["encoder_head_mask"][idx]
if inputs["encoder_head_mask"] is not None
cross_attn_layer_head_mask=inputs["cross_attn_head_mask"][idx]
if inputs["cross_attn_head_mask"] is not None
else None,
past_key_value=past_key_value,
)
......@@ -1003,23 +1012,30 @@ class TFBlenderbotSmallDecoder(tf.keras.layers.Layer):
if inputs["output_attentions"]:
all_self_attns += (layer_self_attn,)
if inputs["encoder_hidden_states"] is not None:
all_cross_attns += (layer_cross_attn,)
if inputs["output_hidden_states"]:
all_hidden_states += (hidden_states,)
else:
all_hidden_states = None
all_self_attns = list(all_self_attns) if inputs["output_attentions"] else None
if inputs["output_attentions"]:
all_self_attns = list(all_self_attns)
if inputs["encoder_hidden_states"] is not None:
all_cross_attns = list(all_cross_attns)
present_key_values = (encoder_hidden_states, present_key_values) if inputs["use_cache"] else None
if inputs["use_cache"]:
present_key_values = (inputs["encoder_hidden_states"], present_key_values)
if not inputs["return_dict"]:
return hidden_states, present_key_values, all_hidden_states, all_self_attns
return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
else:
return TFBaseModelOutputWithPast(
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attns,
)
......@@ -1066,6 +1082,7 @@ class TFBlenderbotSmallMainLayer(tf.keras.layers.Layer):
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values=None,
inputs_embeds=None,
......@@ -1086,6 +1103,7 @@ class TFBlenderbotSmallMainLayer(tf.keras.layers.Layer):
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
......@@ -1132,7 +1150,7 @@ class TFBlenderbotSmallMainLayer(tf.keras.layers.Layer):
encoder_hidden_states=inputs["encoder_outputs"][0],
encoder_attention_mask=inputs["attention_mask"],
head_mask=inputs["decoder_head_mask"],
encoder_head_mask=inputs["head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["decoder_inputs_embeds"],
use_cache=inputs["use_cache"],
......@@ -1150,6 +1168,7 @@ class TFBlenderbotSmallMainLayer(tf.keras.layers.Layer):
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=inputs["encoder_outputs"].last_hidden_state,
encoder_hidden_states=inputs["encoder_outputs"].hidden_states,
encoder_attentions=inputs["encoder_outputs"].attentions,
......@@ -1187,6 +1206,7 @@ class TFBlenderbotSmallModel(TFBlenderbotSmallPreTrainedModel):
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values=None,
inputs_embeds=None,
......@@ -1207,6 +1227,7 @@ class TFBlenderbotSmallModel(TFBlenderbotSmallPreTrainedModel):
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
......@@ -1226,6 +1247,7 @@ class TFBlenderbotSmallModel(TFBlenderbotSmallPreTrainedModel):
decoder_attention_mask=inputs["decoder_attention_mask"],
head_mask=inputs["head_mask"],
decoder_head_mask=inputs["decoder_head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
encoder_outputs=inputs["encoder_outputs"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["inputs_embeds"],
......@@ -1244,6 +1266,7 @@ class TFBlenderbotSmallModel(TFBlenderbotSmallPreTrainedModel):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
......@@ -1252,6 +1275,7 @@ class TFBlenderbotSmallModel(TFBlenderbotSmallPreTrainedModel):
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
......@@ -1306,6 +1330,7 @@ class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[TFBaseModelOutput] = None,
past_key_values=None,
inputs_embeds=None,
......@@ -1336,6 +1361,7 @@ class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
......@@ -1369,6 +1395,7 @@ class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel
decoder_attention_mask=inputs["decoder_attention_mask"],
head_mask=inputs["head_mask"],
decoder_head_mask=inputs["decoder_head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["inputs_embeds"],
decoder_inputs_embeds=inputs["decoder_inputs_embeds"],
......@@ -1391,6 +1418,7 @@ class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel
past_key_values=outputs.past_key_values, # index 1 of d outputs
decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
cross_attentions=outputs.cross_attentions, # index 4 of d outputs
encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
encoder_attentions=outputs.encoder_attentions, # 2 of e out
......@@ -1401,6 +1429,7 @@ class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
......@@ -1409,6 +1438,7 @@ class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
......
......@@ -31,7 +31,7 @@ from ...file_utils import (
)
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFBaseModelOutputWithPast,
TFBaseModelOutputWithPastAndCrossAttentions,
TFSeq2SeqLMOutput,
TFSeq2SeqModelOutput,
)
......@@ -408,7 +408,7 @@ class TFMarianDecoderLayer(tf.keras.layers.Layer):
encoder_hidden_states: Optional[tf.Tensor] = None,
encoder_attention_mask: Optional[tf.Tensor] = None,
layer_head_mask: Optional[tf.Tensor] = None,
encoder_layer_head_mask: Optional[tf.Tensor] = None,
cross_attn_layer_head_mask: Optional[tf.Tensor] = None,
past_key_value: Optional[Tuple[tf.Tensor]] = None,
training=False,
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
......@@ -422,8 +422,8 @@ class TFMarianDecoderLayer(tf.keras.layers.Layer):
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (:obj:`tf.Tensor`): mask for attention heads in a given layer of size
`(decoder_attention_heads,)`
encoder_layer_head_mask (:obj:`tf.Tensor`): mask for encoder attention heads in a given layer of size
`(encoder_attention_heads,)`
cross_attn_layer_head_mask (:obj:`tf.Tensor`): mask for heads of the cross-attention module.
`(decoder_attention_heads,)`
past_key_value (:obj:`Tuple(tf.Tensor)`): cached past key and value projection states
"""
residual = hidden_states
......@@ -444,16 +444,17 @@ class TFMarianDecoderLayer(tf.keras.layers.Layer):
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, _, cross_attn_present_key_value = self.encoder_attn(
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=encoder_layer_head_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
)
hidden_states = self.dropout(hidden_states, training=training)
......@@ -475,6 +476,7 @@ class TFMarianDecoderLayer(tf.keras.layers.Layer):
return (
hidden_states,
self_attn_weights,
cross_attn_weights,
present_key_value,
)
......@@ -603,7 +605,7 @@ MARIAN_INPUTS_DOCSTRING = r"""
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
decoder_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in ``[0, 1]``:
......@@ -611,6 +613,12 @@ MARIAN_INPUTS_DOCSTRING = r"""
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (:obj:`tf.FloatTensor`, `optional`):
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape :obj:`(batch_size, sequence_length, hidden_size)` is a sequence of
......@@ -707,7 +715,7 @@ class TFMarianEncoder(tf.keras.layers.Layer):
Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
inputs_embeds (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded
......@@ -848,7 +856,7 @@ class TFMarianDecoder(tf.keras.layers.Layer):
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
encoder_head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
......@@ -890,14 +898,13 @@ class TFMarianDecoder(tf.keras.layers.Layer):
Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
encoder_head_mask (:obj:`tf.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention
on hidden heads. Mask values selected in ``[0, 1]``:
cross_attn_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
past_key_values (:obj:`Tuple[Tuple[tf.Tensor]]` of length :obj:`config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
......@@ -934,7 +941,7 @@ class TFMarianDecoder(tf.keras.layers.Layer):
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
encoder_head_mask=encoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
......@@ -986,18 +993,20 @@ class TFMarianDecoder(tf.keras.layers.Layer):
hidden_states = self.dropout(hidden_states + positions, training=inputs["training"])
# decoder layers
all_hidden_states = ()
all_self_attns = ()
present_key_values = ()
all_hidden_states = () if inputs["output_hidden_states"] else None
all_self_attns = () if inputs["output_attentions"] else None
all_cross_attns = () if (inputs["output_attentions"] and inputs["encoder_hidden_states"] is not None) else None
present_key_values = () if inputs["use_cache"] else None
# check if head_mask has a correct number of layers specified if desired
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if inputs["head_mask"] is not None and tf.executing_eagerly():
for attn_mask in ["head_mask", "cross_attn_head_mask"]:
if inputs[attn_mask] is not None and tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(inputs["head_mask"])[0],
shape_list(inputs[attn_mask])[0],
len(self.layers),
message=f"The head_mask should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs['head_mask'])[0]}.",
message=f"The {attn_mask} should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs[attn_mask])[0]}.",
)
for idx, decoder_layer in enumerate(self.layers):
......@@ -1011,14 +1020,14 @@ class TFMarianDecoder(tf.keras.layers.Layer):
past_key_value = inputs["past_key_values"][idx] if inputs["past_key_values"] is not None else None
hidden_states, layer_self_attn, present_key_value = decoder_layer(
hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
encoder_hidden_states=inputs["encoder_hidden_states"],
encoder_attention_mask=inputs["encoder_attention_mask"],
layer_head_mask=inputs["head_mask"][idx] if inputs["head_mask"] is not None else None,
encoder_layer_head_mask=inputs["encoder_head_mask"][idx]
if inputs["encoder_head_mask"] is not None
cross_attn_layer_head_mask=inputs["cross_attn_head_mask"][idx]
if inputs["cross_attn_head_mask"] is not None
else None,
past_key_value=past_key_value,
)
......@@ -1029,23 +1038,30 @@ class TFMarianDecoder(tf.keras.layers.Layer):
if inputs["output_attentions"]:
all_self_attns += (layer_self_attn,)
if inputs["encoder_hidden_states"] is not None:
all_cross_attns += (layer_cross_attn,)
if inputs["output_hidden_states"]:
all_hidden_states += (hidden_states,)
else:
all_hidden_states = None
all_self_attns = list(all_self_attns) if inputs["output_attentions"] else None
if inputs["output_attentions"]:
all_self_attns = list(all_self_attns)
if inputs["encoder_hidden_states"] is not None:
all_cross_attns = list(all_cross_attns)
present_key_values = (encoder_hidden_states, present_key_values) if inputs["use_cache"] else None
if inputs["use_cache"]:
present_key_values = (inputs["encoder_hidden_states"], present_key_values)
if not inputs["return_dict"]:
return hidden_states, present_key_values, all_hidden_states, all_self_attns
return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
else:
return TFBaseModelOutputWithPast(
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attns,
)
......@@ -1092,6 +1108,7 @@ class TFMarianMainLayer(tf.keras.layers.Layer):
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values=None,
inputs_embeds=None,
......@@ -1112,6 +1129,7 @@ class TFMarianMainLayer(tf.keras.layers.Layer):
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
......@@ -1161,7 +1179,7 @@ class TFMarianMainLayer(tf.keras.layers.Layer):
encoder_hidden_states=inputs["encoder_outputs"][0],
encoder_attention_mask=inputs["attention_mask"],
head_mask=inputs["decoder_head_mask"],
encoder_head_mask=inputs["head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["decoder_inputs_embeds"],
use_cache=inputs["use_cache"],
......@@ -1179,6 +1197,7 @@ class TFMarianMainLayer(tf.keras.layers.Layer):
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=inputs["encoder_outputs"].last_hidden_state,
encoder_hidden_states=inputs["encoder_outputs"].hidden_states,
encoder_attentions=inputs["encoder_outputs"].attentions,
......@@ -1216,6 +1235,7 @@ class TFMarianModel(TFMarianPreTrainedModel):
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values=None,
inputs_embeds=None,
......@@ -1235,6 +1255,7 @@ class TFMarianModel(TFMarianPreTrainedModel):
decoder_input_ids=decoder_input_ids,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
......@@ -1255,6 +1276,7 @@ class TFMarianModel(TFMarianPreTrainedModel):
decoder_attention_mask=inputs["decoder_attention_mask"],
head_mask=inputs["head_mask"],
decoder_head_mask=inputs["decoder_head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
encoder_outputs=inputs["encoder_outputs"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["inputs_embeds"],
......@@ -1273,6 +1295,7 @@ class TFMarianModel(TFMarianPreTrainedModel):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
......@@ -1281,6 +1304,7 @@ class TFMarianModel(TFMarianPreTrainedModel):
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
......@@ -1335,6 +1359,7 @@ class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss):
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[TFBaseModelOutput] = None,
past_key_values=None,
inputs_embeds=None,
......@@ -1365,6 +1390,7 @@ class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss):
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
......@@ -1398,6 +1424,7 @@ class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss):
decoder_attention_mask=inputs["decoder_attention_mask"],
head_mask=inputs["head_mask"],
decoder_head_mask=inputs["decoder_head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["inputs_embeds"],
decoder_inputs_embeds=inputs["decoder_inputs_embeds"],
......@@ -1420,6 +1447,7 @@ class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss):
past_key_values=outputs.past_key_values, # index 1 of d outputs
decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
cross_attentions=outputs.cross_attentions, # index 4 of d outputs
encoder_last_hidden_state=outputs.last_hidden_state, # index 0 of encoder outputs
encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
encoder_attentions=outputs.encoder_attentions, # 2 of e out
......@@ -1430,6 +1458,7 @@ class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
......@@ -1438,6 +1467,7 @@ class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss):
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
......
......@@ -30,7 +30,7 @@ from ...file_utils import (
)
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFBaseModelOutputWithPast,
TFBaseModelOutputWithPastAndCrossAttentions,
TFSeq2SeqLMOutput,
TFSeq2SeqModelOutput,
)
......@@ -368,7 +368,7 @@ class TFMBartDecoderLayer(tf.keras.layers.Layer):
encoder_hidden_states: Optional[tf.Tensor] = None,
encoder_attention_mask: Optional[tf.Tensor] = None,
layer_head_mask: Optional[tf.Tensor] = None,
encoder_layer_head_mask: Optional[tf.Tensor] = None,
cross_attn_layer_head_mask: Optional[tf.Tensor] = None,
past_key_value: Optional[Tuple[tf.Tensor]] = None,
training=False,
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
......@@ -382,8 +382,8 @@ class TFMBartDecoderLayer(tf.keras.layers.Layer):
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (:obj:`tf.Tensor`): mask for attention heads in a given layer of size
`(decoder_attention_heads,)`
encoder_layer_head_mask (:obj:`tf.Tensor`): mask for encoder attention heads in a given layer of size
`(encoder_attention_heads,)`
cross_attn_layer_head_mask (:obj:`tf.Tensor`): mask for heads of the cross-attention module.
`(decoder_attention_heads,)`
past_key_value (:obj:`Tuple(tf.Tensor)`): cached past key and value projection states
"""
residual = hidden_states
......@@ -404,17 +404,18 @@ class TFMBartDecoderLayer(tf.keras.layers.Layer):
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, _, cross_attn_present_key_value = self.encoder_attn(
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=encoder_layer_head_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
)
hidden_states = self.dropout(hidden_states, training=training)
......@@ -435,6 +436,7 @@ class TFMBartDecoderLayer(tf.keras.layers.Layer):
return (
hidden_states,
self_attn_weights,
cross_attn_weights,
present_key_value,
)
......@@ -547,7 +549,7 @@ MBART_INPUTS_DOCSTRING = r"""
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
decoder_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in ``[0, 1]``:
......@@ -555,6 +557,12 @@ MBART_INPUTS_DOCSTRING = r"""
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (:obj:`tf.FloatTensor`, `optional`):
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape :obj:`(batch_size, sequence_length, hidden_size)` is a sequence of
......@@ -828,7 +836,7 @@ class TFMBartDecoder(tf.keras.layers.Layer):
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
encoder_head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
......@@ -870,14 +878,13 @@ class TFMBartDecoder(tf.keras.layers.Layer):
Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
encoder_head_mask (:obj:`tf.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention
on hidden heads. Mask values selected in ``[0, 1]``:
cross_attn_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
past_key_values (:obj:`Tuple[Tuple[tf.Tensor]]` of length :obj:`config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
......@@ -914,7 +921,7 @@ class TFMBartDecoder(tf.keras.layers.Layer):
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
encoder_head_mask=encoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
......@@ -967,18 +974,20 @@ class TFMBartDecoder(tf.keras.layers.Layer):
hidden_states = self.dropout(hidden_states, training=inputs["training"])
# decoder layers
all_hidden_states = ()
all_self_attns = ()
present_key_values = ()
all_hidden_states = () if inputs["output_hidden_states"] else None
all_self_attns = () if inputs["output_attentions"] else None
all_cross_attns = () if (inputs["output_attentions"] and inputs["encoder_hidden_states"] is not None) else None
present_key_values = () if inputs["use_cache"] else None
# check if head_mask has a correct number of layers specified if desired
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if inputs["head_mask"] is not None and tf.executing_eagerly():
for attn_mask in ["head_mask", "cross_attn_head_mask"]:
if inputs[attn_mask] is not None and tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(inputs["head_mask"])[0],
shape_list(inputs[attn_mask])[0],
len(self.layers),
message=f"The head_mask should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs['head_mask'])[0]}.",
message=f"The {attn_mask} should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs[attn_mask])[0]}.",
)
for idx, decoder_layer in enumerate(self.layers):
......@@ -992,14 +1001,14 @@ class TFMBartDecoder(tf.keras.layers.Layer):
past_key_value = inputs["past_key_values"][idx] if inputs["past_key_values"] is not None else None
hidden_states, layer_self_attn, present_key_value = decoder_layer(
hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
encoder_hidden_states=inputs["encoder_hidden_states"],
encoder_attention_mask=inputs["encoder_attention_mask"],
layer_head_mask=inputs["head_mask"][idx] if inputs["head_mask"] is not None else None,
encoder_layer_head_mask=inputs["encoder_head_mask"][idx]
if inputs["encoder_head_mask"] is not None
cross_attn_layer_head_mask=inputs["cross_attn_head_mask"][idx]
if inputs["cross_attn_head_mask"] is not None
else None,
past_key_value=past_key_value,
)
......@@ -1010,25 +1019,32 @@ class TFMBartDecoder(tf.keras.layers.Layer):
if inputs["output_attentions"]:
all_self_attns += (layer_self_attn,)
if inputs["encoder_hidden_states"] is not None:
all_cross_attns += (layer_cross_attn,)
hidden_states = self.layer_norm(hidden_states)
if inputs["output_hidden_states"]:
all_hidden_states += (hidden_states,)
else:
all_hidden_states = None
all_self_attns = list(all_self_attns) if inputs["output_attentions"] else None
if inputs["output_attentions"]:
all_self_attns = list(all_self_attns)
present_key_values = (encoder_hidden_states, present_key_values) if inputs["use_cache"] else None
if inputs["encoder_hidden_states"] is not None:
all_cross_attns = list(all_cross_attns)
if inputs["use_cache"]:
present_key_values = (inputs["encoder_hidden_states"], present_key_values)
if not inputs["return_dict"]:
return hidden_states, present_key_values, all_hidden_states, all_self_attns
return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
else:
return TFBaseModelOutputWithPast(
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attns,
)
......@@ -1075,6 +1091,7 @@ class TFMBartMainLayer(tf.keras.layers.Layer):
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values=None,
inputs_embeds=None,
......@@ -1095,6 +1112,7 @@ class TFMBartMainLayer(tf.keras.layers.Layer):
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
......@@ -1147,7 +1165,7 @@ class TFMBartMainLayer(tf.keras.layers.Layer):
encoder_hidden_states=inputs["encoder_outputs"][0],
encoder_attention_mask=inputs["attention_mask"],
head_mask=inputs["decoder_head_mask"],
encoder_head_mask=inputs["head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["decoder_inputs_embeds"],
use_cache=inputs["use_cache"],
......@@ -1165,6 +1183,7 @@ class TFMBartMainLayer(tf.keras.layers.Layer):
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=inputs["encoder_outputs"].last_hidden_state,
encoder_hidden_states=inputs["encoder_outputs"].hidden_states,
encoder_attentions=inputs["encoder_outputs"].attentions,
......@@ -1202,6 +1221,7 @@ class TFMBartModel(TFMBartPreTrainedModel):
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values=None,
inputs_embeds=None,
......@@ -1222,6 +1242,7 @@ class TFMBartModel(TFMBartPreTrainedModel):
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
......@@ -1241,6 +1262,7 @@ class TFMBartModel(TFMBartPreTrainedModel):
decoder_attention_mask=inputs["decoder_attention_mask"],
head_mask=inputs["head_mask"],
decoder_head_mask=inputs["decoder_head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
encoder_outputs=inputs["encoder_outputs"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["inputs_embeds"],
......@@ -1259,6 +1281,7 @@ class TFMBartModel(TFMBartPreTrainedModel):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
......@@ -1267,6 +1290,7 @@ class TFMBartModel(TFMBartPreTrainedModel):
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
......@@ -1321,6 +1345,7 @@ class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageMo
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[TFBaseModelOutput] = None,
past_key_values=None,
inputs_embeds=None,
......@@ -1351,6 +1376,7 @@ class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageMo
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
......@@ -1382,6 +1408,7 @@ class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageMo
decoder_attention_mask=inputs["decoder_attention_mask"],
head_mask=inputs["head_mask"],
decoder_head_mask=inputs["decoder_head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["inputs_embeds"],
decoder_inputs_embeds=inputs["decoder_inputs_embeds"],
......@@ -1404,6 +1431,7 @@ class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageMo
past_key_values=outputs.past_key_values, # index 1 of d outputs
decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
cross_attentions=outputs.cross_attentions, # index 4 of d outputs
encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
encoder_attentions=outputs.encoder_attentions, # 2 of e out
......@@ -1414,6 +1442,7 @@ class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageMo
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
......@@ -1422,6 +1451,7 @@ class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageMo
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
......
......@@ -31,7 +31,7 @@ from ...file_utils import (
)
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFBaseModelOutputWithPast,
TFBaseModelOutputWithPastAndCrossAttentions,
TFSeq2SeqLMOutput,
TFSeq2SeqModelOutput,
)
......@@ -409,7 +409,7 @@ class TFPegasusDecoderLayer(tf.keras.layers.Layer):
encoder_hidden_states: Optional[tf.Tensor] = None,
encoder_attention_mask: Optional[tf.Tensor] = None,
layer_head_mask: Optional[tf.Tensor] = None,
encoder_layer_head_mask: Optional[tf.Tensor] = None,
cross_attn_layer_head_mask: Optional[tf.Tensor] = None,
past_key_value: Optional[Tuple[tf.Tensor]] = None,
training=False,
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
......@@ -423,8 +423,8 @@ class TFPegasusDecoderLayer(tf.keras.layers.Layer):
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (:obj:`tf.Tensor`): mask for attention heads in a given layer of size
`(decoder_attention_heads,)`
encoder_layer_head_mask (:obj:`tf.Tensor`): mask for encoder attention heads in a given layer of size
`(encoder_attention_heads,)`
cross_attn_layer_head_mask (:obj:`tf.Tensor`): mask for heads of the cross-attention module.
`(decoder_attention_heads,)`
past_key_value (:obj:`Tuple(tf.Tensor)`): cached past key and value projection states
"""
residual = hidden_states
......@@ -445,17 +445,18 @@ class TFPegasusDecoderLayer(tf.keras.layers.Layer):
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, _, cross_attn_present_key_value = self.encoder_attn(
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=encoder_layer_head_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
)
hidden_states = self.dropout(hidden_states, training=training)
......@@ -476,6 +477,7 @@ class TFPegasusDecoderLayer(tf.keras.layers.Layer):
return (
hidden_states,
self_attn_weights,
cross_attn_weights,
present_key_value,
)
......@@ -603,7 +605,7 @@ PEGASUS_INPUTS_DOCSTRING = r"""
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
decoder_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in ``[0, 1]``:
......@@ -611,6 +613,12 @@ PEGASUS_INPUTS_DOCSTRING = r"""
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (:obj:`tf.FloatTensor`, `optional`):
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape :obj:`(batch_size, sequence_length, hidden_size)` is a sequence of
......@@ -855,7 +863,7 @@ class TFPegasusDecoder(tf.keras.layers.Layer):
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
encoder_head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
......@@ -897,14 +905,13 @@ class TFPegasusDecoder(tf.keras.layers.Layer):
Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
encoder_head_mask (:obj:`tf.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention
on hidden heads. Mask values selected in ``[0, 1]``:
cross_attn_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the heas is **masked**.
- 0 indicates the head is **masked**.
past_key_values (:obj:`Tuple[Tuple[tf.Tensor]]` of length :obj:`config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
......@@ -941,7 +948,7 @@ class TFPegasusDecoder(tf.keras.layers.Layer):
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
encoder_head_mask=encoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
......@@ -993,18 +1000,20 @@ class TFPegasusDecoder(tf.keras.layers.Layer):
hidden_states = self.dropout(hidden_states + positions, training=inputs["training"])
# decoder layers
all_hidden_states = ()
all_self_attns = ()
present_key_values = ()
all_hidden_states = () if inputs["output_hidden_states"] else None
all_self_attns = () if inputs["output_attentions"] else None
all_cross_attns = () if (inputs["output_attentions"] and inputs["encoder_hidden_states"] is not None) else None
present_key_values = () if inputs["use_cache"] else None
# check if head_mask has a correct number of layers specified if desired
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if inputs["head_mask"] is not None and tf.executing_eagerly():
for attn_mask in ["head_mask", "cross_attn_head_mask"]:
if inputs[attn_mask] is not None and tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(inputs["head_mask"])[0],
shape_list(inputs[attn_mask])[0],
len(self.layers),
message=f"The head_mask should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs['head_mask'])[0]}.",
message=f"The {attn_mask} should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs[attn_mask])[0]}.",
)
for idx, decoder_layer in enumerate(self.layers):
......@@ -1018,14 +1027,14 @@ class TFPegasusDecoder(tf.keras.layers.Layer):
past_key_value = inputs["past_key_values"][idx] if inputs["past_key_values"] is not None else None
hidden_states, layer_self_attn, present_key_value = decoder_layer(
hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
encoder_hidden_states=inputs["encoder_hidden_states"],
encoder_attention_mask=inputs["encoder_attention_mask"],
layer_head_mask=inputs["head_mask"][idx] if inputs["head_mask"] is not None else None,
encoder_layer_head_mask=inputs["encoder_head_mask"][idx]
if inputs["encoder_head_mask"] is not None
cross_attn_layer_head_mask=inputs["cross_attn_head_mask"][idx]
if inputs["cross_attn_head_mask"] is not None
else None,
past_key_value=past_key_value,
)
......@@ -1036,25 +1045,32 @@ class TFPegasusDecoder(tf.keras.layers.Layer):
if inputs["output_attentions"]:
all_self_attns += (layer_self_attn,)
if inputs["encoder_hidden_states"] is not None:
all_cross_attns += (layer_cross_attn,)
hidden_states = self.layer_norm(hidden_states)
if inputs["output_hidden_states"]:
all_hidden_states += (hidden_states,)
else:
all_hidden_states = None
all_self_attns = list(all_self_attns) if inputs["output_attentions"] else None
if inputs["output_attentions"]:
all_self_attns = list(all_self_attns)
present_key_values = (encoder_hidden_states, present_key_values) if inputs["use_cache"] else None
if inputs["encoder_hidden_states"] is not None:
all_cross_attns = list(all_cross_attns)
if inputs["use_cache"]:
present_key_values = (inputs["encoder_hidden_states"], present_key_values)
if not inputs["return_dict"]:
return hidden_states, present_key_values, all_hidden_states, all_self_attns
return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
else:
return TFBaseModelOutputWithPast(
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attns,
)
......@@ -1101,6 +1117,7 @@ class TFPegasusMainLayer(tf.keras.layers.Layer):
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values=None,
inputs_embeds=None,
......@@ -1121,6 +1138,7 @@ class TFPegasusMainLayer(tf.keras.layers.Layer):
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
......@@ -1170,7 +1188,7 @@ class TFPegasusMainLayer(tf.keras.layers.Layer):
encoder_hidden_states=inputs["encoder_outputs"][0],
encoder_attention_mask=inputs["attention_mask"],
head_mask=inputs["decoder_head_mask"],
encoder_head_mask=inputs["head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["decoder_inputs_embeds"],
use_cache=inputs["use_cache"],
......@@ -1188,6 +1206,7 @@ class TFPegasusMainLayer(tf.keras.layers.Layer):
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=inputs["encoder_outputs"].last_hidden_state,
encoder_hidden_states=inputs["encoder_outputs"].hidden_states,
encoder_attentions=inputs["encoder_outputs"].attentions,
......@@ -1225,6 +1244,7 @@ class TFPegasusModel(TFPegasusPreTrainedModel):
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values=None,
inputs_embeds=None,
......@@ -1245,6 +1265,7 @@ class TFPegasusModel(TFPegasusPreTrainedModel):
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
......@@ -1264,6 +1285,7 @@ class TFPegasusModel(TFPegasusPreTrainedModel):
decoder_attention_mask=inputs["decoder_attention_mask"],
head_mask=inputs["head_mask"],
decoder_head_mask=inputs["decoder_head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
encoder_outputs=inputs["encoder_outputs"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["inputs_embeds"],
......@@ -1282,6 +1304,7 @@ class TFPegasusModel(TFPegasusPreTrainedModel):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
......@@ -1290,6 +1313,7 @@ class TFPegasusModel(TFPegasusPreTrainedModel):
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
......@@ -1344,6 +1368,7 @@ class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel, TFCausalLangua
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[TFBaseModelOutput] = None,
past_key_values=None,
inputs_embeds=None,
......@@ -1374,6 +1399,7 @@ class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel, TFCausalLangua
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
......@@ -1407,6 +1433,7 @@ class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel, TFCausalLangua
decoder_attention_mask=inputs["decoder_attention_mask"],
head_mask=inputs["head_mask"],
decoder_head_mask=inputs["decoder_head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["inputs_embeds"],
decoder_inputs_embeds=inputs["decoder_inputs_embeds"],
......@@ -1429,6 +1456,7 @@ class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel, TFCausalLangua
past_key_values=outputs.past_key_values, # index 1 of d outputs
decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
cross_attentions=outputs.cross_attentions, # index 4 of d outputs
encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
encoder_attentions=outputs.encoder_attentions, # 2 of e out
......@@ -1439,6 +1467,7 @@ class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel, TFCausalLangua
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
......@@ -1447,6 +1476,7 @@ class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel, TFCausalLangua
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
......
......@@ -147,7 +147,6 @@ class TF{{cookiecutter.camelcase_modelname}}Embeddings(tf.keras.layers.Layer):
return final_embeddings
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->{{cookiecutter.camelcase_modelname}}
class TF{{cookiecutter.camelcase_modelname}}SelfAttention(tf.keras.layers.Layer):
def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs):
......@@ -352,6 +351,7 @@ class TF{{cookiecutter.camelcase_modelname}}Layer(tf.keras.layers.Layer):
return outputs
# Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->{{cookiecutter.camelcase_modelname}}
class TF{{cookiecutter.camelcase_modelname}}Encoder(tf.keras.layers.Layer):
def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs):
......@@ -625,7 +625,6 @@ class TF{{cookiecutter.camelcase_modelname}}PreTrainedModel(TFPreTrainedModel):
base_model_prefix = "{{cookiecutter.lowercase_modelname}}"
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING = r"""
This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the
......@@ -885,6 +884,7 @@ class TF{{cookiecutter.camelcase_modelname}}ForMaskedLM(TF{{cookiecutter.camelca
return TFMaskedLMOutput(logits=output.logits, hidden_states=hs, attentions=attns)
@add_start_docstrings(
"""{{cookiecutter.modelname}} Model with a `language modeling` head on top for CLM fine-tuning. """, {{cookiecutter.uppercase_modelname}}_START_DOCSTRING
)
......@@ -1728,16 +1728,18 @@ class TF{{cookiecutter.camelcase_modelname}}EncoderLayer(tf.keras.layers.Layer):
self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
def call(self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, training=False):
def call(self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training=False):
"""
Args:
hidden_states (:obj:`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (:obj:`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (:obj:`tf.Tensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`
"""
residual = hidden_states
hidden_states, self_attn_weights, _ = self.self_attn(
hidden_states=hidden_states, attention_mask=attention_mask
hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
)
# The tf.debugging asserts are not compliant with XLA then they
......@@ -1798,6 +1800,8 @@ class TF{{cookiecutter.camelcase_modelname}}DecoderLayer(tf.keras.layers.Layer):
attention_mask: Optional[tf.Tensor] = None,
encoder_hidden_states: Optional[tf.Tensor] = None,
encoder_attention_mask: Optional[tf.Tensor] = None,
layer_head_mask: Optional[tf.Tensor] = None,
cross_attn_layer_head_mask: Optional[tf.Tensor] = None,
past_key_value: Optional[Tuple[tf.Tensor]] = None,
training=False,
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
......@@ -1809,6 +1813,10 @@ class TF{{cookiecutter.camelcase_modelname}}DecoderLayer(tf.keras.layers.Layer):
encoder_hidden_states (:obj:`tf.Tensor`): cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attention_mask (:obj:`tf.Tensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (:obj:`tf.Tensor`): mask for attention heads in a given layer of size
`(decoder_attention_heads,)`
cross_attn_layer_head_mask (:obj:`tf.Tensor`): mask for heads of the cross-attention module.
`(decoder_attention_heads,)`
past_key_value (:obj:`Tuple(tf.Tensor)`): cached past key and value projection states
"""
residual = hidden_states
......@@ -1821,6 +1829,7 @@ class TF{{cookiecutter.camelcase_modelname}}DecoderLayer(tf.keras.layers.Layer):
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
......@@ -1828,15 +1837,17 @@ class TF{{cookiecutter.camelcase_modelname}}DecoderLayer(tf.keras.layers.Layer):
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, _, cross_attn_present_key_value = self.encoder_attn(
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
)
hidden_states = self.dropout(hidden_states, training=training)
......@@ -1858,6 +1869,7 @@ class TF{{cookiecutter.camelcase_modelname}}DecoderLayer(tf.keras.layers.Layer):
return (
hidden_states,
self_attn_weights,
cross_attn_layer_head_mask,
present_key_value,
)
......@@ -1965,6 +1977,24 @@ class TF{{cookiecutter.camelcase_modelname}}PreTrainedModel(TFPreTrainedModel):
the right for denoising pre-training following the paper.
decoder_attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
head_mask (:obj:`tf.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (:obj:`tf.FloatTensor`, `optional`):
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape :obj:`(batch_size, sequence_length, hidden_size)` is a sequence of
......@@ -2013,7 +2043,6 @@ class TF{{cookiecutter.camelcase_modelname}}Encoder(tf.keras.layers.Layer):
self.max_source_positions = config.max_position_embeddings
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
self.embed_tokens = embed_tokens
self.embed_positions = TF{{cookiecutter.camelcase_modelname}}LearnedPositionalEmbedding(
config.max_position_embeddings,
......@@ -2034,6 +2063,7 @@ class TF{{cookiecutter.camelcase_modelname}}Encoder(tf.keras.layers.Layer):
input_ids=None,
inputs_embeds=None,
attention_mask=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
......@@ -2058,6 +2088,12 @@ class TF{{cookiecutter.camelcase_modelname}}Encoder(tf.keras.layers.Layer):
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
head_mask (:obj:`tf.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional):
Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert :obj:`input_ids` indices
......@@ -2082,6 +2118,7 @@ class TF{{cookiecutter.camelcase_modelname}}Encoder(tf.keras.layers.Layer):
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
......@@ -2115,6 +2152,16 @@ class TF{{cookiecutter.camelcase_modelname}}Encoder(tf.keras.layers.Layer):
encoder_states = () if inputs["output_hidden_states"] else None
all_attentions = () if inputs["output_attentions"] else None
# check if head_mask has a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if inputs["head_mask"] is not None and tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(inputs["head_mask"])[0],
len(self.layers),
message=f"The head_mask should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs['head_mask'])[0]}.",
)
# encoder layers
for encoder_layer in self.layers:
......@@ -2125,7 +2172,11 @@ class TF{{cookiecutter.camelcase_modelname}}Encoder(tf.keras.layers.Layer):
if inputs["training"] and (dropout_probability < self.layerdrop): # skip the layer
continue
hidden_states, attn = encoder_layer(hidden_states, inputs["attention_mask"])
hidden_states, attn = encoder_layer(
hidden_states,
inputs["attention_mask"],
inputs["head_mask"][idx] if inputs["head_mask"] is not None else None,
)
if inputs["output_attentions"]:
all_attentions += (attn,)
......@@ -2181,6 +2232,8 @@ class TF{{cookiecutter.camelcase_modelname}}Decoder(tf.keras.layers.Layer):
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
......@@ -2218,6 +2271,18 @@ class TF{{cookiecutter.camelcase_modelname}}Decoder(tf.keras.layers.Layer):
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (:obj:`Tuple[Tuple[tf.Tensor]]` of length :obj:`config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
decoding.
......@@ -2252,6 +2317,8 @@ class TF{{cookiecutter.camelcase_modelname}}Decoder(tf.keras.layers.Layer):
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
......@@ -2297,8 +2364,20 @@ class TF{{cookiecutter.camelcase_modelname}}Decoder(tf.keras.layers.Layer):
# decoder layers
all_hidden_states = () if inputs["output_hidden_states"] else None
all_self_attns = () if inputs["output_attentions"] else None
all_cross_attns = () if (inputs["output_attentions"] and inputs["encoder_hidden_states"] is not None) else None
present_key_values = () if inputs["use_cache"] else None
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
for attn_mask in ["head_mask", "cross_attn_head_mask"]:
if inputs[attn_mask] is not None and tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(inputs[attn_mask])[0],
len(self.layers),
message=f"The {attn_mask} should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs[attn_mask])[0]}.",
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if inputs["output_hidden_states"]:
......@@ -2311,11 +2390,15 @@ class TF{{cookiecutter.camelcase_modelname}}Decoder(tf.keras.layers.Layer):
past_key_value = inputs["past_key_values"][idx] if inputs["past_key_values"] is not None else None
hidden_states, layer_self_attn, present_key_value = decoder_layer(
hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
encoder_hidden_states=inputs["encoder_hidden_states"],
encoder_attention_mask=inputs["encoder_attention_mask"],
layer_head_mask=inputs["head_mask"][idx] if inputs["head_mask"] is not None else None,
cross_attn_layer_head_mask=inputs["cross_attn_head_mask"][idx]
if inputs["cross_attn_head_mask"] is not None
else None,
past_key_value=past_key_value,
)
......@@ -2325,23 +2408,30 @@ class TF{{cookiecutter.camelcase_modelname}}Decoder(tf.keras.layers.Layer):
if inputs["output_attentions"]:
all_self_attns += (layer_self_attn,)
if inputs["encoder_hidden_states"] is not None:
all_cross_attns += (layer_cross_attn,)
if inputs["output_hidden_states"]:
all_hidden_states += (hidden_states,)
if inputs["output_attentions"]:
all_self_attns = list(all_self_attns)
if inputs["encoder_hidden_states"] is not None:
all_cross_attns = list(all_cross_attns)
if inputs["use_cache"]:
present_key_values = (inputs["encoder_hidden_states"], present_key_values)
if not inputs["return_dict"]:
return hidden_states, present_key_values, all_hidden_states, all_self_attns
return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
else:
return TFBaseModelOutputWithPast(
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attns,
)
@tf.function
......@@ -2413,6 +2503,9 @@ class TF{{cookiecutter.camelcase_modelname}}MainLayer(tf.keras.layers.Layer):
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values=None,
inputs_embeds=None,
......@@ -2431,6 +2524,9 @@ class TF{{cookiecutter.camelcase_modelname}}MainLayer(tf.keras.layers.Layer):
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
......@@ -2450,6 +2546,7 @@ class TF{{cookiecutter.camelcase_modelname}}MainLayer(tf.keras.layers.Layer):
inputs["encoder_outputs"] = self.encoder(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
......@@ -2472,6 +2569,8 @@ class TF{{cookiecutter.camelcase_modelname}}MainLayer(tf.keras.layers.Layer):
attention_mask=inputs["decoder_attention_mask"],
encoder_hidden_states=inputs["encoder_outputs"][0],
encoder_attention_mask=inputs["attention_mask"],
head_mask=inputs["decoder_head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["decoder_inputs_embeds"],
use_cache=inputs["use_cache"],
......@@ -2489,6 +2588,7 @@ class TF{{cookiecutter.camelcase_modelname}}MainLayer(tf.keras.layers.Layer):
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=inputs["encoder_outputs"].last_hidden_state,
encoder_hidden_states=inputs["encoder_outputs"].hidden_states,
encoder_attentions=inputs["encoder_outputs"].attentions,
......@@ -2524,6 +2624,9 @@ class TF{{cookiecutter.camelcase_modelname}}Model(TF{{cookiecutter.camelcase_mod
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values=None,
inputs_embeds=None,
......@@ -2542,6 +2645,9 @@ class TF{{cookiecutter.camelcase_modelname}}Model(TF{{cookiecutter.camelcase_mod
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
......@@ -2559,6 +2665,9 @@ class TF{{cookiecutter.camelcase_modelname}}Model(TF{{cookiecutter.camelcase_mod
attention_mask=inputs["attention_mask"],
decoder_input_ids=inputs["decoder_input_ids"],
decoder_attention_mask=inputs["decoder_attention_mask"],
head_mask=inputs["head_mask"],
decoder_head_mask=inputs["decoder_head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
encoder_outputs=inputs["encoder_outputs"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["inputs_embeds"],
......@@ -2577,6 +2686,7 @@ class TF{{cookiecutter.camelcase_modelname}}Model(TF{{cookiecutter.camelcase_mod
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
......@@ -2585,6 +2695,7 @@ class TF{{cookiecutter.camelcase_modelname}}Model(TF{{cookiecutter.camelcase_mod
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
......@@ -2637,6 +2748,9 @@ class TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(TF{{cookiec
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[TFBaseModelOutput] = None,
past_key_values=None,
inputs_embeds=None,
......@@ -2672,6 +2786,9 @@ class TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(TF{{cookiec
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
......@@ -2698,6 +2815,9 @@ class TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(TF{{cookiec
decoder_input_ids=inputs["decoder_input_ids"],
encoder_outputs=inputs["encoder_outputs"],
decoder_attention_mask=inputs["decoder_attention_mask"],
head_mask=inputs["head_mask"],
decoder_head_mask=inputs["decoder_head_mask"],
cross_attn_head_mask=inputs["cross_attn_head_mask"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["inputs_embeds"],
decoder_inputs_embeds=inputs["decoder_inputs_embeds"],
......@@ -2720,6 +2840,7 @@ class TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(TF{{cookiec
past_key_values=outputs.past_key_values, # index 1 of d outputs
decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
cross_attentions=outputs.cross_attentions, # index 4 of d outputs
encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
encoder_attentions=outputs.encoder_attentions, # 2 of e out
......@@ -2730,6 +2851,7 @@ class TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(TF{{cookiec
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
......@@ -2738,6 +2860,7 @@ class TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(TF{{cookiec
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
......
......@@ -147,6 +147,7 @@ def prepare_bart_inputs_dict(
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
......@@ -162,13 +163,16 @@ def prepare_bart_inputs_dict(
head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads))
if decoder_head_mask is None:
decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
if cross_attn_head_mask is None:
cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
......
......@@ -146,6 +146,7 @@ def prepare_blenderbot_inputs_dict(
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
......@@ -161,6 +162,8 @@ def prepare_blenderbot_inputs_dict(
head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads))
if decoder_head_mask is None:
decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
if cross_attn_head_mask is None:
cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
......@@ -168,6 +171,7 @@ def prepare_blenderbot_inputs_dict(
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
......
......@@ -146,6 +146,7 @@ def prepare_blenderbot_small_inputs_dict(
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
......@@ -161,6 +162,8 @@ def prepare_blenderbot_small_inputs_dict(
head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads))
if decoder_head_mask is None:
decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
if cross_attn_head_mask is None:
cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
......@@ -168,6 +171,7 @@ def prepare_blenderbot_small_inputs_dict(
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
......
......@@ -190,8 +190,12 @@ class TFModelTesterMixin:
"decoder_attention_mask",
]
expected_arg_names.extend(
["head_mask", "decoder_head_mask", "encoder_outputs"]
if "head_mask" and "decoder_head_mask" in arg_names
["head_mask", "decoder_head_mask"] if "head_mask" and "decoder_head_mask" in arg_names else []
)
# Necessary to handle BART with newly added cross_attn_head_mask
expected_arg_names.extend(
["cross_attn_head_mask", "encoder_outputs"]
if "cross_attn_head_mask" in arg_names
else ["encoder_outputs"]
)
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
......@@ -512,6 +516,8 @@ class TFModelTesterMixin:
del inputs_dict["head_mask"]
if "decoder_head_mask" in inputs_dict:
del inputs_dict["decoder_head_mask"]
if "cross_attn_head_mask" in inputs_dict:
del inputs_dict["cross_attn_head_mask"]
tf_main_layer_classes = set(
module_member
for model_class in self.all_model_classes
......@@ -639,7 +645,7 @@ class TFModelTesterMixin:
def check_decoder_attentions_output(outputs):
out_len = len(outputs)
self.assertEqual(out_len % 2, 0)
self.assertEqual(min(out_len % 2, out_len % 5), 0) # differentiation due to newly added cross_attentions
decoder_attentions = outputs.decoder_attentions
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
......@@ -733,6 +739,8 @@ class TFModelTesterMixin:
arg_names = [*signature.parameters.keys()]
if "decoder_head_mask" in arg_names: # necessary diferentiation because of T5 model
inputs["decoder_head_mask"] = head_mask
if "cross_attn_head_mask" in arg_names:
inputs["cross_attn_head_mask"] = head_mask
outputs = model(**inputs, return_dict=True)
......@@ -757,6 +765,8 @@ class TFModelTesterMixin:
if model.config.is_encoder_decoder:
check_attentions_validity(outputs.encoder_attentions)
check_attentions_validity(outputs.decoder_attentions)
if "cross_attn_head_mask" in arg_names:
check_attentions_validity(outputs.cross_attentions)
else:
check_attentions_validity(outputs.attentions)
......
......@@ -148,6 +148,7 @@ def prepare_marian_inputs_dict(
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
......@@ -163,6 +164,8 @@ def prepare_marian_inputs_dict(
head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads))
if decoder_head_mask is None:
decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
if cross_attn_head_mask is None:
cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
......@@ -170,6 +173,7 @@ def prepare_marian_inputs_dict(
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
......
......@@ -150,6 +150,7 @@ def prepare_mbart_inputs_dict(
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
......@@ -165,13 +166,16 @@ def prepare_mbart_inputs_dict(
head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads))
if decoder_head_mask is None:
decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
if cross_attn_head_mask is None:
cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
......
......@@ -146,6 +146,7 @@ def prepare_pegasus_inputs_dict(
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
......@@ -161,6 +162,8 @@ def prepare_pegasus_inputs_dict(
head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads))
if decoder_head_mask is None:
decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
if cross_attn_head_mask is None:
cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
......@@ -168,6 +171,7 @@ def prepare_pegasus_inputs_dict(
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment