Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
38861045
Unverified
Commit
38861045
authored
Jun 29, 2021
by
Will Rice
Committed by
GitHub
Jun 29, 2021
Browse files
Fix TFWav2Vec2 SpecAugment (#12289)
* Fix TFWav2Vec2 SpecAugment * Invert masks * Feedback changes
parent
bc084938
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
29 additions
and
20 deletions
+29
-20
src/transformers/models/wav2vec2/modeling_tf_wav2vec2.py
src/transformers/models/wav2vec2/modeling_tf_wav2vec2.py
+29
-20
No files found.
src/transformers/models/wav2vec2/modeling_tf_wav2vec2.py
View file @
38861045
...
...
@@ -267,7 +267,7 @@ def _compute_mask_indices(
tf
.
ones_like
(
spec_aug_mask_idxs
),
spec_aug_mask_idxs
,
spec_aug_mask
.
shape
)
return
tf
.
cast
(
spec_aug_mask
,
tf
.
float32
)
return
spec_aug_mask
def
_expand_mask
(
mask
:
tf
.
Tensor
,
tgt_len
:
Optional
[
int
]
=
None
,
past_key_values_length
:
int
=
0
):
...
...
@@ -1139,13 +1139,12 @@ class TFWav2Vec2MainLayer(tf.keras.layers.Layer):
return
input_lengths
def
_mask_hidden_states
(
self
,
hidden_states
:
tf
.
Tensor
,
mask_time_indices
:
Optional
[
tf
.
Tensor
]
=
None
,
training
:
bool
=
False
):
def
_mask_hidden_states
(
self
,
hidden_states
:
tf
.
Tensor
,
mask_time_indices
:
Optional
[
tf
.
Tensor
]
=
None
):
"""
Masks extracted features along time axis and/or along feature axis according to `SpecAugment
<https://arxiv.org/abs/1904.08779>`__ .
"""
batch_size
,
sequence_length
,
hidden_size
=
shape_list
(
hidden_states
)
# `config.apply_spec_augment` can set masking to False
if
not
getattr
(
self
.
config
,
"apply_spec_augment"
,
True
):
...
...
@@ -1153,27 +1152,34 @@ class TFWav2Vec2MainLayer(tf.keras.layers.Layer):
if
mask_time_indices
is
not
None
:
# apply SpecAugment along time axis with given mask_time_indices
hidden_states
=
tf
.
tensor_scatter_nd_update
(
hidden_states
,
mask_time_indices
,
self
.
masked_spec_embed
)
elif
self
.
config
.
mask_time_prob
>
0
and
training
:
# generate indices & apply SpecAugment along time axis
batch_size
,
sequence_length
,
hidden_size
=
hidden_states
.
shape
hidden_states
=
tf
.
where
(
tf
.
cast
(
mask_time_indices
[:,
:,
tf
.
newaxis
],
tf
.
bool
),
self
.
masked_spec_embed
[
tf
.
newaxis
,
tf
.
newaxis
,
:],
hidden_states
,
)
elif
self
.
config
.
mask_time_prob
>
0
:
# generate indices & apply SpecAugment along time axis
mask_time_indices
=
_compute_mask_indices
(
(
batch_size
,
sequence_length
),
self
.
config
.
mask_time_prob
,
self
.
config
.
mask_time_length
,
mask_prob
=
self
.
config
.
mask_time_prob
,
mask_length
=
self
.
config
.
mask_time_length
,
min_masks
=
2
,
)
hidden_states
=
tf
.
tensor_scatter_nd_update
(
hidden_states
,
mask_time_indices
,
self
.
masked_spec_embed
)
hidden_states
=
tf
.
where
(
tf
.
cast
(
mask_time_indices
[:,
:,
tf
.
newaxis
],
tf
.
bool
),
self
.
masked_spec_embed
[
tf
.
newaxis
,
tf
.
newaxis
,
:],
hidden_states
,
)
# apply SpecAugment along feature axis
if
self
.
config
.
mask_feature_prob
>
0
and
training
:
if
self
.
config
.
mask_feature_prob
>
0
:
mask_feature_indices
=
_compute_mask_indices
(
(
batch_size
,
hidden_size
),
mask_prob
=
self
.
config
.
mask_feature_prob
,
mask_length
=
self
.
config
.
mask_feature_length
,
)
hidden_states
=
tf
.
tensor_scatter_nd_update
(
hidden_states
,
mask_feature_indices
,
self
.
masked_spec_embed
)
hidden_states
=
tf
.
where
(
mask_feature_indices
[:,
tf
.
newaxis
,
:],
hidden_states
,
0
)
return
hidden_states
...
...
@@ -1185,8 +1191,8 @@ class TFWav2Vec2MainLayer(tf.keras.layers.Layer):
position_ids
:
Optional
[
tf
.
Tensor
]
=
None
,
head_mask
:
Optional
[
tf
.
Tensor
]
=
None
,
inputs_embeds
:
Optional
[
tf
.
Tensor
]
=
None
,
output_attentions
:
Optional
[
tf
.
Tensor
]
=
None
,
output_hidden_states
:
Optional
[
tf
.
Tensor
]
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
training
:
bool
=
False
,
**
kwargs
:
Any
,
...
...
@@ -1220,9 +1226,14 @@ class TFWav2Vec2MainLayer(tf.keras.layers.Layer):
mask_time_indices
=
kwargs
.
get
(
"mask_time_indices"
,
None
)
if
mask_time_indices
is
not
None
:
# apply SpecAugment along time axis with given indices
hidden_states
=
tf
.
tensor_scatter_nd_update
(
hidden_states
,
mask_time_indices
,
self
.
mask_spec_embed
)
hidden_states
=
tf
.
where
(
tf
.
cast
(
mask_time_indices
[:,
:,
tf
.
newaxis
],
tf
.
bool
),
self
.
masked_spec_embed
[
tf
.
newaxis
,
tf
.
newaxis
,
:],
hidden_states
,
)
hidden_states
=
self
.
_mask_hidden_states
(
hidden_states
)
if
inputs
[
"training"
]:
hidden_states
=
self
.
_mask_hidden_states
(
hidden_states
,
mask_time_indices
=
mask_time_indices
)
encoder_outputs
=
self
.
encoder
(
hidden_states
,
...
...
@@ -1586,12 +1597,10 @@ class TFWav2Vec2ForCTC(TFWav2Vec2PreTrainedModel):
# when not being attended to
labels_mask
=
tf
.
cast
(
labels
>=
0
,
tf
.
int32
)
target_lengths
=
tf
.
reduce_sum
(
labels_mask
,
axis
=-
1
)
flattened_labels
=
tf
.
boolean_mask
(
labels
,
labels_mask
)
flattened_labels
=
tf
.
reshape
(
flattened_labels
,
[
labels
.
shape
[
0
],
-
1
])
loss
=
tf
.
nn
.
ctc_loss
(
logits
=
logits
,
labels
=
flattened_
labels
,
labels
=
labels
,
logit_length
=
input_lengths
,
label_length
=
target_lengths
,
blank_index
=
self
.
config
.
pad_token_id
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment