"experiments/pyexps/vscode:/vscode.git/clone" did not exist on "0b1e0eb631dfc2d5ad5a4deee898f98d61b81e6d"
Commit 3835e1e6 authored by thomwolf's avatar thomwolf
Browse files

adding tokenizer

parent 88e5bef5
...@@ -16,16 +16,15 @@ ...@@ -16,16 +16,15 @@
from __future__ import absolute_import, division, print_function, unicode_literals from __future__ import absolute_import, division, print_function, unicode_literals
import collections
import logging import logging
import os import os
import unicodedata
from io import open
from .tokenization_utils import PreTrainedTokenizer from .tokenization_utils import PreTrainedTokenizer
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
SPIECE_UNDERLINE = u'▁'
#################################################### ####################################################
# Mapping from the keyword arguments names of Tokenizer `__init__` # Mapping from the keyword arguments names of Tokenizer `__init__`
# to file names for serializing Tokenizer instances # to file names for serializing Tokenizer instances
...@@ -39,8 +38,7 @@ VOCAB_FILES_NAMES = {'vocab_file': 'vocab.txt'} ...@@ -39,8 +38,7 @@ VOCAB_FILES_NAMES = {'vocab_file': 'vocab.txt'}
PRETRAINED_VOCAB_FILES_MAP = { PRETRAINED_VOCAB_FILES_MAP = {
'vocab_file': 'vocab_file':
{ {
't5-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/t5-base-uncased-vocab.txt", 't5': "https://s3.amazonaws.com/models.huggingface.co/bert/t5-spiece.model",
't5-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/t5-large-uncased-vocab.txt",
} }
} }
...@@ -48,167 +46,83 @@ PRETRAINED_VOCAB_FILES_MAP = { ...@@ -48,167 +46,83 @@ PRETRAINED_VOCAB_FILES_MAP = {
# Mapping from model shortcut names to max length of inputs # Mapping from model shortcut names to max length of inputs
#################################################### ####################################################
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
't5-base-uncased': 512, 't5': 512,
't5-large-uncased': 512,
}
####################################################
# Mapping from model shortcut names to a dictionary of additional
# keyword arguments for Tokenizer `__init__`.
# To be used for checkpoint specific configurations.
####################################################
PRETRAINED_INIT_CONFIGURATION = {
't5-base-uncased': {'do_lower_case': True},
't5-large-uncased': {'do_lower_case': True},
} }
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip('\n')
vocab[token] = index
return vocab
class T5Tokenizer(PreTrainedTokenizer): class T5Tokenizer(PreTrainedTokenizer):
r"""
Constructs a T5Tokenizer.
:class:`~transformers.T5Tokenizer` runs end-to-end tokenization: punctuation splitting + wordpiece
Args:
vocab_file: Path to a one-wordpiece-per-line vocabulary file
do_lower_case: Whether to lower case the input. Only has an effect when do_wordpiece_only=False
""" """
SentencePiece based tokenizer. Peculiarities:
- requires `SentencePiece <https://github.com/google/sentencepiece>`_
"""
vocab_files_names = VOCAB_FILES_NAMES vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(self, vocab_file, do_lower_case=True, def __init__(self, vocab_file, eos_token="</s>", unk_token="<unk>",
unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", pad_token="<pad>", **kwargs):
mask_token="[MASK]", **kwargs): super(T5Tokenizer, self).__init__(eos_token=eos_token, unk_token=unk_token,
"""Constructs a T5Tokenizer. pad_token=pad_token, **kwargs)
Args: try:
**vocab_file**: Path to a one-wordpiece-per-line vocabulary file import sentencepiece as spm
**do_lower_case**: (`optional`) boolean (default True) except ImportError:
Whether to lower case the input logger.warning("You need to install SentencePiece to use T5Tokenizer:"
Only has an effect when do_basic_tokenize=True "https://github.com/google/sentencepiece"
""" "pip install sentencepiece")
super(T5Tokenizer, self).__init__(unk_token=unk_token, sep_token=sep_token,
pad_token=pad_token, cls_token=cls_token, self.vocab_file = vocab_file
mask_token=mask_token, **kwargs)
self.max_len_single_sentence = self.max_len - 2 # take into account special tokens self.sp_model = spm.SentencePieceProcessor()
self.max_len_sentences_pair = self.max_len - 3 # take into account special tokens self.sp_model.Load(vocab_file)
if not os.path.isfile(vocab_file):
raise ValueError(
"Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
"model use `tokenizer = T5Tokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file))
self.vocab = load_vocab(vocab_file)
@property @property
def vocab_size(self): def vocab_size(self):
return len(self.vocab) return self.sp_model.get_piece_size()
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
try:
import sentencepiece as spm
except ImportError:
logger.warning("You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece"
"pip install sentencepiece")
self.sp_model = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file)
def _tokenize(self, text): def _tokenize(self, text):
""" Take as input a string and return a list of strings (tokens) for words/sub-words """ Take as input a string and return a list of strings (tokens) for words/sub-words
""" """
split_tokens = [] return self.sp_model.EncodeAsPieces(text)
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
for sub_token in self.wordpiece_tokenizer.tokenize(token):
split_tokens.append(sub_token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens
def _convert_token_to_id(self, token): def _convert_token_to_id(self, token):
""" Converts a token (str/unicode) in an id using the vocab. """ """ Converts a token (str/unicode) in an id using the vocab. """
return self.vocab.get(token, self.vocab.get(self.unk_token)) return self.sp_model.piece_to_id(token)
def _convert_id_to_token(self, index): def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (string/unicode) using the vocab.""" """Converts an index (integer) in a token (string/unicode) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token) return self.sp_model.id_to_piece(index)
def convert_tokens_to_string(self, tokens): def convert_tokens_to_string(self, tokens):
""" Converts a sequence of tokens (string) in a single string. """ """ Converts a sequence of tokens (string) in a single string. """
out_string = ' '.join(tokens).replace(' ##', '').strip() out_string = self.sp_model.decode_pieces(tokens)
return out_string return out_string
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): def save_vocabulary(self, save_directory):
""" """ Save the sentencepiece vocabulary (copy original file) and special tokens file
Build model inputs from a sequence or a pair of sequence for sequence classification tasks to a directory.
by concatenating and adding special tokens.
A BERT sequence has the following format:
single sequence: [CLS] X [SEP]
pair of sequences: [CLS] A [SEP] B [SEP]
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
""" """
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding if not os.path.isdir(save_directory):
special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods. logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
return
Args: out_vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file'])
token_ids_0: list of ids (must not contain special tokens)
token_ids_1: Optional list of ids (must not contain special tokens), necessary when fetching sequence ids
for sequence pairs
already_has_special_tokens: (default False) Set to True if the token list is already formated with
special tokens for the model
Returns:
A list of integers in the range [0, 1]: 0 for a special token, 1 for a sequence token.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError("You should not supply a second sequence if the provided sequence of "
"ids is already formated with special tokens for the model.")
return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))
if token_ids_1 is not None: if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] copyfile(self.vocab_file, out_vocab_file)
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None): return (out_vocab_file,)
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
A BERT sequence pair mask has the following format:
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
| first sequence | second sequence
if token_ids_1 is None, only returns the first portion of the mask (0's).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, vocab_path):
"""Save the tokenizer vocabulary to a directory or file."""
index = 0
if os.path.isdir(vocab_path):
vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['vocab_file'])
else:
vocab_file = vocab_path
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning("Saving vocabulary to {}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!".format(vocab_file))
index = token_index
writer.write(token + u'\n')
index += 1
return (vocab_file,)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment