Unverified Commit 382ba670 authored by Sourab Mangrulkar's avatar Sourab Mangrulkar Committed by GitHub
Browse files

FSDP tests and checkpointing fixes (#26180)



* add fsdp tests

* Update test_fsdp.py

* Update test_fsdp.py

* fixes

* checks

* Update trainer.py

* fix

* fixes for saving/resuming checkpoints

* fixes

* add tests and delete debug statements

* fixing tests

* Update test_fsdp.py

* fix tests

* fix tests

* minor nits

* fix code style and quality

* refactor and modularize test code

* reduce the time of tests

* reduce the test time

* fix test

* reduce test time

* reduce test time

* fix failing tests

* fix

* Apply suggestions from code review
Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>

* resolve comments

---------
Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
parent 8e3980a2
......@@ -128,7 +128,7 @@ def is_fsdp_enabled():
def is_fsdp_enabled_and_dist_rank_0():
return is_fsdp_enabled() and torch.distributed.get_rank() == 0
return is_fsdp_enabled() and int(os.environ.get("LOCAL_RANK", -1)) == 0
if is_sagemaker_mp_enabled():
......
......@@ -61,6 +61,7 @@ from .utils import (
is_essentia_available,
is_faiss_available,
is_flax_available,
is_fsdp_available,
is_ftfy_available,
is_ipex_available,
is_jieba_available,
......@@ -316,6 +317,15 @@ def require_accelerate(test_case):
return unittest.skipUnless(is_accelerate_available(), "test requires accelerate")(test_case)
def require_fsdp(test_case, min_version: str = "1.12.0"):
"""
Decorator marking a test that requires fsdp. These tests are skipped when fsdp isn't installed.
"""
return unittest.skipUnless(is_fsdp_available(min_version), f"test requires torch version >= {min_version}")(
test_case
)
def require_safetensors(test_case):
"""
Decorator marking a test that requires safetensors. These tests are skipped when safetensors isn't installed.
......
......@@ -1700,9 +1700,6 @@ class Trainer:
model = self._wrap_model(self.model_wrapped)
if (is_sagemaker_mp_enabled() or self.is_fsdp_enabled) and resume_from_checkpoint is not None:
self._load_from_checkpoint(resume_from_checkpoint, model)
# as the model is wrapped, don't use `accelerator.prepare`
# this is for unhandled cases such as
# Fairscale Sharded DDP, FSDP-XLA, SageMaker MP/DP, DataParallel, IPEX
......@@ -1728,7 +1725,7 @@ class Trainer:
)
if self.is_fsdp_enabled:
self.model = model
self.model = self.model_wrapped = model
# for the rest of this function `model` is the outside model, whether it was wrapped or not
if model is not self.model:
......@@ -1738,16 +1735,20 @@ class Trainer:
if self.is_deepspeed_enabled:
self.deepspeed = self.model_wrapped
# deepspeed ckpt loading
if resume_from_checkpoint is not None and self.is_deepspeed_enabled:
# ckpt loading
if resume_from_checkpoint is not None:
if self.is_deepspeed_enabled:
deepspeed_load_checkpoint(self.model_wrapped, resume_from_checkpoint)
elif is_sagemaker_mp_enabled() or self.is_fsdp_enabled:
self._load_from_checkpoint(resume_from_checkpoint, self.model_wrapped)
# Check if saved optimizer or scheduler states exist
self._load_optimizer_and_scheduler(resume_from_checkpoint)
# important: at this point:
# self.model is the Transformers Model
# self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model), etc.
# self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model),
# FSDP(Transformers Model), Dynamo Optimized Module(Transformers Model) etc.
# Train!
logger.info("***** Running training *****")
......@@ -2088,8 +2089,17 @@ class Trainer:
weights_index_file = os.path.join(resume_from_checkpoint, WEIGHTS_INDEX_NAME)
safe_weights_file = os.path.join(resume_from_checkpoint, SAFE_WEIGHTS_NAME)
safe_weights_index_file = os.path.join(resume_from_checkpoint, SAFE_WEIGHTS_INDEX_NAME)
is_fsdp_ckpt = os.path.isdir(resume_from_checkpoint) and any(
WEIGHTS_NAME.split(".")[0] in folder_name
for folder_name in os.listdir(resume_from_checkpoint)
if os.path.isdir(os.path.join(resume_from_checkpoint, folder_name))
)
if not any(
if is_fsdp_ckpt and not self.is_fsdp_enabled:
raise ValueError(f"Checkpoint found at {resume_from_checkpoint} is only supported when using PyTorch FSDP")
if not (
any(
os.path.isfile(f)
for f in [
weights_file,
......@@ -2099,6 +2109,8 @@ class Trainer:
adapter_weights_file,
adapter_safe_weights_file,
]
)
or is_fsdp_ckpt
):
raise ValueError(f"Can't find a valid checkpoint at {resume_from_checkpoint}")
......@@ -2114,7 +2126,7 @@ class Trainer:
"yield to errors or unwanted behaviors."
)
if os.path.isfile(weights_file) or os.path.isfile(safe_weights_file):
if os.path.isfile(weights_file) or os.path.isfile(safe_weights_file) or is_fsdp_ckpt:
# If the model is on the GPU, it still works!
if is_sagemaker_mp_enabled():
if os.path.isfile(os.path.join(resume_from_checkpoint, "user_content.pt")):
......@@ -2184,6 +2196,10 @@ class Trainer:
model = self.model_wrapped if is_sagemaker_mp_enabled() else self.model
if self.is_deepspeed_enabled:
deepspeed_load_checkpoint(self.model_wrapped, self.state.best_model_checkpoint)
elif self.is_fsdp_enabled:
load_result = load_fsdp_model(
self.accelerator.state.fsdp_plugin, self.accelerator, model, self.state.best_model_checkpoint
)
elif (
os.path.exists(best_model_path)
or os.path.exists(best_safe_model_path)
......@@ -2211,10 +2227,6 @@ class Trainer:
state_dict["_smp_is_partial"] = False
load_result = model.load_state_dict(state_dict, strict=True)
elif self.is_fsdp_enabled:
load_result = load_fsdp_model(
self.accelerator.state.fsdp_plugin, self.accelerator, model, self.state.best_model_checkpoint
)
else:
if is_peft_available() and isinstance(model, PeftModel):
# If train a model using PEFT & LoRA, assume that adapter have been saved properly.
......@@ -2503,6 +2515,14 @@ class Trainer:
else (
os.path.isfile(os.path.join(checkpoint, OPTIMIZER_NAME))
or os.path.isfile(os.path.join(checkpoint, OPTIMIZER_NAME_BIN))
or (
os.path.isdir(checkpoint)
and any(
OPTIMIZER_NAME_BIN.split(".")[0] in folder_name
for folder_name in os.listdir(checkpoint)
if os.path.isdir(os.path.join(checkpoint, folder_name))
)
)
)
)
if checkpoint_file_exists and os.path.isfile(os.path.join(checkpoint, SCHEDULER_NAME)):
......
......@@ -115,6 +115,7 @@ from .import_utils import (
is_essentia_available,
is_faiss_available,
is_flax_available,
is_fsdp_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
......
......@@ -606,6 +606,10 @@ def is_accelerate_available(min_version: str = None):
return _accelerate_available
def is_fsdp_available(min_version: str = "1.12.0"):
return version.parse(_torch_version) >= version.parse(min_version)
def is_optimum_available():
return _optimum_available
......
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import os
from functools import partial
from parameterized import parameterized
import tests.trainer.test_trainer
from tests.trainer.test_trainer import TrainerIntegrationCommon # noqa
from transformers import is_torch_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_accelerate,
require_fsdp,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import FSDPOption, set_seed
from transformers.utils import is_accelerate_available, is_torch_bf16_gpu_available
# default torch.distributed port
DEFAULT_MASTER_PORT = "10999"
dtypes = ["fp16"]
if is_torch_bf16_gpu_available():
dtypes += ["bf16"]
sharding_strategies = ["full_shard", "shard_grad_op"]
state_dict_types = ["FULL_STATE_DICT", "SHARDED_STATE_DICT"]
set_seed(42)
params = list(itertools.product(sharding_strategies, dtypes))
def get_master_port(real_launcher=False):
"""
When using a single gpu launcher emulation (i.e. not deepspeed or python -m torch.distributed)
the issue is that once the port is tied it can't be used anywhere else outside of this process,
since torch.dist doesn't free the port until the process exits. Therefore for the sake of being
able to run both emulated launcher and normal launcher tests we need 2 distinct ports.
This function will give the right port in the right context. For real launcher it'll give the
base port, for emulated launcher it'll give the base port + 1. In both cases a string is
returned.
Args:
`real_launcher`: whether a real launcher is going to be used, or the emulated one
"""
master_port_base = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
if not real_launcher:
master_port_base = str(int(master_port_base) + 1)
return master_port_base
if is_torch_available():
from tests.trainer.test_trainer import ( # noqa
RegressionModelConfig,
RegressionPreTrainedModel,
)
# hack to restore original logging level pre #21700
get_regression_trainer = partial(tests.trainer.test_trainer.get_regression_trainer, log_level="info")
if is_accelerate_available():
from accelerate.utils.constants import (
FSDP_PYTORCH_VERSION,
FSDP_SHARDING_STRATEGY,
)
require_fsdp_version = partial(require_fsdp, min_version=FSDP_PYTORCH_VERSION)
def get_launcher(distributed=False, use_accelerate=False):
# 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
# - it won't be able to handle that
# 2. for now testing with just 2 gpus max (since some quality tests may give different
# results with mode gpus because we use very little data)
num_gpus = min(2, get_gpu_count()) if distributed else 1
master_port = get_master_port(real_launcher=True)
if use_accelerate:
return f"""accelerate launch
--num_processes {num_gpus}
--main_process_port {master_port}
--use_fsdp
--fsdp_auto_wrap_policy TRANSFORMER_BASED_WRAP
--fsdp_state_dict_type SHARDED_STATE_DICT
--fsdp_transformer_layer_cls_to_wrap BertLayer""".split()
return f"torchrun --nnodes 1 --nproc-per-node {num_gpus} --master-port {master_port}".split()
def _parameterized_custom_name_func(func, param_num, param):
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
return f"{func.__name__}_{param_based_name}"
@require_accelerate
@require_torch_gpu
@require_fsdp_version
class TrainerIntegrationFSDP(TestCasePlus, TrainerIntegrationCommon):
def setUp(self):
super().setUp()
master_port = get_master_port(real_launcher=False)
self.dist_env_1_gpu = {
"MASTER_ADDR": "localhost",
"MASTER_PORT": master_port,
"RANK": "0",
"LOCAL_RANK": "0",
"WORLD_SIZE": "1",
}
self.fsdp_config = {
"backward_prefetch": "backward_pre",
"forward_prefetch": "False",
"limit_all_gathers": "False",
"use_orig_params": "True",
"sync_module_states": "True",
"activation_checkpointing": "False",
"min_num_params": 1,
}
def tearDown(self):
super().tearDown()
@parameterized.expand(params, name_func=_parameterized_custom_name_func)
def test_fsdp_config(self, sharding_strategy, dtype):
output_dir = self.get_auto_remove_tmp_dir()
kwargs = {
"output_dir": output_dir,
"train_len": 128,
"save_steps": 5,
"learning_rate": 0.1,
"fsdp": f"{sharding_strategy} offload auto_wrap",
"fsdp_config": self.fsdp_config,
}
kwargs[dtype] = True
with mockenv_context(**self.dist_env_1_gpu):
trainer = get_regression_trainer(**kwargs)
self.assertEqual(trainer.args.fsdp[0], sharding_strategy)
self.assertEqual(trainer.args.fsdp[1], FSDPOption.OFFLOAD)
self.assertEqual(trainer.args.fsdp[2], FSDPOption.AUTO_WRAP)
for k, v in trainer.args.fsdp_config.items():
self.assertEqual(v, self.fsdp_config[k])
self.assertEqual(os.environ.get("ACCELERATE_USE_FSDP", "false"), "true")
@parameterized.expand(params, name_func=_parameterized_custom_name_func)
@require_torch_multi_gpu
@slow
def test_basic_run(self, sharding_strategy, dtype):
launcher = get_launcher(distributed=True, use_accelerate=False)
output_dir = self.get_auto_remove_tmp_dir()
args = self.get_base_args(output_dir, 1, 50).split() + [f"--{dtype}"]
fsdp_args = ["--fsdp", f"{sharding_strategy} auto_wrap", "--fsdp_transformer_layer_cls_to_wrap", "BertLayer"]
script = [f"{self.examples_dir_str}/pytorch/text-classification/run_glue.py"]
cmd = launcher + script + args + fsdp_args
execute_subprocess_async(cmd, env=self.get_env())
@parameterized.expand(dtypes)
@require_torch_multi_gpu
@slow
def test_basic_run_with_cpu_offload(self, dtype):
launcher = get_launcher(distributed=True, use_accelerate=False)
output_dir = self.get_auto_remove_tmp_dir()
args = self.get_base_args(output_dir, 1, 50).split() + [f"--{dtype}", "--max_steps", "10"]
fsdp_args = ["--fsdp", "full_shard auto_wrap offload", "--fsdp_transformer_layer_cls_to_wrap", "BertLayer"]
script = [f"{self.examples_dir_str}/pytorch/text-classification/run_glue.py"]
cmd = launcher + script + args + fsdp_args
execute_subprocess_async(cmd, env=self.get_env())
@parameterized.expand(state_dict_types, name_func=_parameterized_custom_name_func)
@require_torch_multi_gpu
@slow
def test_training_and_can_resume_normally(self, state_dict_type):
output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False)
sharding_strategy = "full_shard"
use_accelerate = state_dict_type == "SHARDED_STATE_DICT"
launcher = get_launcher(True, use_accelerate=use_accelerate)
args = self.get_base_args(output_dir, 2, 25).split()
script = [f"{self.examples_dir_str}/pytorch/text-classification/run_glue.py"]
logs = self.run_cmd_and_get_logs(use_accelerate, sharding_strategy, launcher, script, args, output_dir)
# resume from ckpt
checkpoint = os.path.join(output_dir, "checkpoint-115")
resume_args = args + f"--resume_from_checkpoint {checkpoint}".split()
logs_resume = self.run_cmd_and_get_logs(
use_accelerate, sharding_strategy, launcher, script, resume_args, output_dir
)
for log, log1 in zip(logs, logs_resume):
if "learning_rate" in log:
self.assertAlmostEqual(log["learning_rate"], log1["learning_rate"], delta=1e-5)
def run_cmd_and_get_logs(self, use_accelerate, sharding_strategy, launcher, script, args, output_dir):
if not use_accelerate:
fsdp_args = [
"--fsdp",
f"{sharding_strategy} auto_wrap",
"--fsdp_transformer_layer_cls_to_wrap",
"BertLayer",
]
cmd = launcher + script + args + fsdp_args
else:
fsdp_config = f"""
--fsdp_sharding_strategy {FSDP_SHARDING_STRATEGY.index(sharding_strategy.upper()) + 1}
""".split()
cmd = launcher + fsdp_config + script + args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(cmd, env=self.get_env())
logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
return logs
def get_base_args(self, output_dir, num_epochs, logging_steps):
return f"""
--model_name_or_path bert-base-cased
--task_name mrpc
--output_dir {output_dir}
--overwrite_output_dir
--do_train
--max_seq_length 128
--per_device_train_batch_size 16
--learning_rate 5e-5
--num_train_epochs {num_epochs}
--lr_scheduler_type cosine
--logging_steps {logging_steps}
--save_strategy epoch
--do_eval
--evaluation_strategy epoch
--report_to none
"""
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment