"...git@developer.sourcefind.cn:sugon_wxj/megatron-lm.git" did not exist on "b1a833753dc76b0eead27ae660445ca32abdcebb"
Unverified Commit 37793259 authored by Joydeep Bhattacharjee's avatar Joydeep Bhattacharjee Committed by GitHub
Browse files

update albert with tf decorator (#16147)

parent e109edf1
......@@ -49,8 +49,8 @@ from ...modeling_tf_utils import (
TFSequenceClassificationLoss,
TFTokenClassificationLoss,
get_initializer,
input_processing,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import shape_list
from ...utils import logging
......@@ -538,6 +538,7 @@ class TFAlbertMainLayer(tf.keras.layers.Layer):
"""
raise NotImplementedError
@unpack_inputs
def call(
self,
input_ids: Optional[TFModelInputType] = None,
......@@ -552,43 +553,28 @@ class TFAlbertMainLayer(tf.keras.layers.Layer):
training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
kwargs_call=kwargs,
)
if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None:
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif inputs["input_ids"] is not None:
input_shape = shape_list(inputs["input_ids"])
elif inputs["inputs_embeds"] is not None:
input_shape = shape_list(inputs["inputs_embeds"])[:-1]
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs["attention_mask"] is None:
inputs["attention_mask"] = tf.fill(dims=input_shape, value=1)
if attention_mask is None:
attention_mask = tf.fill(dims=input_shape, value=1)
if inputs["token_type_ids"] is None:
inputs["token_type_ids"] = tf.fill(dims=input_shape, value=0)
if token_type_ids is None:
token_type_ids = tf.fill(dims=input_shape, value=0)
embedding_output = self.embeddings(
input_ids=inputs["input_ids"],
position_ids=inputs["position_ids"],
token_type_ids=inputs["token_type_ids"],
inputs_embeds=inputs["inputs_embeds"],
training=inputs["training"],
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
training=training,
)
# We create a 3D attention mask from a 2D tensor mask.
......@@ -596,7 +582,7 @@ class TFAlbertMainLayer(tf.keras.layers.Layer):
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = tf.reshape(inputs["attention_mask"], (input_shape[0], 1, 1, input_shape[1]))
extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1]))
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
......@@ -613,25 +599,25 @@ class TFAlbertMainLayer(tf.keras.layers.Layer):
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if inputs["head_mask"] is not None:
if head_mask is not None:
raise NotImplementedError
else:
inputs["head_mask"] = [None] * self.config.num_hidden_layers
head_mask = [None] * self.config.num_hidden_layers
encoder_outputs = self.encoder(
hidden_states=embedding_output,
attention_mask=extended_attention_mask,
head_mask=inputs["head_mask"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(inputs=sequence_output[:, 0]) if self.pooler is not None else None
if not inputs["return_dict"]:
if not return_dict:
return (
sequence_output,
pooled_output,
......@@ -779,6 +765,7 @@ class TFAlbertModel(TFAlbertPreTrainedModel):
self.albert = TFAlbertMainLayer(config, name="albert")
@unpack_inputs
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
......@@ -800,9 +787,7 @@ class TFAlbertModel(TFAlbertPreTrainedModel):
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
inputs = input_processing(
func=self.call,
config=self.config,
outputs = self.albert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
......@@ -813,19 +798,6 @@ class TFAlbertModel(TFAlbertPreTrainedModel):
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
kwargs_call=kwargs,
)
outputs = self.albert(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
position_ids=inputs["position_ids"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
return outputs
......@@ -865,6 +837,7 @@ class TFAlbertForPreTraining(TFAlbertPreTrainedModel, TFAlbertPreTrainingLoss):
def get_lm_head(self) -> tf.keras.layers.Layer:
return self.predictions
@unpack_inputs
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFAlbertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def call(
......@@ -904,9 +877,7 @@ class TFAlbertForPreTraining(TFAlbertPreTrainedModel, TFAlbertPreTrainingLoss):
>>> sop_logits = outputs.sop_logits
```"""
inputs = input_processing(
func=self.call,
config=self.config,
outputs = self.albert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
......@@ -916,34 +887,19 @@ class TFAlbertForPreTraining(TFAlbertPreTrainedModel, TFAlbertPreTrainingLoss):
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
sentence_order_label=sentence_order_label,
training=training,
kwargs_call=kwargs,
)
outputs = self.albert(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
position_ids=inputs["position_ids"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
sequence_output, pooled_output = outputs[:2]
prediction_scores = self.predictions(hidden_states=sequence_output)
sop_scores = self.sop_classifier(pooled_output=pooled_output, training=inputs["training"])
sop_scores = self.sop_classifier(pooled_output=pooled_output, training=training)
total_loss = None
if inputs["labels"] is not None and inputs["sentence_order_label"] is not None:
d_labels = {"labels": inputs["labels"]}
d_labels["sentence_order_label"] = inputs["sentence_order_label"]
if labels is not None and sentence_order_label is not None:
d_labels = {"labels": labels}
d_labels["sentence_order_label"] = sentence_order_label
total_loss = self.hf_compute_loss(labels=d_labels, logits=(prediction_scores, sop_scores))
if not inputs["return_dict"]:
if not return_dict:
output = (prediction_scores, sop_scores) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
......@@ -999,6 +955,7 @@ class TFAlbertForMaskedLM(TFAlbertPreTrainedModel, TFMaskedLanguageModelingLoss)
def get_lm_head(self) -> tf.keras.layers.Layer:
return self.predictions
@unpack_inputs
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
......@@ -1027,9 +984,7 @@ class TFAlbertForMaskedLM(TFAlbertPreTrainedModel, TFMaskedLanguageModelingLoss)
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
inputs = input_processing(
func=self.call,
config=self.config,
outputs = self.albert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
......@@ -1039,31 +994,13 @@ class TFAlbertForMaskedLM(TFAlbertPreTrainedModel, TFMaskedLanguageModelingLoss)
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
training=training,
kwargs_call=kwargs,
)
outputs = self.albert(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
position_ids=inputs["position_ids"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
sequence_output = outputs[0]
prediction_scores = self.predictions(hidden_states=sequence_output, training=inputs["training"])
loss = (
None
if inputs["labels"] is None
else self.hf_compute_loss(labels=inputs["labels"], logits=prediction_scores)
)
prediction_scores = self.predictions(hidden_states=sequence_output, training=training)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores)
if not inputs["return_dict"]:
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
......@@ -1106,6 +1043,7 @@ class TFAlbertForSequenceClassification(TFAlbertPreTrainedModel, TFSequenceClass
units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
@unpack_inputs
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
......@@ -1134,9 +1072,7 @@ class TFAlbertForSequenceClassification(TFAlbertPreTrainedModel, TFSequenceClass
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
inputs = input_processing(
func=self.call,
config=self.config,
outputs = self.albert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
......@@ -1146,28 +1082,14 @@ class TFAlbertForSequenceClassification(TFAlbertPreTrainedModel, TFSequenceClass
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
training=training,
kwargs_call=kwargs,
)
outputs = self.albert(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
position_ids=inputs["position_ids"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
pooled_output = outputs[1]
pooled_output = self.dropout(inputs=pooled_output, training=inputs["training"])
pooled_output = self.dropout(inputs=pooled_output, training=training)
logits = self.classifier(inputs=pooled_output)
loss = None if inputs["labels"] is None else self.hf_compute_loss(labels=inputs["labels"], logits=logits)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not inputs["return_dict"]:
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
......@@ -1215,6 +1137,7 @@ class TFAlbertForTokenClassification(TFAlbertPreTrainedModel, TFTokenClassificat
units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
@unpack_inputs
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
......@@ -1241,9 +1164,7 @@ class TFAlbertForTokenClassification(TFAlbertPreTrainedModel, TFTokenClassificat
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
inputs = input_processing(
func=self.call,
config=self.config,
outputs = self.albert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
......@@ -1253,28 +1174,14 @@ class TFAlbertForTokenClassification(TFAlbertPreTrainedModel, TFTokenClassificat
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
training=training,
kwargs_call=kwargs,
)
outputs = self.albert(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
position_ids=inputs["position_ids"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=return_dict,
training=inputs["training"],
)
sequence_output = outputs[0]
sequence_output = self.dropout(inputs=sequence_output, training=inputs["training"])
sequence_output = self.dropout(inputs=sequence_output, training=training)
logits = self.classifier(inputs=sequence_output)
loss = None if inputs["labels"] is None else self.hf_compute_loss(labels=inputs["labels"], logits=logits)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not inputs["return_dict"]:
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
......@@ -1315,6 +1222,7 @@ class TFAlbertForQuestionAnswering(TFAlbertPreTrainedModel, TFQuestionAnsweringL
units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
@unpack_inputs
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
......@@ -1348,9 +1256,7 @@ class TFAlbertForQuestionAnswering(TFAlbertPreTrainedModel, TFQuestionAnsweringL
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
inputs = input_processing(
func=self.call,
config=self.config,
outputs = self.albert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
......@@ -1360,22 +1266,7 @@ class TFAlbertForQuestionAnswering(TFAlbertPreTrainedModel, TFQuestionAnsweringL
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
start_positions=start_positions,
end_positions=end_positions,
training=training,
kwargs_call=kwargs,
)
outputs = self.albert(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
position_ids=inputs["position_ids"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
sequence_output = outputs[0]
logits = self.qa_outputs(inputs=sequence_output)
......@@ -1384,12 +1275,12 @@ class TFAlbertForQuestionAnswering(TFAlbertPreTrainedModel, TFQuestionAnsweringL
end_logits = tf.squeeze(input=end_logits, axis=-1)
loss = None
if inputs["start_positions"] is not None and inputs["end_positions"] is not None:
labels = {"start_position": inputs["start_positions"]}
labels["end_position"] = inputs["end_positions"]
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions}
labels["end_position"] = end_positions
loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits))
if not inputs["return_dict"]:
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((loss,) + output) if loss is not None else output
......@@ -1443,6 +1334,7 @@ class TFAlbertForMultipleChoice(TFAlbertPreTrainedModel, TFMultipleChoiceLoss):
"""
return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS)}
@unpack_inputs
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
......@@ -1470,47 +1362,27 @@ class TFAlbertForMultipleChoice(TFAlbertPreTrainedModel, TFMultipleChoiceLoss):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
"""
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
training=training,
kwargs_call=kwargs,
)
if inputs["input_ids"] is not None:
num_choices = shape_list(inputs["input_ids"])[1]
seq_length = shape_list(inputs["input_ids"])[2]
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2]
else:
num_choices = shape_list(inputs["inputs_embeds"])[1]
seq_length = shape_list(inputs["inputs_embeds"])[2]
num_choices = shape_list(inputs_embeds)[1]
seq_length = shape_list(inputs_embeds)[2]
flat_input_ids = tf.reshape(inputs["input_ids"], (-1, seq_length)) if inputs["input_ids"] is not None else None
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = (
tf.reshape(tensor=inputs["attention_mask"], shape=(-1, seq_length))
if inputs["attention_mask"] is not None
else None
tf.reshape(tensor=attention_mask, shape=(-1, seq_length)) if attention_mask is not None else None
)
flat_token_type_ids = (
tf.reshape(tensor=inputs["token_type_ids"], shape=(-1, seq_length))
if inputs["token_type_ids"] is not None
else None
tf.reshape(tensor=token_type_ids, shape=(-1, seq_length)) if token_type_ids is not None else None
)
flat_position_ids = (
tf.reshape(tensor=position_ids, shape=(-1, seq_length)) if position_ids is not None else None
)
flat_inputs_embeds = (
tf.reshape(tensor=inputs["inputs_embeds"], shape=(-1, seq_length, shape_list(inputs["inputs_embeds"])[3]))
if inputs["inputs_embeds"] is not None
tf.reshape(tensor=inputs_embeds, shape=(-1, seq_length, shape_list(inputs_embeds)[3]))
if inputs_embeds is not None
else None
)
outputs = self.albert(
......@@ -1518,22 +1390,20 @@ class TFAlbertForMultipleChoice(TFAlbertPreTrainedModel, TFMultipleChoiceLoss):
attention_mask=flat_attention_mask,
token_type_ids=flat_token_type_ids,
position_ids=flat_position_ids,
head_mask=inputs["head_mask"],
head_mask=head_mask,
inputs_embeds=flat_inputs_embeds,
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = outputs[1]
pooled_output = self.dropout(inputs=pooled_output, training=inputs["training"])
pooled_output = self.dropout(inputs=pooled_output, training=training)
logits = self.classifier(inputs=pooled_output)
reshaped_logits = tf.reshape(tensor=logits, shape=(-1, num_choices))
loss = (
None if inputs["labels"] is None else self.hf_compute_loss(labels=inputs["labels"], logits=reshaped_logits)
)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=reshaped_logits)
if not inputs["return_dict"]:
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment