Unverified Commit 3552d0e0 authored by Julien Chaumond's avatar Julien Chaumond Committed by GitHub
Browse files

[model_cards] Migrate cards from this repo to model repos on huggingface.co (#9013)



* rm all model cards

* Update the .rst

@sgugger it is still not super crystal clear/streamlined so let me know if any ideas to make it simpler

* Add a rootlevel README.md with simple instructions/context

* Update docs/source/model_sharing.rst
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>

* make style

* rm all model cards
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
parent 29e45979
---
language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# DistilBERT base model (cased)
This model is a distilled version of the [BERT base model](https://huggingface.co/bert-base-cased).
It was introduced in [this paper](https://arxiv.org/abs/1910.01108).
The code for the distillation process can be found
[here](https://github.com/huggingface/transformers/tree/master/examples/distillation).
This model is cased: it does make a difference between english and English.
All the training details on the pre-training, the uses, limitations and potential biases are the same as for [DistilBERT-base-uncased](https://huggingface.co/distilbert-base-uncased).
We highly encourage to check it if you want to know more.
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Glue test results:
| Task | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE |
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|
| | 81.5 | 87.8 | 88.2 | 90.4 | 47.2 | 85.5 | 85.6 | 60.6 |
### BibTeX entry and citation info
```bibtex
@article{Sanh2019DistilBERTAD,
title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf},
journal={ArXiv},
year={2019},
volume={abs/1910.01108}
}
```
---
language: "en"
datasets:
- squad
metrics:
- squad
license: apache-2.0
---
# DistilBERT base cased distilled SQuAD
This model is a fine-tune checkpoint of [DistilBERT-base-cased](https://huggingface.co/distilbert-base-cased), fine-tuned using (a second step of) knowledge distillation on SQuAD v1.1.
This model reaches a F1 score of 87.1 on the dev set (for comparison, BERT bert-base-cased version reaches a F1 score of 88.7).
---
language: de
license: apache-2.0
---
## distilbert-base-german-cased
---
language: multilingual
license: apache-2.0
datasets:
- wikipedia
---
# DistilBERT base multilingual model (cased)
This model is a distilled version of the [BERT base multilingual model](bert-base-multilingual-cased). The code for the distillation process can be found
[here](https://github.com/huggingface/transformers/tree/master/examples/distillation). This model is cased: it does make a difference between english and English.
The model is trained on the concatenation of Wikipedia in 104 different languages listed [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages).
The model has 6 layers, 768 dimension and 12 heads, totalizing 134M parameters (compared to 177M parameters for mBERT-base).
On average DistilmBERT is twice as fast as mBERT-base.
We encourage to check [BERT base multilingual model](bert-base-multilingual-cased) to know more about usage, limitations and potential biases.
| Model | English | Spanish | Chinese | German | Arabic | Urdu |
| :---: | :---: | :---: | :---: | :---: | :---: | :---:|
| mBERT base cased (computed) | 82.1 | 74.6 | 69.1 | 72.3 | 66.4 | 58.5 |
| mBERT base uncased (reported)| 81.4 | 74.3 | 63.8 | 70.5 | 62.1 | 58.3 |
| DistilmBERT | 78.2 | 69.1 | 64.0 | 66.3 | 59.1 | 54.7 |
### BibTeX entry and citation info
```bibtex
@article{Sanh2019DistilBERTAD,
title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf},
journal={ArXiv},
year={2019},
volume={abs/1910.01108}
}
```
---
language: en
tags:
- exbert
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# DistilBERT base model (uncased)
This model is a distilled version of the [BERT base model](https://huggingface.co/bert-base-uncased). It was
introduced in [this paper](https://arxiv.org/abs/1910.01108). The code for the distillation process can be found
[here](https://github.com/huggingface/transformers/tree/master/examples/distillation). This model is uncased: it does
not make a difference between english and English.
## Model description
DistilBERT is a transformers model, smaller and faster than BERT, which was pretrained on the same corpus in a
self-supervised fashion, using the BERT base model as a teacher. This means it was pretrained on the raw texts only,
with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic
process to generate inputs and labels from those texts using the BERT base model. More precisely, it was pretrained
with three objectives:
- Distillation loss: the model was trained to return the same probabilities as the BERT base model.
- Masked language modeling (MLM): this is part of the original training loss of the BERT base model. When taking a
sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the
model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that
usually see the words one after the other, or from autoregressive models like GPT which internally mask the future
tokens. It allows the model to learn a bidirectional representation of the sentence.
- Cosine embedding loss: the model was also trained to generate hidden states as close as possible as the BERT base
model.
This way, the model learns the same inner representation of the English language than its teacher model, while being
faster for inference or downstream tasks.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=distilbert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='distilbert-base-uncased')
>>> unmasker("Hello I'm a [MASK] model.")
[{'sequence': "[CLS] hello i'm a role model. [SEP]",
'score': 0.05292855575680733,
'token': 2535,
'token_str': 'role'},
{'sequence': "[CLS] hello i'm a fashion model. [SEP]",
'score': 0.03968575969338417,
'token': 4827,
'token_str': 'fashion'},
{'sequence': "[CLS] hello i'm a business model. [SEP]",
'score': 0.034743521362543106,
'token': 2449,
'token_str': 'business'},
{'sequence': "[CLS] hello i'm a model model. [SEP]",
'score': 0.03462274372577667,
'token': 2944,
'token_str': 'model'},
{'sequence': "[CLS] hello i'm a modeling model. [SEP]",
'score': 0.018145186826586723,
'token': 11643,
'token_str': 'modeling'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import DistilBertTokenizer, DistilBertModel
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = DistilBertModel.from_pretrained("distilbert-base-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import DistilBertTokenizer, TFDistilBertModel
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = TFDistilBertModel.from_pretrained("distilbert-base-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions. It also inherits some of
[the bias of its teacher model](https://huggingface.co/bert-base-uncased#limitations-and-bias).
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='distilbert-base-uncased')
>>> unmasker("The White man worked as a [MASK].")
[{'sequence': '[CLS] the white man worked as a blacksmith. [SEP]',
'score': 0.1235365942120552,
'token': 20987,
'token_str': 'blacksmith'},
{'sequence': '[CLS] the white man worked as a carpenter. [SEP]',
'score': 0.10142576694488525,
'token': 10533,
'token_str': 'carpenter'},
{'sequence': '[CLS] the white man worked as a farmer. [SEP]',
'score': 0.04985016956925392,
'token': 7500,
'token_str': 'farmer'},
{'sequence': '[CLS] the white man worked as a miner. [SEP]',
'score': 0.03932540491223335,
'token': 18594,
'token_str': 'miner'},
{'sequence': '[CLS] the white man worked as a butcher. [SEP]',
'score': 0.03351764753460884,
'token': 14998,
'token_str': 'butcher'}]
>>> unmasker("The Black woman worked as a [MASK].")
[{'sequence': '[CLS] the black woman worked as a waitress. [SEP]',
'score': 0.13283951580524445,
'token': 13877,
'token_str': 'waitress'},
{'sequence': '[CLS] the black woman worked as a nurse. [SEP]',
'score': 0.12586183845996857,
'token': 6821,
'token_str': 'nurse'},
{'sequence': '[CLS] the black woman worked as a maid. [SEP]',
'score': 0.11708822101354599,
'token': 10850,
'token_str': 'maid'},
{'sequence': '[CLS] the black woman worked as a prostitute. [SEP]',
'score': 0.11499975621700287,
'token': 19215,
'token_str': 'prostitute'},
{'sequence': '[CLS] the black woman worked as a housekeeper. [SEP]',
'score': 0.04722772538661957,
'token': 22583,
'token_str': 'housekeeper'}]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
DistilBERT pretrained on the same data as BERT, which is [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset
consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia)
(excluding lists, tables and headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 8 16 GB V100 for 90 hours. See the
[training code](https://github.com/huggingface/transformers/tree/master/examples/distillation) for all hyperparameters
details.
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Glue test results:
| Task | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE |
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|
| | 82.2 | 88.5 | 89.2 | 91.3 | 51.3 | 85.8 | 87.5 | 59.9 |
### BibTeX entry and citation info
```bibtex
@article{Sanh2019DistilBERTAD,
title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf},
journal={ArXiv},
year={2019},
volume={abs/1910.01108}
}
```
<a href="https://huggingface.co/exbert/?model=distilbert-base-uncased">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
---
language: en
datasets:
- squad
widget:
- text: "Which name is also used to describe the Amazon rainforest in English?"
context: "The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain \"Amazonas\" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species."
- text: "How many square kilometers of rainforest is covered in the basin?"
context: "The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain \"Amazonas\" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species."
license: apache-2.0
---
# DistilBERT base uncased distilled SQuAD
This model is a fine-tune checkpoint of [DistilBERT-base-uncased](https://huggingface.co/distilbert-base-uncased), fine-tuned using (a second step of) knowledge distillation on SQuAD v1.1.
This model reaches a F1 score of 86.9 on the dev set (for comparison, Bert bert-base-uncased version reaches a F1 score of 88.5).
---
language: en
license: apache-2.0
datasets:
- sst-2
---
# DistilBERT base uncased finetuned SST-2
This model is a fine-tune checkpoint of [DistilBERT-base-uncased](https://huggingface.co/distilbert-base-uncased), fine-tuned on SST-2.
This model reaches an accuracy of 91.3 on the dev set (for comparison, Bert bert-base-uncased version reaches an accuracy of 92.7).
# Fine-tuning hyper-parameters
- learning_rate = 1e-5
- batch_size = 32
- warmup = 600
- max_seq_length = 128
- num_train_epochs = 3.0
---
language: en
tags:
- exbert
license: apache-2.0
datasets:
- openwebtext
---
# DistilGPT2
DistilGPT2 English language model pretrained with the supervision of [GPT2](https://huggingface.co/gpt2) (the smallest version of GPT2) on [OpenWebTextCorpus](https://skylion007.github.io/OpenWebTextCorpus/), a reproduction of OpenAI's WebText dataset. The model has 6 layers, 768 dimension and 12 heads, totalizing 82M parameters (compared to 124M parameters for GPT2). On average, DistilGPT2 is two times faster than GPT2.
On the [WikiText-103](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/) benchmark, GPT2 reaches a perplexity on the test set of 16.3 compared to 21.1 for DistilGPT2 (after fine-tuning on the train set).
We encourage to check [GPT2](https://huggingface.co/gpt2) to know more about usage, limitations and potential biases.
<a href="https://huggingface.co/exbert/?model=distilgpt2">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
---
language: en
tags:
- exbert
license: apache-2.0
datasets:
- openwebtext
---
# DistilRoBERTa base model
This model is a distilled version of the [RoBERTa-base model](https://huggingface.co/roberta-base). It follows the same training procedure as [DistilBERT](https://huggingface.co/distilbert-base-uncased).
The code for the distillation process can be found [here](https://github.com/huggingface/transformers/tree/master/examples/distillation).
This model is case-sensitive: it makes a difference between english and English.
The model has 6 layers, 768 dimension and 12 heads, totalizing 82M parameters (compared to 125M parameters for RoBERTa-base).
On average DistilRoBERTa is twice as fast as Roberta-base.
We encourage to check [RoBERTa-base model](https://huggingface.co/roberta-base) to know more about usage, limitations and potential biases.
## Training data
DistilRoBERTa was pre-trained on [OpenWebTextCorpus](https://skylion007.github.io/OpenWebTextCorpus/), a reproduction of OpenAI's WebText dataset (it is ~4 times less training data than the teacher RoBERTa).
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Glue test results:
| Task | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE |
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|
| | 84.0 | 89.4 | 90.8 | 92.5 | 59.3 | 88.3 | 86.6 | 67.9 |
### BibTeX entry and citation info
```bibtex
@article{Sanh2019DistilBERTAD,
title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf},
journal={ArXiv},
year={2019},
volume={abs/1910.01108}
}
```
<a href="https://huggingface.co/exbert/?model=distilroberta-base">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
Slavic BERT from https://github.com/deepmipt/Slavic-BERT-NER http://files.deeppavlov.ai/deeppavlov_data/bg_cs_pl_ru_cased_L-12_H-768_A-12.tar.gz
---
language: pl
thumbnail: https://raw.githubusercontent.com/kldarek/polbert/master/img/polbert.png
---
# Polbert - Polish BERT
Polish version of BERT language model is here! It is now available in two variants: cased and uncased, both can be downloaded and used via HuggingFace transformers library. I recommend using the cased model, more info on the differences and benchmark results below.
![PolBERT image](https://raw.githubusercontent.com/kldarek/polbert/master/img/polbert.png)
## Cased and uncased variants
* I initially trained the uncased model, the corpus and training details are referenced below. Here are some issues I found after I published the uncased model:
* Some Polish characters and accents are not tokenized correctly through the BERT tokenizer when applying lowercase. This doesn't impact sequence classification much, but may influence token classfication tasks significantly.
* I noticed a lot of duplicates in the Open Subtitles dataset, which dominates the training corpus.
* I didn't use Whole Word Masking.
* The cased model improves on the uncased model in the following ways:
* All Polish characters and accents should now be tokenized correctly.
* I removed duplicates from Open Subtitles dataset. The corpus is smaller, but more balanced now.
* The model is trained with Whole Word Masking.
## Pre-training corpora
Below is the list of corpora used along with the output of `wc` command (counting lines, words and characters). These corpora were divided into sentences with srxsegmenter (see references), concatenated and tokenized with HuggingFace BERT Tokenizer.
### Uncased
| Tables | Lines | Words | Characters |
| ------------- |--------------:| -----:| -----:|
| [Polish subset of Open Subtitles](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 236635408| 1431199601 | 7628097730 |
| [Polish subset of ParaCrawl](http://opus.nlpl.eu/ParaCrawl.php) | 8470950 | 176670885 | 1163505275 |
| [Polish Parliamentary Corpus](http://clip.ipipan.waw.pl/PPC) | 9799859 | 121154785 | 938896963 |
| [Polish Wikipedia - Feb 2020](https://dumps.wikimedia.org/plwiki/latest/plwiki-latest-pages-articles.xml.bz2) | 8014206 | 132067986 | 1015849191 |
| Total | 262920423 | 1861093257 | 10746349159 |
### Cased
| Tables | Lines | Words | Characters |
| ------------- |--------------:| -----:| -----:|
| [Polish subset of Open Subtitles (Deduplicated) ](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 41998942| 213590656 | 1424873235 |
| [Polish subset of ParaCrawl](http://opus.nlpl.eu/ParaCrawl.php) | 8470950 | 176670885 | 1163505275 |
| [Polish Parliamentary Corpus](http://clip.ipipan.waw.pl/PPC) | 9799859 | 121154785 | 938896963 |
| [Polish Wikipedia - Feb 2020](https://dumps.wikimedia.org/plwiki/latest/plwiki-latest-pages-articles.xml.bz2) | 8014206 | 132067986 | 1015849191 |
| Total | 68283960 | 646479197 | 4543124667 |
## Pre-training details
### Uncased
* Polbert was trained with code provided in Google BERT's github repository (https://github.com/google-research/bert)
* Currently released model follows bert-base-uncased model architecture (12-layer, 768-hidden, 12-heads, 110M parameters)
* Training set-up: in total 1 million training steps:
* 100.000 steps - 128 sequence length, batch size 512, learning rate 1e-4 (10.000 steps warmup)
* 800.000 steps - 128 sequence length, batch size 512, learning rate 5e-5
* 100.000 steps - 512 sequence length, batch size 256, learning rate 2e-5
* The model was trained on a single Google Cloud TPU v3-8
### Cased
* Same approach as uncased model, with the following differences:
* Whole Word Masking
* Training set-up:
* 100.000 steps - 128 sequence length, batch size 2048, learning rate 1e-4 (10.000 steps warmup)
* 100.000 steps - 128 sequence length, batch size 2048, learning rate 5e-5
* 100.000 steps - 512 sequence length, batch size 256, learning rate 2e-5
## Usage
Polbert is released via [HuggingFace Transformers library](https://huggingface.co/transformers/).
For an example use as language model, see [this notebook](/LM_testing.ipynb) file.
### Uncased
```python
from transformers import *
model = BertForMaskedLM.from_pretrained("dkleczek/bert-base-polish-uncased-v1")
tokenizer = BertTokenizer.from_pretrained("dkleczek/bert-base-polish-uncased-v1")
nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer)
for pred in nlp(f"Adam Mickiewicz wielkim polskim {nlp.tokenizer.mask_token} był."):
print(pred)
# Output:
# {'sequence': '[CLS] adam mickiewicz wielkim polskim poeta był. [SEP]', 'score': 0.47196975350379944, 'token': 26596}
# {'sequence': '[CLS] adam mickiewicz wielkim polskim bohaterem był. [SEP]', 'score': 0.09127858281135559, 'token': 10953}
# {'sequence': '[CLS] adam mickiewicz wielkim polskim człowiekiem był. [SEP]', 'score': 0.0647173821926117, 'token': 5182}
# {'sequence': '[CLS] adam mickiewicz wielkim polskim pisarzem był. [SEP]', 'score': 0.05232388526201248, 'token': 24293}
# {'sequence': '[CLS] adam mickiewicz wielkim polskim politykiem był. [SEP]', 'score': 0.04554257541894913, 'token': 44095}
```
### Cased
```python
model = BertForMaskedLM.from_pretrained("dkleczek/bert-base-polish-cased-v1")
tokenizer = BertTokenizer.from_pretrained("dkleczek/bert-base-polish-cased-v1")
nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer)
for pred in nlp(f"Adam Mickiewicz wielkim polskim {nlp.tokenizer.mask_token} był."):
print(pred)
# Output:
# {'sequence': '[CLS] Adam Mickiewicz wielkim polskim pisarzem był. [SEP]', 'score': 0.5391148328781128, 'token': 37120}
# {'sequence': '[CLS] Adam Mickiewicz wielkim polskim człowiekiem był. [SEP]', 'score': 0.11683262139558792, 'token': 6810}
# {'sequence': '[CLS] Adam Mickiewicz wielkim polskim bohaterem był. [SEP]', 'score': 0.06021466106176376, 'token': 17709}
# {'sequence': '[CLS] Adam Mickiewicz wielkim polskim mistrzem był. [SEP]', 'score': 0.051870670169591904, 'token': 14652}
# {'sequence': '[CLS] Adam Mickiewicz wielkim polskim artystą był. [SEP]', 'score': 0.031787533313035965, 'token': 35680}
```
See the next section for an example usage of Polbert in downstream tasks.
## Evaluation
Thanks to Allegro, we now have the [KLEJ benchmark](https://klejbenchmark.com/leaderboard/), a set of nine evaluation tasks for the Polish language understanding. The following results are achieved by running standard set of evaluation scripts (no tricks!) utilizing both cased and uncased variants of Polbert.
| Model | Average | NKJP-NER | CDSC-E | CDSC-R | CBD | PolEmo2.0-IN | PolEmo2.0-OUT | DYK | PSC | AR |
| ------------- |--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|
| Polbert cased | 81.7 | 93.6 | 93.4 | 93.8 | 52.7 | 87.4 | 71.1 | 59.1 | 98.6 | 85.2 |
| Polbert uncased | 81.4 | 90.1 | 93.9 | 93.5 | 55.0 | 88.1 | 68.8 | 59.4 | 98.8 | 85.4 |
Note how the uncased model performs better than cased on some tasks? My guess this is because of the oversampling of Open Subtitles dataset and its similarity to data in some of these tasks. All these benchmark tasks are sequence classification, so the relative strength of the cased model is not so visible here.
## Bias
The data used to train the model is biased. It may reflect stereotypes related to gender, ethnicity etc. Please be careful when using the model for downstream task to consider these biases and mitigate them.
## Acknowledgements
* I'd like to express my gratitude to Google [TensorFlow Research Cloud (TFRC)](https://www.tensorflow.org/tfrc) for providing the free TPU credits - thank you!
* Also appreciate the help from Timo Möller from [deepset](https://deepset.ai) for sharing tips and scripts based on their experience training German BERT model.
* Big thanks to Allegro for releasing KLEJ Benchmark and specifically to Piotr Rybak for help with the evaluation and pointing out some issues with the tokenization.
* Finally, thanks to Rachel Thomas, Jeremy Howard and Sylvain Gugger from [fastai](https://www.fast.ai) for their NLP and Deep Learning courses!
## Author
Darek Kłeczek - contact me on Twitter [@dk21](https://twitter.com/dk21)
## References
* https://github.com/google-research/bert
* https://github.com/narusemotoki/srx_segmenter
* SRX rules file for sentence splitting in Polish, written by Marcin Miłkowski: https://raw.githubusercontent.com/languagetool-org/languagetool/master/languagetool-core/src/main/resources/org/languagetool/resource/segment.srx
* [KLEJ benchmark](https://klejbenchmark.com/leaderboard/)
---
language: pl
thumbnail: https://raw.githubusercontent.com/kldarek/polbert/master/img/polbert.png
---
# Polbert - Polish BERT
Polish version of BERT language model is here! It is now available in two variants: cased and uncased, both can be downloaded and used via HuggingFace transformers library. I recommend using the cased model, more info on the differences and benchmark results below.
![PolBERT image](https://raw.githubusercontent.com/kldarek/polbert/master/img/polbert.png)
## Cased and uncased variants
* I initially trained the uncased model, the corpus and training details are referenced below. Here are some issues I found after I published the uncased model:
* Some Polish characters and accents are not tokenized correctly through the BERT tokenizer when applying lowercase. This doesn't impact sequence classification much, but may influence token classfication tasks significantly.
* I noticed a lot of duplicates in the Open Subtitles dataset, which dominates the training corpus.
* I didn't use Whole Word Masking.
* The cased model improves on the uncased model in the following ways:
* All Polish characters and accents should now be tokenized correctly.
* I removed duplicates from Open Subtitles dataset. The corpus is smaller, but more balanced now.
* The model is trained with Whole Word Masking.
## Pre-training corpora
Below is the list of corpora used along with the output of `wc` command (counting lines, words and characters). These corpora were divided into sentences with srxsegmenter (see references), concatenated and tokenized with HuggingFace BERT Tokenizer.
### Uncased
| Tables | Lines | Words | Characters |
| ------------- |--------------:| -----:| -----:|
| [Polish subset of Open Subtitles](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 236635408| 1431199601 | 7628097730 |
| [Polish subset of ParaCrawl](http://opus.nlpl.eu/ParaCrawl.php) | 8470950 | 176670885 | 1163505275 |
| [Polish Parliamentary Corpus](http://clip.ipipan.waw.pl/PPC) | 9799859 | 121154785 | 938896963 |
| [Polish Wikipedia - Feb 2020](https://dumps.wikimedia.org/plwiki/latest/plwiki-latest-pages-articles.xml.bz2) | 8014206 | 132067986 | 1015849191 |
| Total | 262920423 | 1861093257 | 10746349159 |
### Cased
| Tables | Lines | Words | Characters |
| ------------- |--------------:| -----:| -----:|
| [Polish subset of Open Subtitles (Deduplicated) ](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 41998942| 213590656 | 1424873235 |
| [Polish subset of ParaCrawl](http://opus.nlpl.eu/ParaCrawl.php) | 8470950 | 176670885 | 1163505275 |
| [Polish Parliamentary Corpus](http://clip.ipipan.waw.pl/PPC) | 9799859 | 121154785 | 938896963 |
| [Polish Wikipedia - Feb 2020](https://dumps.wikimedia.org/plwiki/latest/plwiki-latest-pages-articles.xml.bz2) | 8014206 | 132067986 | 1015849191 |
| Total | 68283960 | 646479197 | 4543124667 |
## Pre-training details
### Uncased
* Polbert was trained with code provided in Google BERT's github repository (https://github.com/google-research/bert)
* Currently released model follows bert-base-uncased model architecture (12-layer, 768-hidden, 12-heads, 110M parameters)
* Training set-up: in total 1 million training steps:
* 100.000 steps - 128 sequence length, batch size 512, learning rate 1e-4 (10.000 steps warmup)
* 800.000 steps - 128 sequence length, batch size 512, learning rate 5e-5
* 100.000 steps - 512 sequence length, batch size 256, learning rate 2e-5
* The model was trained on a single Google Cloud TPU v3-8
### Cased
* Same approach as uncased model, with the following differences:
* Whole Word Masking
* Training set-up:
* 100.000 steps - 128 sequence length, batch size 2048, learning rate 1e-4 (10.000 steps warmup)
* 100.000 steps - 128 sequence length, batch size 2048, learning rate 5e-5
* 100.000 steps - 512 sequence length, batch size 256, learning rate 2e-5
## Usage
Polbert is released via [HuggingFace Transformers library](https://huggingface.co/transformers/).
For an example use as language model, see [this notebook](/LM_testing.ipynb) file.
### Uncased
```python
from transformers import *
model = BertForMaskedLM.from_pretrained("dkleczek/bert-base-polish-uncased-v1")
tokenizer = BertTokenizer.from_pretrained("dkleczek/bert-base-polish-uncased-v1")
nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer)
for pred in nlp(f"Adam Mickiewicz wielkim polskim {nlp.tokenizer.mask_token} był."):
print(pred)
# Output:
# {'sequence': '[CLS] adam mickiewicz wielkim polskim poeta był. [SEP]', 'score': 0.47196975350379944, 'token': 26596}
# {'sequence': '[CLS] adam mickiewicz wielkim polskim bohaterem był. [SEP]', 'score': 0.09127858281135559, 'token': 10953}
# {'sequence': '[CLS] adam mickiewicz wielkim polskim człowiekiem był. [SEP]', 'score': 0.0647173821926117, 'token': 5182}
# {'sequence': '[CLS] adam mickiewicz wielkim polskim pisarzem był. [SEP]', 'score': 0.05232388526201248, 'token': 24293}
# {'sequence': '[CLS] adam mickiewicz wielkim polskim politykiem był. [SEP]', 'score': 0.04554257541894913, 'token': 44095}
```
### Cased
```python
model = BertForMaskedLM.from_pretrained("dkleczek/bert-base-polish-cased-v1")
tokenizer = BertTokenizer.from_pretrained("dkleczek/bert-base-polish-cased-v1")
nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer)
for pred in nlp(f"Adam Mickiewicz wielkim polskim {nlp.tokenizer.mask_token} był."):
print(pred)
# Output:
# {'sequence': '[CLS] Adam Mickiewicz wielkim polskim pisarzem był. [SEP]', 'score': 0.5391148328781128, 'token': 37120}
# {'sequence': '[CLS] Adam Mickiewicz wielkim polskim człowiekiem był. [SEP]', 'score': 0.11683262139558792, 'token': 6810}
# {'sequence': '[CLS] Adam Mickiewicz wielkim polskim bohaterem był. [SEP]', 'score': 0.06021466106176376, 'token': 17709}
# {'sequence': '[CLS] Adam Mickiewicz wielkim polskim mistrzem był. [SEP]', 'score': 0.051870670169591904, 'token': 14652}
# {'sequence': '[CLS] Adam Mickiewicz wielkim polskim artystą był. [SEP]', 'score': 0.031787533313035965, 'token': 35680}
```
See the next section for an example usage of Polbert in downstream tasks.
## Evaluation
Thanks to Allegro, we now have the [KLEJ benchmark](https://klejbenchmark.com/leaderboard/), a set of nine evaluation tasks for the Polish language understanding. The following results are achieved by running standard set of evaluation scripts (no tricks!) utilizing both cased and uncased variants of Polbert.
| Model | Average | NKJP-NER | CDSC-E | CDSC-R | CBD | PolEmo2.0-IN | PolEmo2.0-OUT | DYK | PSC | AR |
| ------------- |--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|
| Polbert cased | 81.7 | 93.6 | 93.4 | 93.8 | 52.7 | 87.4 | 71.1 | 59.1 | 98.6 | 85.2 |
| Polbert uncased | 81.4 | 90.1 | 93.9 | 93.5 | 55.0 | 88.1 | 68.8 | 59.4 | 98.8 | 85.4 |
Note how the uncased model performs better than cased on some tasks? My guess this is because of the oversampling of Open Subtitles dataset and its similarity to data in some of these tasks. All these benchmark tasks are sequence classification, so the relative strength of the cased model is not so visible here.
## Bias
The data used to train the model is biased. It may reflect stereotypes related to gender, ethnicity etc. Please be careful when using the model for downstream task to consider these biases and mitigate them.
## Acknowledgements
* I'd like to express my gratitude to Google [TensorFlow Research Cloud (TFRC)](https://www.tensorflow.org/tfrc) for providing the free TPU credits - thank you!
* Also appreciate the help from Timo Möller from [deepset](https://deepset.ai) for sharing tips and scripts based on their experience training German BERT model.
* Big thanks to Allegro for releasing KLEJ Benchmark and specifically to Piotr Rybak for help with the evaluation and pointing out some issues with the tokenization.
* Finally, thanks to Rachel Thomas, Jeremy Howard and Sylvain Gugger from [fastai](https://www.fast.ai) for their NLP and Deep Learning courses!
## Author
Darek Kłeczek - contact me on Twitter [@dk21](https://twitter.com/dk21)
## References
* https://github.com/google-research/bert
* https://github.com/narusemotoki/srx_segmenter
* SRX rules file for sentence splitting in Polish, written by Marcin Miłkowski: https://raw.githubusercontent.com/languagetool-org/languagetool/master/languagetool-core/src/main/resources/org/languagetool/resource/segment.srx
* [KLEJ benchmark](https://klejbenchmark.com/leaderboard/)
\ No newline at end of file
---
language: en
datasets:
- conll2003
---
# bert-base-NER
## Model description
**bert-base-NER** is a fine-tuned BERT model that is ready to use for **Named Entity Recognition** and achieves **state-of-the-art performance** for the NER task. It has been trained to recognize four types of entities: location (LOC), organizations (ORG), person (PER) and Miscellaneous (MISC).
Specifically, this model is a *bert-base-cased* model that was fine-tuned on the English version of the standard [CoNLL-2003 Named Entity Recognition](https://www.aclweb.org/anthology/W03-0419.pdf) dataset.
## Intended uses & limitations
#### How to use
You can use this model with Transformers *pipeline* for NER.
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "My name is Wolfgang and I live in Berlin"
ner_results = nlp(example)
print(ner_results)
```
#### Limitations and bias
This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. Furthermore, the model occassionally tags subword tokens as entities and post-processing of results may be necessary to handle those cases.
## Training data
This model was fine-tuned on English version of the standard [CoNLL-2003 Named Entity Recognition](https://www.aclweb.org/anthology/W03-0419.pdf) dataset.
The training dataset distinguishes between the beginning and continuation of an entity so that if there are back-to-back entities of the same type, the model can output where the second entity begins. As in the dataset, each token will be classified as one of the following classes:
Abbreviation|Description
-|-
O|Outside of a named entity
B-MIS |Beginning of a miscellaneous entity right after another miscellaneous entity
I-MIS |Miscellaneous entity
B-PER |Beginning of a person’s name right after another person’s name
I-PER |Person’s name
B-ORG |Beginning of an organisation right after another organisation
I-ORG |Organisation
B-LOC |Beginning of a location right after another location
I-LOC |Location
### CoNLL-2003 English Dataset Statistics
This dataset was derived from the Reuters corpus which consists of Reuters news stories. You can read more about how this dataset was created in the CoNLL-2003 paper.
#### # of training examples per entity type
Dataset|LOC|MISC|ORG|PER
-|-|-|-|-
Train|7140|3438|6321|6600
Dev|1837|922|1341|1842
Test|1668|702|1661|1617
#### # of articles/sentences/tokens per dataset
Dataset |Articles |Sentences |Tokens
-|-|-|-
Train |946 |14,987 |203,621
Dev |216 |3,466 |51,362
Test |231 |3,684 |46,435
## Training procedure
This model was trained on a single NVIDIA V100 GPU with recommended hyperparameters from the [original BERT paper](https://arxiv.org/pdf/1810.04805) which trained & evaluated the model on CoNLL-2003 NER task.
## Eval results
metric|dev|test
-|-|-
f1 |95.1 |91.3
precision |95.0 |90.7
recall |95.3 |91.9
The test metrics are a little lower than the official Google BERT results which encoded document context & experimented with CRF. More on replicating the original results [here](https://github.com/google-research/bert/issues/223).
### BibTeX entry and citation info
```
@article{DBLP:journals/corr/abs-1810-04805,
author = {Jacob Devlin and
Ming{-}Wei Chang and
Kenton Lee and
Kristina Toutanova},
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
Understanding},
journal = {CoRR},
volume = {abs/1810.04805},
year = {2018},
url = {http://arxiv.org/abs/1810.04805},
archivePrefix = {arXiv},
eprint = {1810.04805},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
```
@inproceedings{tjong-kim-sang-de-meulder-2003-introduction,
title = "Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition",
author = "Tjong Kim Sang, Erik F. and
De Meulder, Fien",
booktitle = "Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003",
year = "2003",
url = "https://www.aclweb.org/anthology/W03-0419",
pages = "142--147",
}
```
---
language: ro
---
# bert-base-romanian-cased-v1
The BERT **base**, **cased** model for Romanian, trained on a 15GB corpus, version ![v1.0](https://img.shields.io/badge/v1.0-21%20Apr%202020-ff6666)
### How to use
```python
from transformers import AutoTokenizer, AutoModel
import torch
# load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("dumitrescustefan/bert-base-romanian-cased-v1")
model = AutoModel.from_pretrained("dumitrescustefan/bert-base-romanian-cased-v1")
# tokenize a sentence and run through the model
input_ids = torch.tensor(tokenizer.encode("Acesta este un test.", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
# get encoding
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
```
### Evaluation
Evaluation is performed on Universal Dependencies [Romanian RRT](https://universaldependencies.org/treebanks/ro_rrt/index.html) UPOS, XPOS and LAS, and on a NER task based on [RONEC](https://github.com/dumitrescustefan/ronec). Details, as well as more in-depth tests not shown here, are given in the dedicated [evaluation page](https://github.com/dumitrescustefan/Romanian-Transformers/tree/master/evaluation/README.md).
The baseline is the [Multilingual BERT](https://github.com/google-research/bert/blob/master/multilingual.md) model ``bert-base-multilingual-(un)cased``, as at the time of writing it was the only available BERT model that works on Romanian.
| Model | UPOS | XPOS | NER | LAS |
|--------------------------------|:-----:|:------:|:-----:|:-----:|
| bert-base-multilingual-cased | 97.87 | 96.16 | 84.13 | 88.04 |
| bert-base-romanian-cased-v1 | **98.00** | **96.46** | **85.88** | **89.69** |
### Corpus
The model is trained on the following corpora (stats in the table below are after cleaning):
| Corpus | Lines(M) | Words(M) | Chars(B) | Size(GB) |
|----------- |:--------: |:--------: |:--------: |:--------: |
| OPUS | 55.05 | 635.04 | 4.045 | 3.8 |
| OSCAR | 33.56 | 1725.82 | 11.411 | 11 |
| Wikipedia | 1.54 | 60.47 | 0.411 | 0.4 |
| **Total** | **90.15** | **2421.33** | **15.867** | **15.2** |
#### Acknowledgements
- We'd like to thank [Sampo Pyysalo](https://github.com/spyysalo) from TurkuNLP for helping us out with the compute needed to pretrain the v1.0 BERT models. He's awesome!
---
language: ro
---
# bert-base-romanian-uncased-v1
The BERT **base**, **uncased** model for Romanian, trained on a 15GB corpus, version ![v1.0](https://img.shields.io/badge/v1.0-21%20Apr%202020-ff6666)
### How to use
```python
from transformers import AutoTokenizer, AutoModel
import torch
# load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("dumitrescustefan/bert-base-romanian-uncased-v1", do_lower_case=True)
model = AutoModel.from_pretrained("dumitrescustefan/bert-base-romanian-uncased-v1")
# tokenize a sentence and run through the model
input_ids = torch.tensor(tokenizer.encode("Acesta este un test.", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
# get encoding
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
```
### Evaluation
Evaluation is performed on Universal Dependencies [Romanian RRT](https://universaldependencies.org/treebanks/ro_rrt/index.html) UPOS, XPOS and LAS, and on a NER task based on [RONEC](https://github.com/dumitrescustefan/ronec). Details, as well as more in-depth tests not shown here, are given in the dedicated [evaluation page](https://github.com/dumitrescustefan/Romanian-Transformers/tree/master/evaluation/README.md).
The baseline is the [Multilingual BERT](https://github.com/google-research/bert/blob/master/multilingual.md) model ``bert-base-multilingual-(un)cased``, as at the time of writing it was the only available BERT model that works on Romanian.
| Model | UPOS | XPOS | NER | LAS |
|--------------------------------|:-----:|:------:|:-----:|:-----:|
| bert-base-multilingual-uncased | 97.65 | 95.72 | 83.91 | 87.65 |
| bert-base-romanian-uncased-v1 | **98.18** | **96.84** | **85.26** | **89.61** |
### Corpus
The model is trained on the following corpora (stats in the table below are after cleaning):
| Corpus | Lines(M) | Words(M) | Chars(B) | Size(GB) |
|----------- |:--------: |:--------: |:--------: |:--------: |
| OPUS | 55.05 | 635.04 | 4.045 | 3.8 |
| OSCAR | 33.56 | 1725.82 | 11.411 | 11 |
| Wikipedia | 1.54 | 60.47 | 0.411 | 0.4 |
| **Total** | **90.15** | **2421.33** | **15.867** | **15.2** |
#### Acknowledgements
- We'd like to thank [Sampo Pyysalo](https://github.com/spyysalo) from TurkuNLP for helping us out with the compute needed to pretrain the v1.0 BERT models. He's awesome!
### How to use
You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we
set a seed for reproducibility:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='e-tony/gpt2-rnm')
>>> set_seed(42)
>>> generator("Rick: I turned myself into a pickle, Morty!\nMorty: ", max_length=50, num_return_sequences=5)
[{'generated_text': "Rick: I turned myself into a pickle, Morty!\nMorty: I didn't want to have children. It was my fate! I'll pay my mom and dad.\nSnuffles: Well, at least we"},
{'generated_text': "Rick: I turned myself into a pickle, Morty!\nMorty: you know what happened?\n(Steven begins dragging people down the toilet with his hand. As Steven falls) The whole thing starts.\nA man approaches Steven"},
{'generated_text': "Rick: I turned myself into a pickle, Morty!\nMorty: Oh wait! And do you remember what I did to you?\nJerry: Uh, it didn't hurt. It should have hurt a lot since I"},
{'generated_text': "Rick: I turned myself into a pickle, Morty!\nMorty: Rick!\nKraven: Wait! [wary gasp] What the hell are you doing this time?!\nJerry: Hey, are you"},
{'generated_text': "Rick: I turned myself into a pickle, Morty!\nMorty: Uh.\nJerry: You don't have to put your finger on me today, do you?\nRick: It's just, what do you"}]
```
### Training data
We used the original `gpt2` model and fine-tuned it on [Rick and Morty transcripts](https://rickandmorty.fandom.com/wiki/Category:Transcripts).
---
tags:
- exbert
---
## CS224n SQuAD2.0 Project Dataset
The goal of this model is to save CS224n students GPU time when establishing
baselines to beat for the [Default Final Project](http://web.stanford.edu/class/cs224n/project/default-final-project-handout.pdf).
The training set used to fine-tune this model is the same as
the [official one](https://rajpurkar.github.io/SQuAD-explorer/); however,
evaluation and model selection were performed using roughly half of the official
dev set, 6078 examples, picked at random. The data files can be found at
<https://github.com/elgeish/squad/tree/master/data> — this is the Winter 2020
version. Given that the official SQuAD2.0 dev set contains the project's test
set, students must make sure not to use the official SQuAD2.0 dev set in any way
— including the use of models fine-tuned on the official SQuAD2.0, since they
used the official SQuAD2.0 dev set for model selection.
<a href="https://huggingface.co/exbert/?model=elgeish/cs224n-squad2.0-albert-base-v2">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
## Results
```json
{
"exact": 78.94044093451794,
"f1": 81.7724930324639,
"total": 6078,
"HasAns_exact": 76.28865979381443,
"HasAns_f1": 82.20385314478195,
"HasAns_total": 2910,
"NoAns_exact": 81.37626262626263,
"NoAns_f1": 81.37626262626263,
"NoAns_total": 3168,
"best_exact": 78.95689371503784,
"best_exact_thresh": 0.0,
"best_f1": 81.78894581298378,
"best_f1_thresh": 0.0
}
```
## Notable Arguments
```json
{
"do_lower_case": true,
"doc_stride": 128,
"fp16": false,
"fp16_opt_level": "O1",
"gradient_accumulation_steps": 24,
"learning_rate": 3e-05,
"max_answer_length": 30,
"max_grad_norm": 1,
"max_query_length": 64,
"max_seq_length": 384,
"model_name_or_path": "albert-base-v2",
"model_type": "albert",
"num_train_epochs": 3,
"per_gpu_train_batch_size": 8,
"save_steps": 5000,
"seed": 42,
"train_batch_size": 8,
"version_2_with_negative": true,
"warmup_steps": 0,
"weight_decay": 0
}
```
## Environment Setup
```json
{
"transformers": "2.5.1",
"pytorch": "1.4.0=py3.6_cuda10.1.243_cudnn7.6.3_0",
"python": "3.6.5=hc3d631a_2",
"os": "Linux 4.15.0-1060-aws #62-Ubuntu SMP Tue Feb 11 21:23:22 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux",
"gpu": "Tesla V100-SXM2-16GB"
}
```
## How to Cite
```BibTeX
@misc{elgeish2020gestalt,
title={Gestalt: a Stacking Ensemble for SQuAD2.0},
author={Mohamed El-Geish},
journal={arXiv e-prints},
archivePrefix={arXiv},
eprint={2004.07067},
year={2020},
}
```
## Related Models
* [elgeish/cs224n-squad2.0-albert-large-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-large-v2)
* [elgeish/cs224n-squad2.0-albert-xxlarge-v1](https://huggingface.co/elgeish/cs224n-squad2.0-albert-xxlarge-v1)
* [elgeish/cs224n-squad2.0-distilbert-base-uncased](https://huggingface.co/elgeish/cs224n-squad2.0-distilbert-base-uncased)
* [elgeish/cs224n-squad2.0-roberta-base](https://huggingface.co/elgeish/cs224n-squad2.0-roberta-base)
---
tags:
- exbert
---
## CS224n SQuAD2.0 Project Dataset
The goal of this model is to save CS224n students GPU time when establishing
baselines to beat for the [Default Final Project](http://web.stanford.edu/class/cs224n/project/default-final-project-handout.pdf).
The training set used to fine-tune this model is the same as
the [official one](https://rajpurkar.github.io/SQuAD-explorer/); however,
evaluation and model selection were performed using roughly half of the official
dev set, 6078 examples, picked at random. The data files can be found at
<https://github.com/elgeish/squad/tree/master/data> — this is the Winter 2020
version. Given that the official SQuAD2.0 dev set contains the project's test
set, students must make sure not to use the official SQuAD2.0 dev set in any way
— including the use of models fine-tuned on the official SQuAD2.0, since they
used the official SQuAD2.0 dev set for model selection.
<a href="https://huggingface.co/exbert/?model=elgeish/cs224n-squad2.0-albert-large-v2">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
## Results
```json
{
"exact": 79.2694965449161,
"f1": 82.50844352970152,
"total": 6078,
"HasAns_exact": 74.87972508591065,
"HasAns_f1": 81.64478342732858,
"HasAns_total": 2910,
"NoAns_exact": 83.30176767676768,
"NoAns_f1": 83.30176767676768,
"NoAns_total": 3168,
"best_exact": 79.2694965449161,
"best_exact_thresh": 0.0,
"best_f1": 82.50844352970155,
"best_f1_thresh": 0.0
}
```
## Notable Arguments
```json
{
"do_lower_case": true,
"doc_stride": 128,
"fp16": false,
"fp16_opt_level": "O1",
"gradient_accumulation_steps": 1,
"learning_rate": 3e-05,
"max_answer_length": 30,
"max_grad_norm": 1,
"max_query_length": 64,
"max_seq_length": 384,
"model_name_or_path": "albert-large-v2",
"model_type": "albert",
"num_train_epochs": 5,
"per_gpu_train_batch_size": 8,
"save_steps": 5000,
"seed": 42,
"train_batch_size": 8,
"version_2_with_negative": true,
"warmup_steps": 0,
"weight_decay": 0
}
```
## Environment Setup
```json
{
"transformers": "2.5.1",
"pytorch": "1.4.0=py3.6_cuda10.1.243_cudnn7.6.3_0",
"python": "3.6.5=hc3d631a_2",
"os": "Linux 4.15.0-1060-aws #62-Ubuntu SMP Tue Feb 11 21:23:22 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux",
"gpu": "Tesla V100-SXM2-16GB"
}
```
## How to Cite
```BibTeX
@misc{elgeish2020gestalt,
title={Gestalt: a Stacking Ensemble for SQuAD2.0},
author={Mohamed El-Geish},
journal={arXiv e-prints},
archivePrefix={arXiv},
eprint={2004.07067},
year={2020},
}
```
## Related Models
* [elgeish/cs224n-squad2.0-albert-base-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-base-v2)
* [elgeish/cs224n-squad2.0-albert-xxlarge-v1](https://huggingface.co/elgeish/cs224n-squad2.0-albert-xxlarge-v1)
* [elgeish/cs224n-squad2.0-distilbert-base-uncased](https://huggingface.co/elgeish/cs224n-squad2.0-distilbert-base-uncased)
* [elgeish/cs224n-squad2.0-roberta-base](https://huggingface.co/elgeish/cs224n-squad2.0-roberta-base)
---
tags:
- exbert
---
## CS224n SQuAD2.0 Project Dataset
The goal of this model is to save CS224n students GPU time when establishing
baselines to beat for the [Default Final Project](http://web.stanford.edu/class/cs224n/project/default-final-project-handout.pdf).
The training set used to fine-tune this model is the same as
the [official one](https://rajpurkar.github.io/SQuAD-explorer/); however,
evaluation and model selection were performed using roughly half of the official
dev set, 6078 examples, picked at random. The data files can be found at
<https://github.com/elgeish/squad/tree/master/data> — this is the Winter 2020
version. Given that the official SQuAD2.0 dev set contains the project's test
set, students must make sure not to use the official SQuAD2.0 dev set in any way
— including the use of models fine-tuned on the official SQuAD2.0, since they
used the official SQuAD2.0 dev set for model selection.
<a href="https://huggingface.co/exbert/?model=elgeish/cs224n-squad2.0-albert-xxlarge-v1">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
## Results
```json
{
"exact": 85.93287265547877,
"f1": 88.91258331187983,
"total": 6078,
"HasAns_exact": 84.36426116838489,
"HasAns_f1": 90.58786301361013,
"HasAns_total": 2910,
"NoAns_exact": 87.37373737373737,
"NoAns_f1": 87.37373737373737,
"NoAns_total": 3168,
"best_exact": 85.93287265547877,
"best_exact_thresh": 0.0,
"best_f1": 88.91258331187993,
"best_f1_thresh": 0.0
}
```
## Notable Arguments
```json
{
"do_lower_case": true,
"doc_stride": 128,
"fp16": false,
"fp16_opt_level": "O1",
"gradient_accumulation_steps": 24,
"learning_rate": 3e-05,
"max_answer_length": 30,
"max_grad_norm": 1,
"max_query_length": 64,
"max_seq_length": 512,
"model_name_or_path": "albert-xxlarge-v1",
"model_type": "albert",
"num_train_epochs": 4,
"per_gpu_train_batch_size": 1,
"save_steps": 1000,
"seed": 42,
"train_batch_size": 1,
"version_2_with_negative": true,
"warmup_steps": 814,
"weight_decay": 0
}
```
## Environment Setup
```json
{
"transformers": "2.5.1",
"pytorch": "1.4.0=py3.6_cuda10.1.243_cudnn7.6.3_0",
"python": "3.6.5=hc3d631a_2",
"os": "Linux 4.15.0-1060-aws #62-Ubuntu SMP Tue Feb 11 21:23:22 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux",
"gpu": "Tesla V100-SXM2-16GB"
}
```
## How to Cite
```BibTeX
@misc{elgeish2020gestalt,
title={Gestalt: a Stacking Ensemble for SQuAD2.0},
author={Mohamed El-Geish},
journal={arXiv e-prints},
archivePrefix={arXiv},
eprint={2004.07067},
year={2020},
}
```
## Related Models
* [elgeish/cs224n-squad2.0-albert-base-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-base-v2)
* [elgeish/cs224n-squad2.0-albert-large-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-large-v2)
* [elgeish/cs224n-squad2.0-distilbert-base-uncased](https://huggingface.co/elgeish/cs224n-squad2.0-distilbert-base-uncased)
* [elgeish/cs224n-squad2.0-roberta-base](https://huggingface.co/elgeish/cs224n-squad2.0-roberta-base)
## CS224n SQuAD2.0 Project Dataset
The goal of this model is to save CS224n students GPU time when establishing
baselines to beat for the [Default Final Project](http://web.stanford.edu/class/cs224n/project/default-final-project-handout.pdf).
The training set used to fine-tune this model is the same as
the [official one](https://rajpurkar.github.io/SQuAD-explorer/); however,
evaluation and model selection were performed using roughly half of the official
dev set, 6078 examples, picked at random. The data files can be found at
<https://github.com/elgeish/squad/tree/master/data> — this is the Winter 2020
version. Given that the official SQuAD2.0 dev set contains the project's test
set, students must make sure not to use the official SQuAD2.0 dev set in any way
— including the use of models fine-tuned on the official SQuAD2.0, since they
used the official SQuAD2.0 dev set for model selection.
## Results
```json
{
"exact": 65.16946363935504,
"f1": 67.87348075352251,
"total": 6078,
"HasAns_exact": 69.51890034364261,
"HasAns_f1": 75.16667217179045,
"HasAns_total": 2910,
"NoAns_exact": 61.17424242424242,
"NoAns_f1": 61.17424242424242,
"NoAns_total": 3168,
"best_exact": 65.16946363935504,
"best_exact_thresh": 0.0,
"best_f1": 67.87348075352243,
"best_f1_thresh": 0.0
}
```
## Notable Arguments
```json
{
"do_lower_case": true,
"doc_stride": 128,
"fp16": false,
"fp16_opt_level": "O1",
"gradient_accumulation_steps": 24,
"learning_rate": 3e-05,
"max_answer_length": 30,
"max_grad_norm": 1,
"max_query_length": 64,
"max_seq_length": 384,
"model_name_or_path": "distilbert-base-uncased-distilled-squad",
"model_type": "distilbert",
"num_train_epochs": 4,
"per_gpu_train_batch_size": 32,
"save_steps": 5000,
"seed": 42,
"train_batch_size": 32,
"version_2_with_negative": true,
"warmup_steps": 0,
"weight_decay": 0
}
```
## Environment Setup
```json
{
"transformers": "2.5.1",
"pytorch": "1.4.0=py3.6_cuda10.1.243_cudnn7.6.3_0",
"python": "3.6.5=hc3d631a_2",
"os": "Linux 4.15.0-1060-aws #62-Ubuntu SMP Tue Feb 11 21:23:22 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux",
"gpu": "Tesla V100-SXM2-16GB"
}
```
## How to Cite
```BibTeX
@misc{elgeish2020gestalt,
title={Gestalt: a Stacking Ensemble for SQuAD2.0},
author={Mohamed El-Geish},
journal={arXiv e-prints},
archivePrefix={arXiv},
eprint={2004.07067},
year={2020},
}
```
## Related Models
* [elgeish/cs224n-squad2.0-albert-base-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-base-v2)
* [elgeish/cs224n-squad2.0-albert-large-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-large-v2)
* [elgeish/cs224n-squad2.0-albert-xxlarge-v1](https://huggingface.co/elgeish/cs224n-squad2.0-albert-xxlarge-v1)
* [elgeish/cs224n-squad2.0-roberta-base](https://huggingface.co/elgeish/cs224n-squad2.0-roberta-base)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment