Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
3471ff0d
Unverified
Commit
3471ff0d
authored
Dec 24, 2019
by
Anthony MOI
Browse files
FastPreTrainedTokenizer
parent
81db12c3
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
127 additions
and
0 deletions
+127
-0
src/transformers/tokenization_utils.py
src/transformers/tokenization_utils.py
+127
-0
No files found.
src/transformers/tokenization_utils.py
View file @
3471ff0d
...
@@ -1410,3 +1410,130 @@ class PreTrainedTokenizer(object):
...
@@ -1410,3 +1410,130 @@ class PreTrainedTokenizer(object):
.
replace
(
" 're"
,
"'re"
)
.
replace
(
" 're"
,
"'re"
)
)
)
return
out_string
return
out_string
class
FastPreTrainedTokenizer
(
PreTrainedTokenizer
):
def
__init__
(
self
,
**
kwargs
):
super
(
FastPreTrainedTokenizer
,
self
).
__init__
(
**
kwargs
)
@
property
def
tokenizer
(
self
):
if
self
.
_tokenizer
is
None
:
raise
NotImplementedError
return
self
.
_tokenizer
@
property
def
decoder
(
self
):
if
self
.
_decoder
is
None
:
raise
NotImplementedError
return
self
.
_decoder
@
property
def
vocab_size
(
self
):
return
self
.
tokenizer
.
get_vocab_size
(
False
)
def
__len__
(
self
):
return
self
.
tokenizer
.
get_vocab_size
(
True
)
def
_update_special_tokens
(
self
):
self
.
tokenizer
.
add_special_tokens
(
self
.
all_special_tokens
)
@
staticmethod
def
_convert_encoding
(
encoding
,
return_tensors
=
None
,
return_token_type_ids
=
True
,
return_attention_mask
=
True
,
return_overflowing_tokens
=
False
,
return_special_tokens_mask
=
False
):
encoding_dict
=
{
"input_ids"
:
encoding
.
ids
,
}
if
return_token_type_ids
:
encoding_dict
[
"token_type_ids"
]
=
encoding
.
type_ids
if
return_attention_mask
:
encoding_dict
[
"attention_mask"
]
=
encoding
.
attention_mask
if
return_overflowing_tokens
:
overflowing
=
encoding
.
overflowing
encoding_dict
[
"overflowing_tokens"
]
=
overflowing
.
ids
if
overflowing
is
not
None
else
[]
if
return_special_tokens_mask
:
encoding_dict
[
"special_tokens_mask"
]
=
encoding
.
special_tokens_mask
# Prepare inputs as tensors if asked
if
return_tensors
==
'tf'
and
is_tf_available
():
encoding_dict
[
"input_ids"
]
=
tf
.
constant
([
encoding_dict
[
"input_ids"
]])
encoding_dict
[
"token_type_ids"
]
=
tf
.
constant
([
encoding_dict
[
"token_type_ids"
]])
if
"attention_mask"
in
encoding_dict
:
encoding_dict
[
"attention_mask"
]
=
tf
.
constant
([
encoding_dict
[
"attention_mask"
]])
elif
return_tensors
==
'pt'
and
is_torch_available
():
encoding_dict
[
"input_ids"
]
=
torch
.
tensor
([
encoding_dict
[
"input_ids"
]])
encoding_dict
[
"token_type_ids"
]
=
torch
.
tensor
([
encoding_dict
[
"token_type_ids"
]])
if
"attention_mask"
in
encoding_dict
:
encoding_dict
[
"attention_mask"
]
=
torch
.
tensor
([
encoding_dict
[
"attention_mask"
]])
elif
return_tensors
is
not
None
:
logger
.
warning
(
"Unable to convert output to tensors format {}, PyTorch or TensorFlow is not available."
.
format
(
return_tensors
))
return
encoding_dict
def
encode_plus
(
self
,
text
,
text_pair
=
None
,
return_tensors
=
None
,
return_token_type_ids
=
True
,
return_attention_mask
=
True
,
return_overflowing_tokens
=
False
,
return_special_tokens_mask
=
False
,
**
kwargs
):
encoding
=
self
.
tokenizer
.
encode
(
text
,
text_pair
)
return
self
.
_convert_encoding
(
encoding
,
return_tensors
=
return_tensors
,
return_token_type_ids
=
return_token_type_ids
,
return_attention_mask
=
return_attention_mask
,
return_overflowing_tokens
=
return_overflowing_tokens
,
return_special_tokens_mask
=
return_special_tokens_mask
)
def
tokenize
(
self
,
text
):
return
self
.
tokenizer
.
encode
(
text
).
tokens
def
_convert_token_to_id_with_added_voc
(
self
,
token
):
return
self
.
tokenizer
.
token_to_id
(
token
)
def
_convert_id_to_token
(
self
,
index
):
return
self
.
tokenizer
.
id_to_token
(
int
(
index
))
def
convert_tokens_to_string
(
self
,
tokens
):
return
self
.
decoder
.
decode
(
tokens
)
def
add_tokens
(
self
,
new_tokens
):
self
.
tokenizer
.
add_tokens
(
new_tokens
)
def
encode_batch
(
self
,
texts
,
return_tensors
=
None
,
return_token_type_ids
=
True
,
return_attention_mask
=
True
,
return_overflowing_tokens
=
False
,
return_special_tokens_mask
=
False
):
return
[
self
.
_convert_encoding
(
encoding
,
return_tensors
=
return_tensors
,
return_token_type_ids
=
return_token_type_ids
,
return_attention_mask
=
return_attention_mask
,
return_overflowing_tokens
=
return_overflowing_tokens
,
return_special_tokens_mask
=
return_special_tokens_mask
)
for
encoding
in
self
.
tokenizer
.
encode_batch
(
texts
)]
def
decode
(
self
,
token_ids
,
skip_special_tokens
=
False
,
clean_up_tokenization_spaces
=
True
):
text
=
self
.
tokenizer
.
decode
(
token_ids
,
skip_special_tokens
)
if
clean_up_tokenization_spaces
:
clean_text
=
self
.
clean_up_tokenization
(
text
)
return
clean_text
else
:
return
text
def
decode_batch
(
self
,
ids_batch
,
skip_special_tokens
=
False
,
clear_up_tokenization_spaces
=
True
):
return
[
self
.
clean_up_tokenization
(
text
)
if
clear_up_tokenization_spaces
else
text
for
text
in
self
.
tokenizer
.
decode_batch
(
ids_batch
,
skip_special_tokens
)]
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment