Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
33aa7a80
Commit
33aa7a80
authored
Feb 22, 2019
by
Joel Grus
Browse files
update documentation
parent
a5b3a895
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
12 additions
and
10 deletions
+12
-10
pytorch_pretrained_bert/modeling_gpt2.py
pytorch_pretrained_bert/modeling_gpt2.py
+12
-10
No files found.
pytorch_pretrained_bert/modeling_gpt2.py
View file @
33aa7a80
...
@@ -368,18 +368,17 @@ class GPT2PreTrainedModel(nn.Module):
...
@@ -368,18 +368,17 @@ class GPT2PreTrainedModel(nn.Module):
Params:
Params:
pretrained_model_name_or_path: either:
pretrained_model_name_or_path: either:
- a str with the name of a pre-trained model to load selected in the list of:
- a str with the name of a pre-trained model to load selected in the list of:
. `
openai-
gpt`
. `gpt
2
`
- a path or url to a pretrained model archive containing:
- a path or url to a pretrained model archive containing:
. `gpt2_config.json` a configuration file for the model
. `gpt2_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a GPT2Model instance
. `pytorch_model.bin` a PyTorch dump of a GPT2Model instance
- a path or url to a pretrained model archive containing:
- a path or url to a pretrained model archive containing:
. `
bert
_config.json` a configuration file for the model
. `
gpt2
_config.json` a configuration file for the model
. a TensorFlow checkpoint with trained weights
. a TensorFlow checkpoint with trained weights
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
state_dict: an optional state dictionary (collections.OrderedDict object) to use instead of pre-trained models
*inputs, **kwargs: additional input for the specific Bert class
*inputs, **kwargs: additional input for the specific GPT class
(ex: num_labels for BertForSequenceClassification)
"""
"""
if
pretrained_model_name_or_path
in
PRETRAINED_MODEL_ARCHIVE_MAP
:
if
pretrained_model_name_or_path
in
PRETRAINED_MODEL_ARCHIVE_MAP
:
archive_file
=
PRETRAINED_MODEL_ARCHIVE_MAP
[
pretrained_model_name_or_path
]
archive_file
=
PRETRAINED_MODEL_ARCHIVE_MAP
[
pretrained_model_name_or_path
]
...
@@ -494,10 +493,11 @@ class GPT2Model(GPT2PreTrainedModel):
...
@@ -494,10 +493,11 @@ class GPT2Model(GPT2PreTrainedModel):
The input, position and token_type embeddings are summed inside the Transformer before the first
The input, position and token_type embeddings are summed inside the Transformer before the first
self-attention block.
self-attention block.
Outputs:
Outputs
a tuple consisting of
:
`hidden_states`: the encoded-hidden-states at the top of the model
`hidden_states`: the encoded-hidden-states at the top of the model
as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
(or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)
(or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)
`presents`: ?
Example usage:
Example usage:
```python
```python
...
@@ -507,7 +507,7 @@ class GPT2Model(GPT2PreTrainedModel):
...
@@ -507,7 +507,7 @@ class GPT2Model(GPT2PreTrainedModel):
config = modeling_gpt2.GPT2Config()
config = modeling_gpt2.GPT2Config()
model = modeling_gpt2.GPT2Model(config)
model = modeling_gpt2.GPT2Model(config)
hidden_states = model(input_ids)
hidden_states
, presents
= model(input_ids)
```
```
"""
"""
...
@@ -575,9 +575,10 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
...
@@ -575,9 +575,10 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
Outputs:
Outputs:
if `lm_labels` is not `None`:
if `lm_labels` is not `None`:
Outputs the language modeling loss.
Outputs the language modeling loss.
else:
else
a tuple
:
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, config.vocab_size]
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, config.vocab_size]
(or more generally [d_1, ..., d_n, config.vocab_size] were d_1 ... d_n are the dimension of input_ids)
(or more generally [d_1, ..., d_n, config.vocab_size] were d_1 ... d_n are the dimension of input_ids)
`presents`: ...
Example usage:
Example usage:
```python
```python
...
@@ -587,7 +588,7 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
...
@@ -587,7 +588,7 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
config = modeling_gpt2.GPT2Config()
config = modeling_gpt2.GPT2Config()
model = modeling_gpt2.GPT2LMHeadModel(config)
model = modeling_gpt2.GPT2LMHeadModel(config)
lm_logits = model(input_ids)
lm_logits
, presents
= model(input_ids)
```
```
"""
"""
...
@@ -642,6 +643,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
...
@@ -642,6 +643,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
else: a tuple with
else: a tuple with
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, config.vocab_size]
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, config.vocab_size]
`multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]
`multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]
`presents`: ...
Example usage:
Example usage:
```python
```python
...
@@ -652,7 +654,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
...
@@ -652,7 +654,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
config = modeling_gpt2.GPT2Config()
config = modeling_gpt2.GPT2Config()
model = modeling_gpt2.GPT2LMHeadModel(config)
model = modeling_gpt2.GPT2LMHeadModel(config)
lm_logits, multiple_choice_logits = model(input_ids, mc_token_ids)
lm_logits, multiple_choice_logits
, presents
= model(input_ids, mc_token_ids)
```
```
"""
"""
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment