Commit 33aa7a80 authored by Joel Grus's avatar Joel Grus
Browse files

update documentation

parent a5b3a895
...@@ -368,18 +368,17 @@ class GPT2PreTrainedModel(nn.Module): ...@@ -368,18 +368,17 @@ class GPT2PreTrainedModel(nn.Module):
Params: Params:
pretrained_model_name_or_path: either: pretrained_model_name_or_path: either:
- a str with the name of a pre-trained model to load selected in the list of: - a str with the name of a pre-trained model to load selected in the list of:
. `openai-gpt` . `gpt2`
- a path or url to a pretrained model archive containing: - a path or url to a pretrained model archive containing:
. `gpt2_config.json` a configuration file for the model . `gpt2_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a GPT2Model instance . `pytorch_model.bin` a PyTorch dump of a GPT2Model instance
- a path or url to a pretrained model archive containing: - a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model . `gpt2_config.json` a configuration file for the model
. a TensorFlow checkpoint with trained weights . a TensorFlow checkpoint with trained weights
from_tf: should we load the weights from a locally saved TensorFlow checkpoint from_tf: should we load the weights from a locally saved TensorFlow checkpoint
cache_dir: an optional path to a folder in which the pre-trained models will be cached. cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models state_dict: an optional state dictionary (collections.OrderedDict object) to use instead of pre-trained models
*inputs, **kwargs: additional input for the specific Bert class *inputs, **kwargs: additional input for the specific GPT class
(ex: num_labels for BertForSequenceClassification)
""" """
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP: if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path] archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
...@@ -494,10 +493,11 @@ class GPT2Model(GPT2PreTrainedModel): ...@@ -494,10 +493,11 @@ class GPT2Model(GPT2PreTrainedModel):
The input, position and token_type embeddings are summed inside the Transformer before the first The input, position and token_type embeddings are summed inside the Transformer before the first
self-attention block. self-attention block.
Outputs: Outputs a tuple consisting of:
`hidden_states`: the encoded-hidden-states at the top of the model `hidden_states`: the encoded-hidden-states at the top of the model
as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size] as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
(or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids) (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)
`presents`: ?
Example usage: Example usage:
```python ```python
...@@ -507,7 +507,7 @@ class GPT2Model(GPT2PreTrainedModel): ...@@ -507,7 +507,7 @@ class GPT2Model(GPT2PreTrainedModel):
config = modeling_gpt2.GPT2Config() config = modeling_gpt2.GPT2Config()
model = modeling_gpt2.GPT2Model(config) model = modeling_gpt2.GPT2Model(config)
hidden_states = model(input_ids) hidden_states, presents = model(input_ids)
``` ```
""" """
...@@ -575,9 +575,10 @@ class GPT2LMHeadModel(GPT2PreTrainedModel): ...@@ -575,9 +575,10 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
Outputs: Outputs:
if `lm_labels` is not `None`: if `lm_labels` is not `None`:
Outputs the language modeling loss. Outputs the language modeling loss.
else: else a tuple:
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, config.vocab_size] `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, config.vocab_size]
(or more generally [d_1, ..., d_n, config.vocab_size] were d_1 ... d_n are the dimension of input_ids) (or more generally [d_1, ..., d_n, config.vocab_size] were d_1 ... d_n are the dimension of input_ids)
`presents`: ...
Example usage: Example usage:
```python ```python
...@@ -587,7 +588,7 @@ class GPT2LMHeadModel(GPT2PreTrainedModel): ...@@ -587,7 +588,7 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
config = modeling_gpt2.GPT2Config() config = modeling_gpt2.GPT2Config()
model = modeling_gpt2.GPT2LMHeadModel(config) model = modeling_gpt2.GPT2LMHeadModel(config)
lm_logits = model(input_ids) lm_logits, presents = model(input_ids)
``` ```
""" """
...@@ -642,6 +643,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel): ...@@ -642,6 +643,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
else: a tuple with else: a tuple with
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, config.vocab_size] `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, config.vocab_size]
`multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices] `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]
`presents`: ...
Example usage: Example usage:
```python ```python
...@@ -652,7 +654,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel): ...@@ -652,7 +654,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
config = modeling_gpt2.GPT2Config() config = modeling_gpt2.GPT2Config()
model = modeling_gpt2.GPT2LMHeadModel(config) model = modeling_gpt2.GPT2LMHeadModel(config)
lm_logits, multiple_choice_logits = model(input_ids, mc_token_ids) lm_logits, multiple_choice_logits, presents = model(input_ids, mc_token_ids)
``` ```
""" """
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment