Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
32dbb2d9
"tests/models/vscode:/vscode.git/clone" did not exist on "9bd67ac7bba33329ad50e519908bca4c1ad4686f"
Unverified
Commit
32dbb2d9
authored
Apr 26, 2021
by
Patrick von Platen
Committed by
GitHub
Apr 26, 2021
Browse files
make style (#11442)
parent
04ab2ca6
Changes
105
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
38 additions
and
38 deletions
+38
-38
src/transformers/models/pegasus/tokenization_pegasus.py
src/transformers/models/pegasus/tokenization_pegasus.py
+2
-2
src/transformers/models/phobert/tokenization_phobert.py
src/transformers/models/phobert/tokenization_phobert.py
+2
-2
src/transformers/models/prophetnet/tokenization_prophetnet.py
...transformers/models/prophetnet/tokenization_prophetnet.py
+2
-2
src/transformers/models/reformer/modeling_reformer.py
src/transformers/models/reformer/modeling_reformer.py
+1
-1
src/transformers/models/reformer/tokenization_reformer.py
src/transformers/models/reformer/tokenization_reformer.py
+2
-2
src/transformers/models/retribert/modeling_retribert.py
src/transformers/models/retribert/modeling_retribert.py
+1
-1
src/transformers/models/roberta/modeling_roberta.py
src/transformers/models/roberta/modeling_roberta.py
+1
-1
src/transformers/models/squeezebert/modeling_squeezebert.py
src/transformers/models/squeezebert/modeling_squeezebert.py
+1
-1
src/transformers/models/t5/modeling_t5.py
src/transformers/models/t5/modeling_t5.py
+5
-5
src/transformers/models/t5/modeling_tf_t5.py
src/transformers/models/t5/modeling_tf_t5.py
+5
-5
src/transformers/models/t5/tokenization_t5.py
src/transformers/models/t5/tokenization_t5.py
+2
-2
src/transformers/models/tapas/modeling_tapas.py
src/transformers/models/tapas/modeling_tapas.py
+1
-1
src/transformers/models/tapas/tokenization_tapas.py
src/transformers/models/tapas/tokenization_tapas.py
+2
-2
src/transformers/models/transfo_xl/tokenization_transfo_xl.py
...transformers/models/transfo_xl/tokenization_transfo_xl.py
+1
-1
src/transformers/models/vit/modeling_vit.py
src/transformers/models/vit/modeling_vit.py
+1
-1
src/transformers/models/wav2vec2/modeling_wav2vec2.py
src/transformers/models/wav2vec2/modeling_wav2vec2.py
+1
-1
src/transformers/models/xlm/modeling_tf_xlm.py
src/transformers/models/xlm/modeling_tf_xlm.py
+2
-2
src/transformers/models/xlm/modeling_xlm.py
src/transformers/models/xlm/modeling_xlm.py
+3
-3
src/transformers/models/xlm/tokenization_xlm.py
src/transformers/models/xlm/tokenization_xlm.py
+2
-2
src/transformers/models/xlm_prophetnet/tokenization_xlm_prophetnet.py
...mers/models/xlm_prophetnet/tokenization_xlm_prophetnet.py
+1
-1
No files found.
src/transformers/models/pegasus/tokenization_pegasus.py
View file @
32dbb2d9
...
...
@@ -175,7 +175,7 @@ class PegasusTokenizer(PreTrainedTokenizer):
return
pieces
def
_convert_token_to_id
(
self
,
token
:
str
)
->
int
:
"""
Converts a token (str) to an id using the vocab.
"""
"""Converts a token (str) to an id using the vocab."""
if
token
in
self
.
decoder
:
return
self
.
decoder
[
token
]
elif
token
in
self
.
added_tokens_decoder
:
...
...
@@ -194,7 +194,7 @@ class PegasusTokenizer(PreTrainedTokenizer):
return
token
def
convert_tokens_to_string
(
self
,
tokens
):
"""
Converts a sequence of tokens (string) in a single string.
"""
"""Converts a sequence of tokens (string) in a single string."""
out_string
=
self
.
sp_model
.
decode_pieces
(
tokens
)
return
out_string
...
...
src/transformers/models/phobert/tokenization_phobert.py
View file @
32dbb2d9
...
...
@@ -295,7 +295,7 @@ class PhobertTokenizer(PreTrainedTokenizer):
return
split_tokens
def
_convert_token_to_id
(
self
,
token
):
"""
Converts a token (str) in an id using the vocab.
"""
"""Converts a token (str) in an id using the vocab."""
return
self
.
encoder
.
get
(
token
,
self
.
encoder
.
get
(
self
.
unk_token
))
def
_convert_id_to_token
(
self
,
index
):
...
...
@@ -303,7 +303,7 @@ class PhobertTokenizer(PreTrainedTokenizer):
return
self
.
decoder
.
get
(
index
,
self
.
unk_token
)
def
convert_tokens_to_string
(
self
,
tokens
):
"""
Converts a sequence of tokens (string) in a single string.
"""
"""Converts a sequence of tokens (string) in a single string."""
out_string
=
" "
.
join
(
tokens
).
replace
(
"@@ "
,
""
).
strip
()
return
out_string
...
...
src/transformers/models/prophetnet/tokenization_prophetnet.py
View file @
32dbb2d9
...
...
@@ -172,7 +172,7 @@ class ProphetNetTokenizer(PreTrainedTokenizer):
return
split_tokens
def
_convert_token_to_id
(
self
,
token
):
"""
Converts a token (str) in an id using the vocab.
"""
"""Converts a token (str) in an id using the vocab."""
return
self
.
vocab
.
get
(
token
,
self
.
vocab
.
get
(
self
.
unk_token
))
def
_convert_id_to_token
(
self
,
index
):
...
...
@@ -180,7 +180,7 @@ class ProphetNetTokenizer(PreTrainedTokenizer):
return
self
.
ids_to_tokens
.
get
(
index
,
self
.
unk_token
)
def
convert_tokens_to_string
(
self
,
tokens
):
"""
Converts a sequence of tokens (string) in a single string.
"""
"""Converts a sequence of tokens (string) in a single string."""
out_string
=
" "
.
join
(
tokens
).
replace
(
" ##"
,
""
).
strip
()
return
out_string
...
...
src/transformers/models/reformer/modeling_reformer.py
View file @
32dbb2d9
...
...
@@ -1779,7 +1779,7 @@ class ReformerPreTrainedModel(PreTrainedModel):
return
dummy_inputs
def
_init_weights
(
self
,
module
):
"""
Initialize the weights
"""
"""Initialize the weights"""
if
isinstance
(
module
,
AxialPositionEmbeddings
):
for
weight
in
module
.
weights
:
torch
.
nn
.
init
.
normal_
(
weight
,
std
=
self
.
config
.
axial_norm_std
)
...
...
src/transformers/models/reformer/tokenization_reformer.py
View file @
32dbb2d9
...
...
@@ -115,7 +115,7 @@ class ReformerTokenizer(PreTrainedTokenizer):
return
pieces
def
_convert_token_to_id
(
self
,
token
):
"""
Converts a token (str) in an id using the vocab.
"""
"""Converts a token (str) in an id using the vocab."""
return
self
.
sp_model
.
piece_to_id
(
token
)
def
_convert_id_to_token
(
self
,
index
):
...
...
@@ -125,7 +125,7 @@ class ReformerTokenizer(PreTrainedTokenizer):
return
token
def
convert_tokens_to_string
(
self
,
tokens
):
"""
Converts a sequence of tokens (string) in a single string.
"""
"""Converts a sequence of tokens (string) in a single string."""
out_string
=
self
.
sp_model
.
decode_pieces
(
tokens
)
return
out_string
...
...
src/transformers/models/retribert/modeling_retribert.py
View file @
32dbb2d9
...
...
@@ -50,7 +50,7 @@ class RetriBertPreTrainedModel(PreTrainedModel):
base_model_prefix
=
"retribert"
def
_init_weights
(
self
,
module
):
"""
Initialize the weights
"""
"""Initialize the weights"""
if
isinstance
(
module
,
nn
.
Linear
):
module
.
weight
.
data
.
normal_
(
mean
=
0.0
,
std
=
self
.
config
.
initializer_range
)
if
module
.
bias
is
not
None
:
...
...
src/transformers/models/roberta/modeling_roberta.py
View file @
32dbb2d9
...
...
@@ -574,7 +574,7 @@ class RobertaPreTrainedModel(PreTrainedModel):
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
def
_init_weights
(
self
,
module
):
"""
Initialize the weights
"""
"""Initialize the weights"""
if
isinstance
(
module
,
nn
.
Linear
):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
...
...
src/transformers/models/squeezebert/modeling_squeezebert.py
View file @
32dbb2d9
...
...
@@ -431,7 +431,7 @@ class SqueezeBertPreTrainedModel(PreTrainedModel):
_keys_to_ignore_on_load_missing
=
[
r
"position_ids"
]
def
_init_weights
(
self
,
module
):
"""
Initialize the weights
"""
"""Initialize the weights"""
if
isinstance
(
module
,
(
nn
.
Linear
,
nn
.
Conv1d
)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
...
...
src/transformers/models/t5/modeling_t5.py
View file @
32dbb2d9
...
...
@@ -389,7 +389,7 @@ class T5Attention(nn.Module):
return
relative_buckets
def
compute_bias
(
self
,
query_length
,
key_length
):
"""
Compute binned relative position bias
"""
"""Compute binned relative position bias"""
context_position
=
torch
.
arange
(
query_length
,
dtype
=
torch
.
long
)[:,
None
]
memory_position
=
torch
.
arange
(
key_length
,
dtype
=
torch
.
long
)[
None
,
:]
relative_position
=
memory_position
-
context_position
# shape (query_length, key_length)
...
...
@@ -436,15 +436,15 @@ class T5Attention(nn.Module):
key_length
=
real_seq_length
if
key_value_states
is
None
else
key_value_states
.
shape
[
1
]
def
shape
(
states
):
"""
projection
"""
"""projection"""
return
states
.
view
(
batch_size
,
-
1
,
self
.
n_heads
,
self
.
key_value_proj_dim
).
transpose
(
1
,
2
)
def
unshape
(
states
):
"""
reshape
"""
"""reshape"""
return
states
.
transpose
(
1
,
2
).
contiguous
().
view
(
batch_size
,
-
1
,
self
.
inner_dim
)
def
project
(
hidden_states
,
proj_layer
,
key_value_states
,
past_key_value
):
"""
projects hidden states correctly to key/query states
"""
"""projects hidden states correctly to key/query states"""
if
key_value_states
is
None
:
# self-attn
# (batch_size, n_heads, seq_length, dim_per_head)
...
...
@@ -718,7 +718,7 @@ class T5PreTrainedModel(PreTrainedModel):
return
dummy_inputs
def
_init_weights
(
self
,
module
):
"""
Initialize the weights
"""
"""Initialize the weights"""
factor
=
self
.
config
.
initializer_factor
# Used for testing weights initialization
if
isinstance
(
module
,
T5LayerNorm
):
module
.
weight
.
data
.
fill_
(
factor
*
1.0
)
...
...
src/transformers/models/t5/modeling_tf_t5.py
View file @
32dbb2d9
...
...
@@ -80,7 +80,7 @@ class TFT5LayerNorm(tf.keras.layers.Layer):
self
.
variance_epsilon
=
epsilon
def
build
(
self
,
input_shape
):
"""Build shared word embedding layer
"""
"""Build shared word embedding layer"""
self
.
weight
=
self
.
add_weight
(
"weight"
,
shape
=
(
input_shape
[
-
1
],),
initializer
=
"ones"
)
super
().
build
(
input_shape
)
...
...
@@ -230,7 +230,7 @@ class TFT5Attention(tf.keras.layers.Layer):
return
relative_buckets
def
compute_bias
(
self
,
query_length
,
key_length
):
"""
Compute binned relative position bias
"""
"""Compute binned relative position bias"""
context_position
=
tf
.
range
(
query_length
)[:,
None
]
memory_position
=
tf
.
range
(
key_length
)[
None
,
:]
relative_position
=
memory_position
-
context_position
# shape (query_length, key_length)
...
...
@@ -279,17 +279,17 @@ class TFT5Attention(tf.keras.layers.Layer):
key_length
=
real_seq_length
if
key_value_states
is
None
else
shape_list
(
key_value_states
)[
1
]
def
shape
(
hidden_states
):
"""
projection
"""
"""projection"""
return
tf
.
transpose
(
tf
.
reshape
(
hidden_states
,
(
batch_size
,
-
1
,
self
.
n_heads
,
self
.
key_value_proj_dim
)),
perm
=
(
0
,
2
,
1
,
3
)
)
def
unshape
(
hidden_states
):
"""
compute context
"""
"""compute context"""
return
tf
.
reshape
(
tf
.
transpose
(
hidden_states
,
perm
=
(
0
,
2
,
1
,
3
)),
(
batch_size
,
-
1
,
self
.
inner_dim
))
def
project
(
hidden_states
,
proj_layer
,
key_value_states
,
past_key_value
):
"""
projects hidden states correctly to key/query states
"""
"""projects hidden states correctly to key/query states"""
if
key_value_states
is
None
:
# self-attn
# (batch_size, n_heads, seq_length, dim_per_head)
...
...
src/transformers/models/t5/tokenization_t5.py
View file @
32dbb2d9
...
...
@@ -243,7 +243,7 @@ class T5Tokenizer(PreTrainedTokenizer):
return
pieces
def
_convert_token_to_id
(
self
,
token
):
"""
Converts a token (str) in an id using the vocab.
"""
"""Converts a token (str) in an id using the vocab."""
if
token
.
startswith
(
"<extra_id_"
):
match
=
re
.
match
(
r
"<extra_id_(\d+)>"
,
token
)
num
=
int
(
match
.
group
(
1
))
...
...
@@ -259,7 +259,7 @@ class T5Tokenizer(PreTrainedTokenizer):
return
token
def
convert_tokens_to_string
(
self
,
tokens
):
"""
Converts a sequence of tokens (string) in a single string.
"""
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens
=
[]
out_string
=
""
for
token
in
tokens
:
...
...
src/transformers/models/tapas/modeling_tapas.py
View file @
32dbb2d9
...
...
@@ -699,7 +699,7 @@ class TapasPreTrainedModel(PreTrainedModel):
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
def
_init_weights
(
self
,
module
):
"""
Initialize the weights
"""
"""Initialize the weights"""
if
isinstance
(
module
,
nn
.
Linear
):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
...
...
src/transformers/models/tapas/tokenization_tapas.py
View file @
32dbb2d9
...
...
@@ -374,7 +374,7 @@ class TapasTokenizer(PreTrainedTokenizer):
return
split_tokens
def
_convert_token_to_id
(
self
,
token
):
"""
Converts a token (str) in an id using the vocab.
"""
"""Converts a token (str) in an id using the vocab."""
return
self
.
vocab
.
get
(
token
,
self
.
vocab
.
get
(
self
.
unk_token
))
def
_convert_id_to_token
(
self
,
index
):
...
...
@@ -382,7 +382,7 @@ class TapasTokenizer(PreTrainedTokenizer):
return
self
.
ids_to_tokens
.
get
(
index
,
self
.
unk_token
)
def
convert_tokens_to_string
(
self
,
tokens
):
"""
Converts a sequence of tokens (string) in a single string.
"""
"""Converts a sequence of tokens (string) in a single string."""
out_string
=
" "
.
join
(
tokens
).
replace
(
" ##"
,
""
).
strip
()
return
out_string
...
...
src/transformers/models/transfo_xl/tokenization_transfo_xl.py
View file @
32dbb2d9
...
...
@@ -434,7 +434,7 @@ class TransfoXLTokenizer(PreTrainedTokenizer):
return
self
.
idx2sym
[
idx
]
def
_convert_token_to_id
(
self
,
sym
):
"""
Converts a token (str) in an id using the vocab.
"""
"""Converts a token (str) in an id using the vocab."""
if
sym
in
self
.
sym2idx
:
return
self
.
sym2idx
[
sym
]
else
:
...
...
src/transformers/models/vit/modeling_vit.py
View file @
32dbb2d9
...
...
@@ -372,7 +372,7 @@ class ViTPreTrainedModel(PreTrainedModel):
base_model_prefix
=
"vit"
def
_init_weights
(
self
,
module
):
"""
Initialize the weights
"""
"""Initialize the weights"""
if
isinstance
(
module
,
(
nn
.
Linear
,
nn
.
Conv2d
)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
...
...
src/transformers/models/wav2vec2/modeling_wav2vec2.py
View file @
32dbb2d9
...
...
@@ -680,7 +680,7 @@ class Wav2Vec2PreTrainedModel(PreTrainedModel):
_keys_to_ignore_on_load_missing
=
[
r
"position_ids"
]
def
_init_weights
(
self
,
module
):
"""
Initialize the weights
"""
"""Initialize the weights"""
if
isinstance
(
module
,
nn
.
Linear
):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
...
...
src/transformers/models/xlm/modeling_tf_xlm.py
View file @
32dbb2d9
...
...
@@ -151,11 +151,11 @@ class TFXLMMultiHeadAttention(tf.keras.layers.Layer):
mask_reshape
=
(
bs
,
1
,
qlen
,
klen
)
if
len
(
shape_list
(
mask
))
==
3
else
(
bs
,
1
,
1
,
klen
)
def
shape
(
x
):
"""
projection
"""
"""projection"""
return
tf
.
transpose
(
tf
.
reshape
(
x
,
(
bs
,
-
1
,
self
.
n_heads
,
dim_per_head
)),
perm
=
(
0
,
2
,
1
,
3
))
def
unshape
(
x
):
"""
compute context
"""
"""compute context"""
return
tf
.
reshape
(
tf
.
transpose
(
x
,
perm
=
(
0
,
2
,
1
,
3
)),
(
bs
,
-
1
,
self
.
n_heads
*
dim_per_head
))
q
=
shape
(
self
.
q_lin
(
input
))
# (bs, n_heads, qlen, dim_per_head)
...
...
src/transformers/models/xlm/modeling_xlm.py
View file @
32dbb2d9
...
...
@@ -159,11 +159,11 @@ class MultiHeadAttention(nn.Module):
mask_reshape
=
(
bs
,
1
,
qlen
,
klen
)
if
mask
.
dim
()
==
3
else
(
bs
,
1
,
1
,
klen
)
def
shape
(
x
):
"""
projection
"""
"""projection"""
return
x
.
view
(
bs
,
-
1
,
self
.
n_heads
,
dim_per_head
).
transpose
(
1
,
2
)
def
unshape
(
x
):
"""
compute context
"""
"""compute context"""
return
x
.
transpose
(
1
,
2
).
contiguous
().
view
(
bs
,
-
1
,
self
.
n_heads
*
dim_per_head
)
q
=
shape
(
self
.
q_lin
(
input
))
# (bs, n_heads, qlen, dim_per_head)
...
...
@@ -251,7 +251,7 @@ class XLMPreTrainedModel(PreTrainedModel):
return
{
"input_ids"
:
inputs_list
,
"attention_mask"
:
attns_list
,
"langs"
:
langs_list
}
def
_init_weights
(
self
,
module
):
"""
Initialize the weights.
"""
"""Initialize the weights."""
if
isinstance
(
module
,
nn
.
Embedding
):
if
self
.
config
is
not
None
and
self
.
config
.
embed_init_std
is
not
None
:
nn
.
init
.
normal_
(
module
.
weight
,
mean
=
0
,
std
=
self
.
config
.
embed_init_std
)
...
...
src/transformers/models/xlm/tokenization_xlm.py
View file @
32dbb2d9
...
...
@@ -847,7 +847,7 @@ class XLMTokenizer(PreTrainedTokenizer):
return
split_tokens
def
_convert_token_to_id
(
self
,
token
):
"""
Converts a token (str) in an id using the vocab.
"""
"""Converts a token (str) in an id using the vocab."""
return
self
.
encoder
.
get
(
token
,
self
.
encoder
.
get
(
self
.
unk_token
))
def
_convert_id_to_token
(
self
,
index
):
...
...
@@ -855,7 +855,7 @@ class XLMTokenizer(PreTrainedTokenizer):
return
self
.
decoder
.
get
(
index
,
self
.
unk_token
)
def
convert_tokens_to_string
(
self
,
tokens
):
"""
Converts a sequence of tokens (string) in a single string.
"""
"""Converts a sequence of tokens (string) in a single string."""
out_string
=
""
.
join
(
tokens
).
replace
(
"</w>"
,
" "
).
strip
()
return
out_string
...
...
src/transformers/models/xlm_prophetnet/tokenization_xlm_prophetnet.py
View file @
32dbb2d9
...
...
@@ -245,7 +245,7 @@ class XLMProphetNetTokenizer(PreTrainedTokenizer):
return
self
.
sp_model
.
EncodeAsPieces
(
text
)
def
_convert_token_to_id
(
self
,
token
):
"""
Converts a token (str) in an id using the vocab.
"""
"""Converts a token (str) in an id using the vocab."""
if
token
in
self
.
fairseq_tokens_to_ids
:
return
self
.
fairseq_tokens_to_ids
[
token
]
spm_id
=
self
.
sp_model
.
PieceToId
(
token
)
...
...
Prev
1
2
3
4
5
6
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment