Unverified Commit 324f361e authored by Julien Plu's avatar Julien Plu Committed by GitHub
Browse files

Fix saving TF custom models (#7291)

* Fix #7277

* Apply style

* Add a full training pipeline test

* Apply style
parent cd9a0585
......@@ -85,20 +85,20 @@ def keras_serializable(cls):
@functools.wraps(initializer)
def wrapped_init(self, *args, **kwargs):
transformers_config = kwargs.pop("transformers_config", None)
config = args[0] if args and isinstance(args[0], PretrainedConfig) else kwargs.get("config", None)
if config is not None and transformers_config is not None:
raise ValueError("Must pass either `config` or `transformers_config`, not both")
elif config is not None:
# normal layer construction, call with unchanged args (config is already in there)
config = args[0] if args and isinstance(args[0], PretrainedConfig) else kwargs.pop("config", None)
if isinstance(config, dict):
config = config_class.from_dict(config)
initializer(self, config, *args, **kwargs)
elif isinstance(config, PretrainedConfig):
if len(args) > 0:
initializer(self, *args, **kwargs)
elif transformers_config is not None:
# Keras deserialization, convert dict to config
config = config_class.from_dict(transformers_config)
else:
initializer(self, config, *args, **kwargs)
else:
raise ValueError("Must pass either `config` (PretrainedConfig) or `transformers_config` (dict)")
self._transformers_config = config
raise ValueError("Must pass either `config` (PretrainedConfig) or `config` (dict)")
self._config = config
self._kwargs = kwargs
cls.__init__ = wrapped_init
......@@ -109,7 +109,7 @@ def keras_serializable(cls):
def get_config(self):
cfg = super(cls, self).get_config()
cfg["transformers_config"] = self._transformers_config.to_dict()
cfg["config"] = self._config.to_dict()
cfg.update(self._kwargs)
return cfg
......
......@@ -354,6 +354,69 @@ class TFModelTesterMixin:
max_diff = np.amax(np.abs(tfo - pto))
self.assertLessEqual(max_diff, 4e-2)
def test_train_pipeline_custom_model(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
tf_main_layer_classes = set(
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__),)
for module_member_name in dir(module)
if module_member_name.endswith("MainLayer")
for module_member in (getattr(module, module_member_name),)
if isinstance(module_member, type)
and tf.keras.layers.Layer in module_member.__bases__
and getattr(module_member, "_keras_serializable", False)
)
for main_layer_class in tf_main_layer_classes:
# T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
if "T5" in main_layer_class.__name__:
# Take the same values than in TFT5ModelTester for this shared layer
shared = TFSharedEmbeddings(self.model_tester.vocab_size, self.model_tester.hidden_size, name="shared")
config.use_cache = False
main_layer = main_layer_class(config, embed_tokens=shared)
del inputs_dict["use_cache"]
else:
main_layer = main_layer_class(config)
symbolic_inputs = {
name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
}
if hasattr(self.model_tester, "num_labels"):
num_labels = self.model_tester.num_labels
else:
num_labels = 2
X = tf.data.Dataset.from_tensor_slices(
(inputs_dict, np.random.randint(0, num_labels, (self.model_tester.batch_size, 1)))
).batch(1)
hidden_states = main_layer(symbolic_inputs)[0]
outputs = tf.keras.layers.Dense(num_labels, activation="softmax", name="outputs")(hidden_states)
model = tf.keras.models.Model(inputs=symbolic_inputs, outputs=[outputs])
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["acc"])
model.fit(X, epochs=1)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "keras_model.h5")
model.save(filepath)
if "T5" in main_layer_class.__name__:
model = tf.keras.models.load_model(
filepath,
custom_objects={
main_layer_class.__name__: main_layer_class,
"TFSharedEmbeddings": TFSharedEmbeddings,
},
)
else:
model = tf.keras.models.load_model(
filepath, custom_objects={main_layer_class.__name__: main_layer_class}
)
assert isinstance(model, tf.keras.Model)
model(inputs_dict)
def test_compile_tf_model(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
......
......@@ -327,7 +327,7 @@ class TFFunnelModelTester:
@require_tf
class FunnelModelTest(TFModelTesterMixin, unittest.TestCase):
class TFFunnelModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
TFFunnelModel,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment