Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
31c56f2e
Unverified
Commit
31c56f2e
authored
Dec 24, 2019
by
Anthony MOI
Browse files
Fix style
parent
951ae99b
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
126 additions
and
73 deletions
+126
-73
src/transformers/tokenization_bert.py
src/transformers/tokenization_bert.py
+48
-26
src/transformers/tokenization_gpt2.py
src/transformers/tokenization_gpt2.py
+21
-7
src/transformers/tokenization_utils.py
src/transformers/tokenization_utils.py
+57
-40
No files found.
src/transformers/tokenization_bert.py
View file @
31c56f2e
...
...
@@ -20,7 +20,7 @@ import logging
import
os
import
unicodedata
from
.tokenization_utils
import
PreTrainedTokenizer
,
Fast
PreTrainedTokenizer
from
.tokenization_utils
import
Fast
PreTrainedTokenizer
,
PreTrainedTokenizer
logger
=
logging
.
getLogger
(
__name__
)
...
...
@@ -526,42 +526,64 @@ def _is_punctuation(char):
return
True
return
False
class
BertTokenizerFast
(
FastPreTrainedTokenizer
):
vocab_files_names
=
VOCAB_FILES_NAMES
pretrained_vocab_files_map
=
PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration
=
PRETRAINED_INIT_CONFIGURATION
max_model_input_sizes
=
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def
__init__
(
self
,
vocab_file
,
do_lower_case
=
True
,
do_basic_tokenize
=
True
,
never_split
=
None
,
unk_token
=
"[UNK]"
,
sep_token
=
"[SEP]"
,
pad_token
=
"[PAD]"
,
cls_token
=
"[CLS]"
,
mask_token
=
"[MASK]"
,
tokenize_chinese_chars
=
True
,
max_length
=
None
,
pad_to_max_length
=
False
,
stride
=
0
,
truncation_strategy
=
'longest_first'
,
add_special_tokens
=
True
,
**
kwargs
):
def
__init__
(
self
,
vocab_file
,
do_lower_case
=
True
,
do_basic_tokenize
=
True
,
never_split
=
None
,
unk_token
=
"[UNK]"
,
sep_token
=
"[SEP]"
,
pad_token
=
"[PAD]"
,
cls_token
=
"[CLS]"
,
mask_token
=
"[MASK]"
,
tokenize_chinese_chars
=
True
,
max_length
=
None
,
pad_to_max_length
=
False
,
stride
=
0
,
truncation_strategy
=
"longest_first"
,
add_special_tokens
=
True
,
**
kwargs
):
try
:
from
tokenizers
import
Tokenizer
,
models
,
pre_tokenizers
,
decoders
,
processors
super
(
BertTokenizerFast
,
self
).
__init__
(
unk_token
=
unk_token
,
sep_token
=
sep_token
,
pad_token
=
pad_token
,
cls_token
=
cls_token
,
mask_token
=
mask_token
,
**
kwargs
)
self
.
_tokenizer
=
Tokenizer
(
models
.
WordPiece
.
from_files
(
vocab_file
,
unk_token
=
unk_token
))
super
(
BertTokenizerFast
,
self
).
__init__
(
unk_token
=
unk_token
,
sep_token
=
sep_token
,
pad_token
=
pad_token
,
cls_token
=
cls_token
,
mask_token
=
mask_token
,
**
kwargs
)
self
.
_tokenizer
=
Tokenizer
(
models
.
WordPiece
.
from_files
(
vocab_file
,
unk_token
=
unk_token
))
self
.
_update_special_tokens
()
self
.
_tokenizer
.
with_pre_tokenizer
(
pre_tokenizers
.
BertPreTokenizer
.
new
(
self
.
_tokenizer
.
with_pre_tokenizer
(
pre_tokenizers
.
BertPreTokenizer
.
new
(
do_basic_tokenize
=
do_basic_tokenize
,
do_lower_case
=
do_lower_case
,
tokenize_chinese_chars
=
tokenize_chinese_chars
,
never_split
=
never_split
if
never_split
is
not
None
else
[],
))
)
)
self
.
_tokenizer
.
with_decoder
(
decoders
.
WordPiece
.
new
())
if
add_special_tokens
:
self
.
_tokenizer
.
with_post_processor
(
processors
.
BertProcessing
.
new
(
self
.
_tokenizer
.
with_post_processor
(
processors
.
BertProcessing
.
new
(
(
sep_token
,
self
.
_tokenizer
.
token_to_id
(
sep_token
)),
(
cls_token
,
self
.
_tokenizer
.
token_to_id
(
cls_token
)),
))
)
)
if
max_length
is
not
None
:
self
.
_tokenizer
.
with_truncation
(
max_length
,
stride
,
truncation_strategy
)
self
.
_tokenizer
.
with_padding
(
...
...
@@ -569,7 +591,7 @@ class BertTokenizerFast(FastPreTrainedTokenizer):
self
.
padding_side
,
self
.
pad_token_id
,
self
.
pad_token_type_id
,
self
.
pad_token
self
.
pad_token
,
)
self
.
_decoder
=
decoders
.
WordPiece
.
new
()
...
...
src/transformers/tokenization_gpt2.py
View file @
31c56f2e
...
...
@@ -22,7 +22,7 @@ from functools import lru_cache
import
regex
as
re
from
.tokenization_utils
import
PreTrainedTokenizer
,
Fast
PreTrainedTokenizer
from
.tokenization_utils
import
Fast
PreTrainedTokenizer
,
PreTrainedTokenizer
logger
=
logging
.
getLogger
(
__name__
)
...
...
@@ -247,19 +247,33 @@ class GPT2Tokenizer(PreTrainedTokenizer):
return
vocab_file
,
merge_file
class
GPT2TokenizerFast
(
FastPreTrainedTokenizer
):
vocab_files_names
=
VOCAB_FILES_NAMES
pretrained_vocab_files_map
=
PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes
=
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def
__init__
(
self
,
vocab_file
,
merges_file
,
unk_token
=
"<|endoftext|>"
,
bos_token
=
"<|endoftext|>"
,
eos_token
=
"<|endoftext|>"
,
pad_to_max_length
=
False
,
add_prefix_space
=
False
,
max_length
=
None
,
stride
=
0
,
truncation_strategy
=
'longest_first'
,
**
kwargs
):
def
__init__
(
self
,
vocab_file
,
merges_file
,
unk_token
=
"<|endoftext|>"
,
bos_token
=
"<|endoftext|>"
,
eos_token
=
"<|endoftext|>"
,
pad_to_max_length
=
False
,
add_prefix_space
=
False
,
max_length
=
None
,
stride
=
0
,
truncation_strategy
=
"longest_first"
,
**
kwargs
):
try
:
from
tokenizers
import
Tokenizer
,
models
,
pre_tokenizers
,
decoders
super
(
GPT2TokenizerFast
,
self
).
__init__
(
bos_token
=
bos_token
,
eos_token
=
eos_token
,
unk_token
=
unk_token
,
**
kwargs
)
super
(
GPT2TokenizerFast
,
self
).
__init__
(
bos_token
=
bos_token
,
eos_token
=
eos_token
,
unk_token
=
unk_token
,
**
kwargs
)
self
.
_tokenizer
=
Tokenizer
(
models
.
BPE
.
from_files
(
vocab_file
,
merges_file
))
self
.
_update_special_tokens
()
...
...
@@ -272,7 +286,7 @@ class GPT2TokenizerFast(FastPreTrainedTokenizer):
self
.
padding_side
,
self
.
pad_token_id
if
self
.
pad_token_id
is
not
None
else
0
,
self
.
pad_token_type_id
,
self
.
pad_token
if
self
.
pad_token
is
not
None
else
""
self
.
pad_token
if
self
.
pad_token
is
not
None
else
""
,
)
self
.
_decoder
=
decoders
.
ByteLevel
.
new
()
...
...
src/transformers/tokenization_utils.py
View file @
31c56f2e
...
...
@@ -1411,6 +1411,7 @@ class PreTrainedTokenizer(object):
)
return
out_string
class
FastPreTrainedTokenizer
(
PreTrainedTokenizer
):
def
__init__
(
self
,
**
kwargs
):
super
(
FastPreTrainedTokenizer
,
self
).
__init__
(
**
kwargs
)
...
...
@@ -1438,12 +1439,14 @@ class FastPreTrainedTokenizer(PreTrainedTokenizer):
self
.
tokenizer
.
add_special_tokens
(
self
.
all_special_tokens
)
@
staticmethod
def
_convert_encoding
(
encoding
,
def
_convert_encoding
(
encoding
,
return_tensors
=
None
,
return_token_type_ids
=
True
,
return_attention_mask
=
True
,
return_overflowing_tokens
=
False
,
return_special_tokens_mask
=
False
):
return_special_tokens_mask
=
False
,
):
encoding_dict
=
{
"input_ids"
:
encoding
.
ids
,
}
...
...
@@ -1458,14 +1461,14 @@ class FastPreTrainedTokenizer(PreTrainedTokenizer):
encoding_dict
[
"special_tokens_mask"
]
=
encoding
.
special_tokens_mask
# Prepare inputs as tensors if asked
if
return_tensors
==
'
tf
'
and
is_tf_available
():
if
return_tensors
==
"
tf
"
and
is_tf_available
():
encoding_dict
[
"input_ids"
]
=
tf
.
constant
([
encoding_dict
[
"input_ids"
]])
encoding_dict
[
"token_type_ids"
]
=
tf
.
constant
([
encoding_dict
[
"token_type_ids"
]])
if
"attention_mask"
in
encoding_dict
:
encoding_dict
[
"attention_mask"
]
=
tf
.
constant
([
encoding_dict
[
"attention_mask"
]])
elif
return_tensors
==
'
pt
'
and
is_torch_available
():
elif
return_tensors
==
"
pt
"
and
is_torch_available
():
encoding_dict
[
"input_ids"
]
=
torch
.
tensor
([
encoding_dict
[
"input_ids"
]])
encoding_dict
[
"token_type_ids"
]
=
torch
.
tensor
([
encoding_dict
[
"token_type_ids"
]])
...
...
@@ -1474,11 +1477,14 @@ class FastPreTrainedTokenizer(PreTrainedTokenizer):
elif
return_tensors
is
not
None
:
logger
.
warning
(
"Unable to convert output to tensors format {}, PyTorch or TensorFlow is not available."
.
format
(
return_tensors
))
return_tensors
)
)
return
encoding_dict
def
encode_plus
(
self
,
def
encode_plus
(
self
,
text
,
text_pair
=
None
,
return_tensors
=
None
,
...
...
@@ -1486,14 +1492,17 @@ class FastPreTrainedTokenizer(PreTrainedTokenizer):
return_attention_mask
=
True
,
return_overflowing_tokens
=
False
,
return_special_tokens_mask
=
False
,
**
kwargs
):
**
kwargs
):
encoding
=
self
.
tokenizer
.
encode
(
text
,
text_pair
)
return
self
.
_convert_encoding
(
encoding
,
return
self
.
_convert_encoding
(
encoding
,
return_tensors
=
return_tensors
,
return_token_type_ids
=
return_token_type_ids
,
return_attention_mask
=
return_attention_mask
,
return_overflowing_tokens
=
return_overflowing_tokens
,
return_special_tokens_mask
=
return_special_tokens_mask
)
return_special_tokens_mask
=
return_special_tokens_mask
,
)
def
tokenize
(
self
,
text
):
return
self
.
tokenizer
.
encode
(
text
).
tokens
...
...
@@ -1510,19 +1519,26 @@ class FastPreTrainedTokenizer(PreTrainedTokenizer):
def
add_tokens
(
self
,
new_tokens
):
self
.
tokenizer
.
add_tokens
(
new_tokens
)
def
encode_batch
(
self
,
texts
,
def
encode_batch
(
self
,
texts
,
return_tensors
=
None
,
return_token_type_ids
=
True
,
return_attention_mask
=
True
,
return_overflowing_tokens
=
False
,
return_special_tokens_mask
=
False
):
return
[
self
.
_convert_encoding
(
encoding
,
return_special_tokens_mask
=
False
,
):
return
[
self
.
_convert_encoding
(
encoding
,
return_tensors
=
return_tensors
,
return_token_type_ids
=
return_token_type_ids
,
return_attention_mask
=
return_attention_mask
,
return_overflowing_tokens
=
return_overflowing_tokens
,
return_special_tokens_mask
=
return_special_tokens_mask
)
for
encoding
in
self
.
tokenizer
.
encode_batch
(
texts
)]
return_special_tokens_mask
=
return_special_tokens_mask
,
)
for
encoding
in
self
.
tokenizer
.
encode_batch
(
texts
)
]
def
decode
(
self
,
token_ids
,
skip_special_tokens
=
False
,
clean_up_tokenization_spaces
=
True
):
text
=
self
.
tokenizer
.
decode
(
token_ids
,
skip_special_tokens
)
...
...
@@ -1534,6 +1550,7 @@ class FastPreTrainedTokenizer(PreTrainedTokenizer):
return
text
def
decode_batch
(
self
,
ids_batch
,
skip_special_tokens
=
False
,
clear_up_tokenization_spaces
=
True
):
return
[
self
.
clean_up_tokenization
(
text
)
if
clear_up_tokenization_spaces
else
text
for
text
in
self
.
tokenizer
.
decode_batch
(
ids_batch
,
skip_special_tokens
)]
\ No newline at end of file
return
[
self
.
clean_up_tokenization
(
text
)
if
clear_up_tokenization_spaces
else
text
for
text
in
self
.
tokenizer
.
decode_batch
(
ids_batch
,
skip_special_tokens
)
]
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment