:class:`~pytorch_transformers.AutoModel` is a generic model class
:class:`~transformers.AutoModel` is a generic model class
that will be instantiated as one of the base model classes of the library
that will be instantiated as one of the base model classes of the library
when created with the `AutoModel.from_pretrained(pretrained_model_name_or_path)`
when created with the `AutoModel.from_pretrained(pretrained_model_name_or_path)`
class method.
class method.
...
@@ -84,23 +84,23 @@ class AutoModel(object):
...
@@ -84,23 +84,23 @@ class AutoModel(object):
pretrained_model_name_or_path: either:
pretrained_model_name_or_path: either:
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args: (`optional`) Sequence of positional arguments:
model_args: (`optional`) Sequence of positional arguments:
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
- the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
state_dict: (`optional`) dict:
state_dict: (`optional`) dict:
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.
In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
cache_dir: (`optional`) string:
cache_dir: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
Path to a directory in which a downloaded pre-trained model
...
@@ -120,7 +120,7 @@ class AutoModel(object):
...
@@ -120,7 +120,7 @@ class AutoModel(object):
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
Examples::
Examples::
...
@@ -157,7 +157,7 @@ class AutoModel(object):
...
@@ -157,7 +157,7 @@ class AutoModel(object):
classAutoModelWithLMHead(object):
classAutoModelWithLMHead(object):
r"""
r"""
:class:`~pytorch_transformers.AutoModelWithLMHead` is a generic model class
:class:`~transformers.AutoModelWithLMHead` is a generic model class
that will be instantiated as one of the language modeling model classes of the library
that will be instantiated as one of the language modeling model classes of the library
when created with the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)`
when created with the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)`
class method.
class method.
...
@@ -208,23 +208,23 @@ class AutoModelWithLMHead(object):
...
@@ -208,23 +208,23 @@ class AutoModelWithLMHead(object):
pretrained_model_name_or_path: either:
pretrained_model_name_or_path: either:
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args: (`optional`) Sequence of positional arguments:
model_args: (`optional`) Sequence of positional arguments:
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
- the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
state_dict: (`optional`) dict:
state_dict: (`optional`) dict:
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.
In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
cache_dir: (`optional`) string:
cache_dir: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
Path to a directory in which a downloaded pre-trained model
...
@@ -244,7 +244,7 @@ class AutoModelWithLMHead(object):
...
@@ -244,7 +244,7 @@ class AutoModelWithLMHead(object):
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
Examples::
Examples::
...
@@ -281,7 +281,7 @@ class AutoModelWithLMHead(object):
...
@@ -281,7 +281,7 @@ class AutoModelWithLMHead(object):
classAutoModelForSequenceClassification(object):
classAutoModelForSequenceClassification(object):
r"""
r"""
:class:`~pytorch_transformers.AutoModelForSequenceClassification` is a generic model class
:class:`~transformers.AutoModelForSequenceClassification` is a generic model class
that will be instantiated as one of the sequence classification model classes of the library
that will be instantiated as one of the sequence classification model classes of the library
when created with the `AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path)`
when created with the `AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path)`
class method.
class method.
...
@@ -326,23 +326,23 @@ class AutoModelForSequenceClassification(object):
...
@@ -326,23 +326,23 @@ class AutoModelForSequenceClassification(object):
pretrained_model_name_or_path: either:
pretrained_model_name_or_path: either:
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args: (`optional`) Sequence of positional arguments:
model_args: (`optional`) Sequence of positional arguments:
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
- the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
state_dict: (`optional`) dict:
state_dict: (`optional`) dict:
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.
In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
cache_dir: (`optional`) string:
cache_dir: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
Path to a directory in which a downloaded pre-trained model
...
@@ -362,7 +362,7 @@ class AutoModelForSequenceClassification(object):
...
@@ -362,7 +362,7 @@ class AutoModelForSequenceClassification(object):
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
Examples::
Examples::
...
@@ -392,7 +392,7 @@ class AutoModelForSequenceClassification(object):
...
@@ -392,7 +392,7 @@ class AutoModelForSequenceClassification(object):
classAutoModelForQuestionAnswering(object):
classAutoModelForQuestionAnswering(object):
r"""
r"""
:class:`~pytorch_transformers.AutoModelForQuestionAnswering` is a generic model class
:class:`~transformers.AutoModelForQuestionAnswering` is a generic model class
that will be instantiated as one of the question answering model classes of the library
that will be instantiated as one of the question answering model classes of the library
when created with the `AutoModelForQuestionAnswering.from_pretrained(pretrained_model_name_or_path)`
when created with the `AutoModelForQuestionAnswering.from_pretrained(pretrained_model_name_or_path)`
class method.
class method.
...
@@ -435,23 +435,23 @@ class AutoModelForQuestionAnswering(object):
...
@@ -435,23 +435,23 @@ class AutoModelForQuestionAnswering(object):
pretrained_model_name_or_path: either:
pretrained_model_name_or_path: either:
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args: (`optional`) Sequence of positional arguments:
model_args: (`optional`) Sequence of positional arguments:
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
- the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
state_dict: (`optional`) dict:
state_dict: (`optional`) dict:
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.
In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
cache_dir: (`optional`) string:
cache_dir: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
Path to a directory in which a downloaded pre-trained model
...
@@ -471,7 +471,7 @@ class AutoModelForQuestionAnswering(object):
...
@@ -471,7 +471,7 @@ class AutoModelForQuestionAnswering(object):
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.