Commit 31c23bd5 authored by thomwolf's avatar thomwolf
Browse files

[BIG] pytorch-transformers => transformers

parent 2f071fcb
......@@ -24,11 +24,11 @@ import pytest
from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from pytorch_transformers import TransfoXLConfig, is_tf_available
from transformers import TransfoXLConfig, is_tf_available
if is_tf_available():
import tensorflow as tf
from pytorch_transformers.modeling_tf_transfo_xl import (TFTransfoXLModel,
from transformers.modeling_tf_transfo_xl import (TFTransfoXLModel,
TFTransfoXLLMHeadModel,
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP)
else:
......@@ -206,7 +206,7 @@ class TFTransfoXLModelTest(TFCommonTestCases.TFCommonModelTester):
@pytest.mark.slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/pytorch_transformers_test/"
cache_dir = "/tmp/transformers_test/"
for model_name in list(TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = TFTransfoXLModel.from_pretrained(model_name, cache_dir=cache_dir)
shutil.rmtree(cache_dir)
......
......@@ -20,11 +20,11 @@ import unittest
import shutil
import pytest
from pytorch_transformers import is_tf_available
from transformers import is_tf_available
if is_tf_available():
import tensorflow as tf
from pytorch_transformers import (XLMConfig, TFXLMModel,
from transformers import (XLMConfig, TFXLMModel,
TFXLMWithLMHeadModel,
TFXLMForSequenceClassification,
TFXLMForQuestionAnsweringSimple,
......@@ -253,7 +253,7 @@ class TFXLMModelTest(TFCommonTestCases.TFCommonModelTester):
@pytest.mark.slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/pytorch_transformers_test/"
cache_dir = "/tmp/transformers_test/"
for model_name in list(TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = XLMModel.from_pretrained(model_name, cache_dir=cache_dir)
shutil.rmtree(cache_dir)
......
......@@ -23,12 +23,12 @@ import random
import shutil
import pytest
from pytorch_transformers import XLNetConfig, is_tf_available
from transformers import XLNetConfig, is_tf_available
if is_tf_available():
import tensorflow as tf
from pytorch_transformers.modeling_tf_xlnet import (TFXLNetModel, TFXLNetLMHeadModel,
from transformers.modeling_tf_xlnet import (TFXLNetModel, TFXLNetLMHeadModel,
TFXLNetForSequenceClassification,
TFXLNetForQuestionAnsweringSimple,
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP)
......@@ -291,7 +291,7 @@ class TFXLNetModelTest(TFCommonTestCases.TFCommonModelTester):
@pytest.mark.slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/pytorch_transformers_test/"
cache_dir = "/tmp/transformers_test/"
for model_name in list(TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = TFXLNetModel.from_pretrained(model_name, cache_dir=cache_dir)
shutil.rmtree(cache_dir)
......
......@@ -21,12 +21,12 @@ import random
import shutil
import pytest
from pytorch_transformers import is_torch_available
from transformers import is_torch_available
if is_torch_available():
import torch
from pytorch_transformers import (TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel)
from pytorch_transformers.modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
from transformers import (TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel)
from transformers.modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
else:
pytestmark = pytest.mark.skip("Require Torch")
......@@ -206,7 +206,7 @@ class TransfoXLModelTest(CommonTestCases.CommonModelTester):
@pytest.mark.slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/pytorch_transformers_test/"
cache_dir = "/tmp/transformers_test/"
for model_name in list(TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = TransfoXLModel.from_pretrained(model_name, cache_dir=cache_dir)
shutil.rmtree(cache_dir)
......
......@@ -20,12 +20,12 @@ import unittest
import shutil
import pytest
from pytorch_transformers import is_torch_available
from transformers import is_torch_available
if is_torch_available():
from pytorch_transformers import (XLMConfig, XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering,
from transformers import (XLMConfig, XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering,
XLMForSequenceClassification, XLMForQuestionAnsweringSimple)
from pytorch_transformers.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_MAP
from transformers.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_MAP
else:
pytestmark = pytest.mark.skip("Require Torch")
......@@ -314,7 +314,7 @@ class XLMModelTest(CommonTestCases.CommonModelTester):
@pytest.mark.slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/pytorch_transformers_test/"
cache_dir = "/tmp/transformers_test/"
for model_name in list(XLM_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = XLMModel.from_pretrained(model_name, cache_dir=cache_dir)
shutil.rmtree(cache_dir)
......
......@@ -23,13 +23,13 @@ import random
import shutil
import pytest
from pytorch_transformers import is_torch_available
from transformers import is_torch_available
if is_torch_available():
import torch
from pytorch_transformers import (XLNetConfig, XLNetModel, XLNetLMHeadModel, XLNetForSequenceClassification, XLNetForQuestionAnswering)
from pytorch_transformers.modeling_xlnet import XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
from transformers import (XLNetConfig, XLNetModel, XLNetLMHeadModel, XLNetForSequenceClassification, XLNetForQuestionAnswering)
from transformers.modeling_xlnet import XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
else:
pytestmark = pytest.mark.skip("Require Torch")
......@@ -317,7 +317,7 @@ class XLNetModelTest(CommonTestCases.CommonModelTester):
@pytest.mark.slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/pytorch_transformers_test/"
cache_dir = "/tmp/transformers_test/"
for model_name in list(XLNET_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = XLNetModel.from_pretrained(model_name, cache_dir=cache_dir)
shutil.rmtree(cache_dir)
......
......@@ -20,12 +20,12 @@ import unittest
import os
import pytest
from pytorch_transformers import is_torch_available
from transformers import is_torch_available
if is_torch_available():
import torch
from pytorch_transformers import (AdamW, ConstantLRSchedule, WarmupConstantSchedule,
from transformers import (AdamW, ConstantLRSchedule, WarmupConstantSchedule,
WarmupCosineSchedule, WarmupCosineWithHardRestartsSchedule, WarmupLinearSchedule)
else:
pytestmark = pytest.mark.skip("Require Torch")
......
......@@ -21,8 +21,8 @@ import shutil
import pytest
import logging
from pytorch_transformers import AutoTokenizer, BertTokenizer, AutoTokenizer, GPT2Tokenizer
from pytorch_transformers import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP
from transformers import AutoTokenizer, BertTokenizer, AutoTokenizer, GPT2Tokenizer
from transformers import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP
class AutoTokenizerTest(unittest.TestCase):
......
......@@ -18,7 +18,7 @@ import os
import unittest
from io import open
from pytorch_transformers.tokenization_bert import (BasicTokenizer,
from transformers.tokenization_bert import (BasicTokenizer,
BertTokenizer,
WordpieceTokenizer,
_is_control, _is_punctuation,
......
......@@ -18,7 +18,7 @@ import os
import unittest
from io import open
from pytorch_transformers.tokenization_distilbert import (DistilBertTokenizer)
from transformers.tokenization_distilbert import (DistilBertTokenizer)
from .tokenization_tests_commons import CommonTestCases
from .tokenization_bert_test import BertTokenizationTest
......
......@@ -19,7 +19,7 @@ import unittest
import json
from io import open
from pytorch_transformers.tokenization_gpt2 import GPT2Tokenizer, VOCAB_FILES_NAMES
from transformers.tokenization_gpt2 import GPT2Tokenizer, VOCAB_FILES_NAMES
from .tokenization_tests_commons import CommonTestCases
......
......@@ -18,7 +18,7 @@ import os
import unittest
import json
from pytorch_transformers.tokenization_openai import OpenAIGPTTokenizer, VOCAB_FILES_NAMES
from transformers.tokenization_openai import OpenAIGPTTokenizer, VOCAB_FILES_NAMES
from .tokenization_tests_commons import CommonTestCases
......
......@@ -19,7 +19,7 @@ import json
import unittest
from io import open
from pytorch_transformers.tokenization_roberta import RobertaTokenizer, VOCAB_FILES_NAMES
from transformers.tokenization_roberta import RobertaTokenizer, VOCAB_FILES_NAMES
from .tokenization_tests_commons import CommonTestCases
......
......@@ -19,11 +19,11 @@ import unittest
import pytest
from io import open
from pytorch_transformers import is_torch_available
from transformers import is_torch_available
if is_torch_available():
import torch
from pytorch_transformers.tokenization_transfo_xl import TransfoXLTokenizer, VOCAB_FILES_NAMES
from transformers.tokenization_transfo_xl import TransfoXLTokenizer, VOCAB_FILES_NAMES
else:
pytestmark = pytest.mark.skip("Require Torch") # TODO: untangle Transfo-XL tokenizer from torch.load and torch.save
......
......@@ -19,8 +19,8 @@ from __future__ import print_function
import unittest
import six
from pytorch_transformers import PreTrainedTokenizer
from pytorch_transformers.tokenization_gpt2 import GPT2Tokenizer
from transformers import PreTrainedTokenizer
from transformers.tokenization_gpt2 import GPT2Tokenizer
class TokenizerUtilsTest(unittest.TestCase):
def check_tokenizer_from_pretrained(self, tokenizer_class):
......
......@@ -18,7 +18,7 @@ import os
import unittest
import json
from pytorch_transformers.tokenization_xlm import XLMTokenizer, VOCAB_FILES_NAMES
from transformers.tokenization_xlm import XLMTokenizer, VOCAB_FILES_NAMES
from .tokenization_tests_commons import CommonTestCases
......
......@@ -17,7 +17,7 @@ from __future__ import absolute_import, division, print_function, unicode_litera
import os
import unittest
from pytorch_transformers.tokenization_xlnet import (XLNetTokenizer, SPIECE_UNDERLINE)
from transformers.tokenization_xlnet import (XLNetTokenizer, SPIECE_UNDERLINE)
from .tokenization_tests_commons import CommonTestCases
......
......@@ -30,7 +30,7 @@ from .tokenization_distilbert import DistilBertTokenizer
logger = logging.getLogger(__name__)
class AutoTokenizer(object):
r""":class:`~pytorch_transformers.AutoTokenizer` is a generic tokenizer class
r""":class:`~transformers.AutoTokenizer` is a generic tokenizer class
that will be instantiated as one of the tokenizer classes of the library
when created with the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)`
class method.
......@@ -75,7 +75,7 @@ class AutoTokenizer(object):
pretrained_model_name_or_path: either:
- a string with the `shortcut name` of a predefined tokenizer to load from cache or download, e.g.: ``bert-base-uncased``.
- a path to a `directory` containing vocabulary files required by the tokenizer, for instance saved using the :func:`~pytorch_transformers.PreTrainedTokenizer.save_pretrained` method, e.g.: ``./my_model_directory/``.
- a path to a `directory` containing vocabulary files required by the tokenizer, for instance saved using the :func:`~transformers.PreTrainedTokenizer.save_pretrained` method, e.g.: ``./my_model_directory/``.
- (not applicable to all derived classes) a path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (e.g. Bert, XLNet), e.g.: ``./my_model_directory/vocab.txt``.
cache_dir: (`optional`) string:
......@@ -90,7 +90,7 @@ class AutoTokenizer(object):
inputs: (`optional`) positional arguments: will be passed to the Tokenizer ``__init__`` method.
kwargs: (`optional`) keyword arguments: will be passed to the Tokenizer ``__init__`` method. Can be used to set special tokens like ``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``, ``additional_special_tokens``. See parameters in the doc string of :class:`~pytorch_transformers.PreTrainedTokenizer` for details.
kwargs: (`optional`) keyword arguments: will be passed to the Tokenizer ``__init__`` method. Can be used to set special tokens like ``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``, ``additional_special_tokens``. See parameters in the doc string of :class:`~transformers.PreTrainedTokenizer` for details.
Examples::
......
......@@ -103,7 +103,7 @@ def whitespace_tokenize(text):
class BertTokenizer(PreTrainedTokenizer):
r"""
Constructs a BertTokenizer.
:class:`~pytorch_transformers.BertTokenizer` runs end-to-end tokenization: punctuation splitting + wordpiece
:class:`~transformers.BertTokenizer` runs end-to-end tokenization: punctuation splitting + wordpiece
Args:
vocab_file: Path to a one-wordpiece-per-line vocabulary file
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment