Unverified Commit 31be02f1 authored by Joao Gante's avatar Joao Gante Committed by GitHub
Browse files

TF: tf.debugging assertions without tf.running_eagerly() protection (#19030)

parent 693ba2cc
...@@ -71,7 +71,6 @@ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_to ...@@ -71,7 +71,6 @@ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_to
shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids
) )
if tf.executing_eagerly():
# "Verify that `labels` has only positive values and -100" # "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
...@@ -229,9 +228,6 @@ class TFBartAttention(tf.keras.layers.Layer): ...@@ -229,9 +228,6 @@ class TFBartAttention(tf.keras.layers.Layer):
src_len = shape_list(key_states)[1] src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True) attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_weights), shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len], [bsz * self.num_heads, tgt_len, src_len],
...@@ -242,9 +238,6 @@ class TFBartAttention(tf.keras.layers.Layer): ...@@ -242,9 +238,6 @@ class TFBartAttention(tf.keras.layers.Layer):
) )
if attention_mask is not None: if attention_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attention_mask), shape_list(attention_mask),
[bsz, 1, tgt_len, src_len], [bsz, 1, tgt_len, src_len],
...@@ -261,9 +254,6 @@ class TFBartAttention(tf.keras.layers.Layer): ...@@ -261,9 +254,6 @@ class TFBartAttention(tf.keras.layers.Layer):
attn_weights = stable_softmax(attn_weights, axis=-1) attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None: if layer_head_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(layer_head_mask), shape_list(layer_head_mask),
[self.num_heads], [self.num_heads],
...@@ -281,9 +271,6 @@ class TFBartAttention(tf.keras.layers.Layer): ...@@ -281,9 +271,6 @@ class TFBartAttention(tf.keras.layers.Layer):
attn_probs = self.dropout(attn_weights, training=training) attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states) attn_output = tf.matmul(attn_probs, value_states)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_output), shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim], [bsz * self.num_heads, tgt_len, self.head_dim],
...@@ -339,9 +326,6 @@ class TFBartEncoderLayer(tf.keras.layers.Layer): ...@@ -339,9 +326,6 @@ class TFBartEncoderLayer(tf.keras.layers.Layer):
hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
) )
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(hidden_states), shape_list(hidden_states),
shape_list(residual), shape_list(residual),
...@@ -776,9 +760,7 @@ class TFBartEncoder(tf.keras.layers.Layer): ...@@ -776,9 +760,7 @@ class TFBartEncoder(tf.keras.layers.Layer):
all_attentions = () if output_attentions else None all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired # check if head_mask has a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they if head_mask is not None:
# have to be disabled in other modes than eager.
if head_mask is not None and tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(head_mask)[0], shape_list(head_mask)[0],
len(self.layers), len(self.layers),
...@@ -983,10 +965,8 @@ class TFBartDecoder(tf.keras.layers.Layer): ...@@ -983,10 +965,8 @@ class TFBartDecoder(tf.keras.layers.Layer):
present_key_values = () if use_cache else None present_key_values = () if use_cache else None
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
if attn_mask is not None and tf.executing_eagerly(): if attn_mask is not None:
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_mask)[0], shape_list(attn_mask)[0],
len(self.layers), len(self.layers),
......
...@@ -73,7 +73,6 @@ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_to ...@@ -73,7 +73,6 @@ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_to
shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids
) )
if tf.executing_eagerly():
# "Verify that `labels` has only positive values and -100" # "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
...@@ -225,9 +224,6 @@ class TFBlenderbotAttention(tf.keras.layers.Layer): ...@@ -225,9 +224,6 @@ class TFBlenderbotAttention(tf.keras.layers.Layer):
src_len = shape_list(key_states)[1] src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True) attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_weights), shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len], [bsz * self.num_heads, tgt_len, src_len],
...@@ -238,9 +234,6 @@ class TFBlenderbotAttention(tf.keras.layers.Layer): ...@@ -238,9 +234,6 @@ class TFBlenderbotAttention(tf.keras.layers.Layer):
) )
if attention_mask is not None: if attention_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attention_mask), shape_list(attention_mask),
[bsz, 1, tgt_len, src_len], [bsz, 1, tgt_len, src_len],
...@@ -257,9 +250,6 @@ class TFBlenderbotAttention(tf.keras.layers.Layer): ...@@ -257,9 +250,6 @@ class TFBlenderbotAttention(tf.keras.layers.Layer):
attn_weights = stable_softmax(attn_weights, axis=-1) attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None: if layer_head_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(layer_head_mask), shape_list(layer_head_mask),
[self.num_heads], [self.num_heads],
...@@ -277,9 +267,6 @@ class TFBlenderbotAttention(tf.keras.layers.Layer): ...@@ -277,9 +267,6 @@ class TFBlenderbotAttention(tf.keras.layers.Layer):
attn_probs = self.dropout(attn_weights, training=training) attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states) attn_output = tf.matmul(attn_probs, value_states)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_output), shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim], [bsz * self.num_heads, tgt_len, self.head_dim],
...@@ -337,9 +324,6 @@ class TFBlenderbotEncoderLayer(tf.keras.layers.Layer): ...@@ -337,9 +324,6 @@ class TFBlenderbotEncoderLayer(tf.keras.layers.Layer):
hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
) )
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(hidden_states), shape_list(hidden_states),
shape_list(residual), shape_list(residual),
...@@ -755,9 +739,7 @@ class TFBlenderbotEncoder(tf.keras.layers.Layer): ...@@ -755,9 +739,7 @@ class TFBlenderbotEncoder(tf.keras.layers.Layer):
all_attentions = () if output_attentions else None all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired # check if head_mask has a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they if head_mask is not None:
# have to be disabled in other modes than eager.
if head_mask is not None and tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(head_mask)[0], shape_list(head_mask)[0],
len(self.layers), len(self.layers),
...@@ -966,10 +948,8 @@ class TFBlenderbotDecoder(tf.keras.layers.Layer): ...@@ -966,10 +948,8 @@ class TFBlenderbotDecoder(tf.keras.layers.Layer):
present_key_values = () if use_cache else None present_key_values = () if use_cache else None
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
if attn_mask is not None and tf.executing_eagerly(): if attn_mask is not None:
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_mask)[0], shape_list(attn_mask)[0],
len(self.layers), len(self.layers),
......
...@@ -72,7 +72,6 @@ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_to ...@@ -72,7 +72,6 @@ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_to
shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids
) )
if tf.executing_eagerly():
# "Verify that `labels` has only positive values and -100" # "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
...@@ -225,9 +224,6 @@ class TFBlenderbotSmallAttention(tf.keras.layers.Layer): ...@@ -225,9 +224,6 @@ class TFBlenderbotSmallAttention(tf.keras.layers.Layer):
src_len = shape_list(key_states)[1] src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True) attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_weights), shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len], [bsz * self.num_heads, tgt_len, src_len],
...@@ -238,9 +234,6 @@ class TFBlenderbotSmallAttention(tf.keras.layers.Layer): ...@@ -238,9 +234,6 @@ class TFBlenderbotSmallAttention(tf.keras.layers.Layer):
) )
if attention_mask is not None: if attention_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attention_mask), shape_list(attention_mask),
[bsz, 1, tgt_len, src_len], [bsz, 1, tgt_len, src_len],
...@@ -257,9 +250,6 @@ class TFBlenderbotSmallAttention(tf.keras.layers.Layer): ...@@ -257,9 +250,6 @@ class TFBlenderbotSmallAttention(tf.keras.layers.Layer):
attn_weights = stable_softmax(attn_weights, axis=-1) attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None: if layer_head_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(layer_head_mask), shape_list(layer_head_mask),
[self.num_heads], [self.num_heads],
...@@ -277,9 +267,6 @@ class TFBlenderbotSmallAttention(tf.keras.layers.Layer): ...@@ -277,9 +267,6 @@ class TFBlenderbotSmallAttention(tf.keras.layers.Layer):
attn_probs = self.dropout(attn_weights, training=training) attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states) attn_output = tf.matmul(attn_probs, value_states)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_output), shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim], [bsz * self.num_heads, tgt_len, self.head_dim],
...@@ -336,9 +323,6 @@ class TFBlenderbotSmallEncoderLayer(tf.keras.layers.Layer): ...@@ -336,9 +323,6 @@ class TFBlenderbotSmallEncoderLayer(tf.keras.layers.Layer):
hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
) )
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(hidden_states), shape_list(hidden_states),
shape_list(residual), shape_list(residual),
...@@ -761,9 +745,7 @@ class TFBlenderbotSmallEncoder(tf.keras.layers.Layer): ...@@ -761,9 +745,7 @@ class TFBlenderbotSmallEncoder(tf.keras.layers.Layer):
all_attentions = () if output_attentions else None all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired # check if head_mask has a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they if head_mask is not None:
# have to be disabled in other modes than eager.
if head_mask is not None and tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(head_mask)[0], shape_list(head_mask)[0],
len(self.layers), len(self.layers),
...@@ -968,10 +950,8 @@ class TFBlenderbotSmallDecoder(tf.keras.layers.Layer): ...@@ -968,10 +950,8 @@ class TFBlenderbotSmallDecoder(tf.keras.layers.Layer):
present_key_values = () if use_cache else None present_key_values = () if use_cache else None
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
if attn_mask is not None and tf.executing_eagerly(): if attn_mask is not None:
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_mask)[0], shape_list(attn_mask)[0],
len(self.layers), len(self.layers),
......
...@@ -171,7 +171,6 @@ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_to ...@@ -171,7 +171,6 @@ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_to
shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids
) )
if tf.executing_eagerly():
# "Verify that `labels` has only positive values and -100" # "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
......
...@@ -200,9 +200,9 @@ def get_masks(slen, lengths, causal, padding_mask=None): ...@@ -200,9 +200,9 @@ def get_masks(slen, lengths, causal, padding_mask=None):
# sanity check # sanity check
# assert shape_list(mask) == [bs, slen] # assert shape_list(mask) == [bs, slen]
if tf.executing_eagerly():
tf.debugging.assert_equal(shape_list(mask), [bs, slen]) tf.debugging.assert_equal(shape_list(mask), [bs, slen])
assert causal is False or shape_list(attn_mask) == [bs, slen, slen] if causal:
tf.debugging.assert_equal(shape_list(attn_mask), [bs, slen, slen])
return mask, attn_mask return mask, attn_mask
...@@ -517,7 +517,6 @@ class TFFlaubertMainLayer(tf.keras.layers.Layer): ...@@ -517,7 +517,6 @@ class TFFlaubertMainLayer(tf.keras.layers.Layer):
# check inputs # check inputs
# assert shape_list(lengths)[0] == bs # assert shape_list(lengths)[0] == bs
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(lengths)[0], bs shape_list(lengths)[0], bs
), f"Expected batch size {shape_list(lengths)[0]} and received batch size {bs} mismatched" ), f"Expected batch size {shape_list(lengths)[0]} and received batch size {bs} mismatched"
...@@ -538,7 +537,6 @@ class TFFlaubertMainLayer(tf.keras.layers.Layer): ...@@ -538,7 +537,6 @@ class TFFlaubertMainLayer(tf.keras.layers.Layer):
position_ids = tf.expand_dims(tf.range(slen), axis=0) position_ids = tf.expand_dims(tf.range(slen), axis=0)
position_ids = tf.tile(position_ids, (bs, 1)) position_ids = tf.tile(position_ids, (bs, 1))
if tf.executing_eagerly():
# assert shape_list(position_ids) == [bs, slen] # (slen, bs) # assert shape_list(position_ids) == [bs, slen] # (slen, bs)
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(position_ids), [bs, slen] shape_list(position_ids), [bs, slen]
...@@ -546,7 +544,7 @@ class TFFlaubertMainLayer(tf.keras.layers.Layer): ...@@ -546,7 +544,7 @@ class TFFlaubertMainLayer(tf.keras.layers.Layer):
# position_ids = position_ids.transpose(0, 1) # position_ids = position_ids.transpose(0, 1)
# langs # langs
if langs is not None and tf.executing_eagerly(): if langs is not None:
# assert shape_list(langs) == [bs, slen] # (slen, bs) # assert shape_list(langs) == [bs, slen] # (slen, bs)
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(langs), [bs, slen] shape_list(langs), [bs, slen]
......
...@@ -816,9 +816,6 @@ class TFHubertAttention(tf.keras.layers.Layer): ...@@ -816,9 +816,6 @@ class TFHubertAttention(tf.keras.layers.Layer):
src_len = shape_list(key_states)[1] src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True) attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_weights), shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len], [bsz * self.num_heads, tgt_len, src_len],
...@@ -829,9 +826,6 @@ class TFHubertAttention(tf.keras.layers.Layer): ...@@ -829,9 +826,6 @@ class TFHubertAttention(tf.keras.layers.Layer):
) )
if attention_mask is not None: if attention_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attention_mask), shape_list(attention_mask),
[bsz, 1, tgt_len, src_len], [bsz, 1, tgt_len, src_len],
...@@ -848,9 +842,6 @@ class TFHubertAttention(tf.keras.layers.Layer): ...@@ -848,9 +842,6 @@ class TFHubertAttention(tf.keras.layers.Layer):
attn_weights = stable_softmax(attn_weights, axis=-1) attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None: if layer_head_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(layer_head_mask), shape_list(layer_head_mask),
[self.num_heads], [self.num_heads],
...@@ -868,9 +859,6 @@ class TFHubertAttention(tf.keras.layers.Layer): ...@@ -868,9 +859,6 @@ class TFHubertAttention(tf.keras.layers.Layer):
attn_probs = self.dropout(attn_weights, training=training) attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states) attn_output = tf.matmul(attn_probs, value_states)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_output), shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim], [bsz * self.num_heads, tgt_len, self.head_dim],
......
...@@ -64,7 +64,6 @@ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_to ...@@ -64,7 +64,6 @@ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_to
) )
# "Verify that `labels` has only positive values and -100" # "Verify that `labels` has only positive values and -100"
if tf.executing_eagerly():
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0)) assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0))
# Make sure the assertion op is called by wrapping the result in an identity no-op # Make sure the assertion op is called by wrapping the result in an identity no-op
...@@ -213,7 +212,6 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer): ...@@ -213,7 +212,6 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer):
value_vectors = self.value(hidden_states) value_vectors = self.value(hidden_states)
batch_size, seq_len, embed_dim = shape_list(hidden_states) batch_size, seq_len, embed_dim = shape_list(hidden_states)
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
embed_dim, embed_dim,
self.embed_dim, self.embed_dim,
...@@ -245,7 +243,6 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer): ...@@ -245,7 +243,6 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer):
# pad local attention probs # pad local attention probs
attn_scores += diagonal_mask attn_scores += diagonal_mask
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_scores), shape_list(attn_scores),
[batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1], [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1],
...@@ -301,7 +298,6 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer): ...@@ -301,7 +298,6 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer):
) )
if layer_head_mask is not None: if layer_head_mask is not None:
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(layer_head_mask), shape_list(layer_head_mask),
[self.num_heads], [self.num_heads],
...@@ -332,11 +328,8 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer): ...@@ -332,11 +328,8 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer):
), ),
) )
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_output), shape_list(attn_output), [batch_size, seq_len, self.num_heads, self.head_dim], message="Unexpected size"
[batch_size, seq_len, self.num_heads, self.head_dim],
message="Unexpected size",
) )
attn_output = tf.reshape(attn_output, (batch_size, seq_len, embed_dim)) attn_output = tf.reshape(attn_output, (batch_size, seq_len, embed_dim))
...@@ -392,7 +385,6 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer): ...@@ -392,7 +385,6 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer):
""" """
batch_size, seq_len, num_heads, head_dim = shape_list(query) batch_size, seq_len, num_heads, head_dim = shape_list(query)
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
seq_len % (window_overlap * 2), seq_len % (window_overlap * 2),
0, 0,
...@@ -539,11 +531,8 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer): ...@@ -539,11 +531,8 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer):
batch_size, seq_len, num_heads, head_dim = shape_list(value) batch_size, seq_len, num_heads, head_dim = shape_list(value)
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
seq_len % (window_overlap * 2), seq_len % (window_overlap * 2), 0, message="Seq_len has to be multiple of 2 * window_overlap"
0,
message="Seq_len has to be multiple of 2 * window_overlap",
) )
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_probs)[:3], shape_list(attn_probs)[:3],
...@@ -592,7 +581,6 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer): ...@@ -592,7 +581,6 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer):
(batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim), (batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim),
) )
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(chunked_value), shape_list(chunked_value),
[batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim], [batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim],
...@@ -685,7 +673,6 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer): ...@@ -685,7 +673,6 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer):
# chunk with overlap # chunk with overlap
chunked_hidden_states = tf.signal.frame(hidden_states, frame_size, frame_hop_size) chunked_hidden_states = tf.signal.frame(hidden_states, frame_size, frame_hop_size)
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(chunked_hidden_states), shape_list(chunked_hidden_states),
[batch_size, num_output_chunks, frame_size], [batch_size, num_output_chunks, frame_size],
...@@ -866,7 +853,6 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer): ...@@ -866,7 +853,6 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer):
# compute attn scores # compute attn scores
global_attn_scores = tf.matmul(global_query_vectors_only_global, global_key_vectors, transpose_b=True) global_attn_scores = tf.matmul(global_query_vectors_only_global, global_key_vectors, transpose_b=True)
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(global_attn_scores), shape_list(global_attn_scores),
[batch_size * self.num_heads, max_num_global_attn_indices, seq_len], [batch_size * self.num_heads, max_num_global_attn_indices, seq_len],
...@@ -909,7 +895,6 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer): ...@@ -909,7 +895,6 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer):
# apply layer head masking # apply layer head masking
if layer_head_mask is not None: if layer_head_mask is not None:
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(layer_head_mask), shape_list(layer_head_mask),
[self.num_heads], [self.num_heads],
...@@ -931,7 +916,6 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer): ...@@ -931,7 +916,6 @@ class TFLEDEncoderSelfAttention(tf.keras.layers.Layer):
# global attn output # global attn output
global_attn_output = tf.matmul(global_attn_probs, global_value_vectors) global_attn_output = tf.matmul(global_attn_probs, global_value_vectors)
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(global_attn_output), shape_list(global_attn_output),
[batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim], [batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim],
...@@ -1091,7 +1075,6 @@ class TFLEDDecoderAttention(tf.keras.layers.Layer): ...@@ -1091,7 +1075,6 @@ class TFLEDDecoderAttention(tf.keras.layers.Layer):
src_len = shape_list(key_states)[1] src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True) attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_weights), shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len], [bsz * self.num_heads, tgt_len, src_len],
...@@ -1102,7 +1085,6 @@ class TFLEDDecoderAttention(tf.keras.layers.Layer): ...@@ -1102,7 +1085,6 @@ class TFLEDDecoderAttention(tf.keras.layers.Layer):
) )
if attention_mask is not None: if attention_mask is not None:
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attention_mask), shape_list(attention_mask),
[bsz, 1, tgt_len, src_len], [bsz, 1, tgt_len, src_len],
...@@ -1120,7 +1102,6 @@ class TFLEDDecoderAttention(tf.keras.layers.Layer): ...@@ -1120,7 +1102,6 @@ class TFLEDDecoderAttention(tf.keras.layers.Layer):
attn_weights = stable_softmax(attn_weights, axis=-1) attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None: if layer_head_mask is not None:
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(layer_head_mask), shape_list(layer_head_mask),
[self.num_heads], [self.num_heads],
...@@ -1139,7 +1120,6 @@ class TFLEDDecoderAttention(tf.keras.layers.Layer): ...@@ -1139,7 +1120,6 @@ class TFLEDDecoderAttention(tf.keras.layers.Layer):
attn_output = tf.matmul(attn_probs, value_states) attn_output = tf.matmul(attn_probs, value_states)
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_output), shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim], [bsz * self.num_heads, tgt_len, self.head_dim],
...@@ -1199,7 +1179,6 @@ class TFLEDEncoderLayer(tf.keras.layers.Layer): ...@@ -1199,7 +1179,6 @@ class TFLEDEncoderLayer(tf.keras.layers.Layer):
hidden_states = layer_outputs[0] hidden_states = layer_outputs[0]
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(hidden_states), shape_list(hidden_states),
shape_list(residual), shape_list(residual),
...@@ -1792,7 +1771,7 @@ class TFLEDEncoder(tf.keras.layers.Layer): ...@@ -1792,7 +1771,7 @@ class TFLEDEncoder(tf.keras.layers.Layer):
all_attentions = all_global_attentions = () if output_attentions else None all_attentions = all_global_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired # check if head_mask has a correct number of layers specified if desired
if head_mask is not None and tf.executing_eagerly(): if head_mask is not None:
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(head_mask)[0], shape_list(head_mask)[0],
len(self.layers), len(self.layers),
...@@ -2055,7 +2034,7 @@ class TFLEDDecoder(tf.keras.layers.Layer): ...@@ -2055,7 +2034,7 @@ class TFLEDDecoder(tf.keras.layers.Layer):
present_key_values = () present_key_values = ()
# check if head_mask has a correct number of layers specified if desired # check if head_mask has a correct number of layers specified if desired
if head_mask is not None and tf.executing_eagerly(): if head_mask is not None:
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(head_mask)[0], shape_list(head_mask)[0],
len(self.layers), len(self.layers),
......
...@@ -738,7 +738,6 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer): ...@@ -738,7 +738,6 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer):
value_vectors = self.value(hidden_states) value_vectors = self.value(hidden_states)
batch_size, seq_len, embed_dim = shape_list(hidden_states) batch_size, seq_len, embed_dim = shape_list(hidden_states)
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
embed_dim, embed_dim,
self.embed_dim, self.embed_dim,
...@@ -770,7 +769,6 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer): ...@@ -770,7 +769,6 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer):
# pad local attention probs # pad local attention probs
attn_scores += diagonal_mask attn_scores += diagonal_mask
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_scores), shape_list(attn_scores),
[batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1], [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1],
...@@ -826,7 +824,6 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer): ...@@ -826,7 +824,6 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer):
) )
if layer_head_mask is not None: if layer_head_mask is not None:
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(layer_head_mask), shape_list(layer_head_mask),
[self.num_heads], [self.num_heads],
...@@ -857,11 +854,8 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer): ...@@ -857,11 +854,8 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer):
), ),
) )
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_output), shape_list(attn_output), [batch_size, seq_len, self.num_heads, self.head_dim], message="Unexpected size"
[batch_size, seq_len, self.num_heads, self.head_dim],
message="Unexpected size",
) )
attn_output = tf.reshape(attn_output, (batch_size, seq_len, embed_dim)) attn_output = tf.reshape(attn_output, (batch_size, seq_len, embed_dim))
...@@ -917,7 +911,6 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer): ...@@ -917,7 +911,6 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer):
""" """
batch_size, seq_len, num_heads, head_dim = shape_list(query) batch_size, seq_len, num_heads, head_dim = shape_list(query)
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
seq_len % (window_overlap * 2), seq_len % (window_overlap * 2),
0, 0,
...@@ -1064,11 +1057,8 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer): ...@@ -1064,11 +1057,8 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer):
batch_size, seq_len, num_heads, head_dim = shape_list(value) batch_size, seq_len, num_heads, head_dim = shape_list(value)
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
seq_len % (window_overlap * 2), seq_len % (window_overlap * 2), 0, message="Seq_len has to be multiple of 2 * window_overlap"
0,
message="Seq_len has to be multiple of 2 * window_overlap",
) )
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_probs)[:3], shape_list(attn_probs)[:3],
...@@ -1117,7 +1107,6 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer): ...@@ -1117,7 +1107,6 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer):
(batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim), (batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim),
) )
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(chunked_value), shape_list(chunked_value),
[batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim], [batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim],
...@@ -1210,7 +1199,6 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer): ...@@ -1210,7 +1199,6 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer):
# chunk with overlap # chunk with overlap
chunked_hidden_states = tf.signal.frame(hidden_states, frame_size, frame_hop_size) chunked_hidden_states = tf.signal.frame(hidden_states, frame_size, frame_hop_size)
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(chunked_hidden_states), shape_list(chunked_hidden_states),
[batch_size, num_output_chunks, frame_size], [batch_size, num_output_chunks, frame_size],
...@@ -1391,7 +1379,6 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer): ...@@ -1391,7 +1379,6 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer):
# compute attn scores # compute attn scores
global_attn_scores = tf.matmul(global_query_vectors_only_global, global_key_vectors, transpose_b=True) global_attn_scores = tf.matmul(global_query_vectors_only_global, global_key_vectors, transpose_b=True)
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(global_attn_scores), shape_list(global_attn_scores),
[batch_size * self.num_heads, max_num_global_attn_indices, seq_len], [batch_size * self.num_heads, max_num_global_attn_indices, seq_len],
...@@ -1434,7 +1421,6 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer): ...@@ -1434,7 +1421,6 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer):
# apply layer head masking # apply layer head masking
if layer_head_mask is not None: if layer_head_mask is not None:
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(layer_head_mask), shape_list(layer_head_mask),
[self.num_heads], [self.num_heads],
...@@ -1456,7 +1442,6 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer): ...@@ -1456,7 +1442,6 @@ class TFLongformerSelfAttention(tf.keras.layers.Layer):
# global attn output # global attn output
global_attn_output = tf.matmul(global_attn_probs, global_value_vectors) global_attn_output = tf.matmul(global_attn_probs, global_value_vectors)
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(global_attn_output), shape_list(global_attn_output),
[batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim], [batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim],
......
...@@ -72,7 +72,6 @@ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_to ...@@ -72,7 +72,6 @@ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_to
shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids
) )
if tf.executing_eagerly():
# "Verify that `labels` has only positive values and -100" # "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
...@@ -264,9 +263,6 @@ class TFMarianAttention(tf.keras.layers.Layer): ...@@ -264,9 +263,6 @@ class TFMarianAttention(tf.keras.layers.Layer):
src_len = shape_list(key_states)[1] src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True) attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_weights), shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len], [bsz * self.num_heads, tgt_len, src_len],
...@@ -277,9 +273,6 @@ class TFMarianAttention(tf.keras.layers.Layer): ...@@ -277,9 +273,6 @@ class TFMarianAttention(tf.keras.layers.Layer):
) )
if attention_mask is not None: if attention_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attention_mask), shape_list(attention_mask),
[bsz, 1, tgt_len, src_len], [bsz, 1, tgt_len, src_len],
...@@ -296,9 +289,6 @@ class TFMarianAttention(tf.keras.layers.Layer): ...@@ -296,9 +289,6 @@ class TFMarianAttention(tf.keras.layers.Layer):
attn_weights = stable_softmax(attn_weights, axis=-1) attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None: if layer_head_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(layer_head_mask), shape_list(layer_head_mask),
[self.num_heads], [self.num_heads],
...@@ -316,9 +306,6 @@ class TFMarianAttention(tf.keras.layers.Layer): ...@@ -316,9 +306,6 @@ class TFMarianAttention(tf.keras.layers.Layer):
attn_probs = self.dropout(attn_weights, training=training) attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states) attn_output = tf.matmul(attn_probs, value_states)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_output), shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim], [bsz * self.num_heads, tgt_len, self.head_dim],
...@@ -375,9 +362,6 @@ class TFMarianEncoderLayer(tf.keras.layers.Layer): ...@@ -375,9 +362,6 @@ class TFMarianEncoderLayer(tf.keras.layers.Layer):
hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
) )
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(hidden_states), shape_list(hidden_states),
shape_list(residual), shape_list(residual),
...@@ -801,9 +785,7 @@ class TFMarianEncoder(tf.keras.layers.Layer): ...@@ -801,9 +785,7 @@ class TFMarianEncoder(tf.keras.layers.Layer):
all_attentions = () if output_attentions else None all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired # check if head_mask has a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they if head_mask is not None:
# have to be disabled in other modes than eager.
if head_mask is not None and tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(head_mask)[0], shape_list(head_mask)[0],
len(self.layers), len(self.layers),
...@@ -1009,10 +991,8 @@ class TFMarianDecoder(tf.keras.layers.Layer): ...@@ -1009,10 +991,8 @@ class TFMarianDecoder(tf.keras.layers.Layer):
present_key_values = () if use_cache else None present_key_values = () if use_cache else None
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
for attn_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: for attn_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
if attn_mask is not None and tf.executing_eagerly(): if attn_mask is not None:
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_mask)[0], shape_list(attn_mask)[0],
len(self.layers), len(self.layers),
......
...@@ -232,9 +232,6 @@ class TFMBartAttention(tf.keras.layers.Layer): ...@@ -232,9 +232,6 @@ class TFMBartAttention(tf.keras.layers.Layer):
src_len = shape_list(key_states)[1] src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True) attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_weights), shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len], [bsz * self.num_heads, tgt_len, src_len],
...@@ -245,9 +242,6 @@ class TFMBartAttention(tf.keras.layers.Layer): ...@@ -245,9 +242,6 @@ class TFMBartAttention(tf.keras.layers.Layer):
) )
if attention_mask is not None: if attention_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attention_mask), shape_list(attention_mask),
[bsz, 1, tgt_len, src_len], [bsz, 1, tgt_len, src_len],
...@@ -264,9 +258,6 @@ class TFMBartAttention(tf.keras.layers.Layer): ...@@ -264,9 +258,6 @@ class TFMBartAttention(tf.keras.layers.Layer):
attn_weights = stable_softmax(attn_weights, axis=-1) attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None: if layer_head_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(layer_head_mask), shape_list(layer_head_mask),
[self.num_heads], [self.num_heads],
...@@ -284,9 +275,6 @@ class TFMBartAttention(tf.keras.layers.Layer): ...@@ -284,9 +275,6 @@ class TFMBartAttention(tf.keras.layers.Layer):
attn_probs = self.dropout(attn_weights, training=training) attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states) attn_output = tf.matmul(attn_probs, value_states)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_output), shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim], [bsz * self.num_heads, tgt_len, self.head_dim],
...@@ -343,9 +331,6 @@ class TFMBartEncoderLayer(tf.keras.layers.Layer): ...@@ -343,9 +331,6 @@ class TFMBartEncoderLayer(tf.keras.layers.Layer):
hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
) )
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(hidden_states), shape_list(hidden_states),
shape_list(residual), shape_list(residual),
...@@ -786,9 +771,7 @@ class TFMBartEncoder(tf.keras.layers.Layer): ...@@ -786,9 +771,7 @@ class TFMBartEncoder(tf.keras.layers.Layer):
all_attentions = () if output_attentions else None all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired # check if head_mask has a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they if head_mask is not None:
# have to be disabled in other modes than eager.
if head_mask is not None and tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(head_mask)[0], shape_list(head_mask)[0],
len(self.layers), len(self.layers),
...@@ -1001,10 +984,8 @@ class TFMBartDecoder(tf.keras.layers.Layer): ...@@ -1001,10 +984,8 @@ class TFMBartDecoder(tf.keras.layers.Layer):
present_key_values = () if use_cache else None present_key_values = () if use_cache else None
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
if attn_mask is not None and tf.executing_eagerly(): if attn_mask is not None:
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_mask)[0], shape_list(attn_mask)[0],
len(self.layers), len(self.layers),
......
...@@ -206,9 +206,6 @@ class TFOPTAttention(tf.keras.layers.Layer): ...@@ -206,9 +206,6 @@ class TFOPTAttention(tf.keras.layers.Layer):
src_len = shape_list(key_states)[1] src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True) attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_weights), shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len], [bsz * self.num_heads, tgt_len, src_len],
...@@ -219,9 +216,6 @@ class TFOPTAttention(tf.keras.layers.Layer): ...@@ -219,9 +216,6 @@ class TFOPTAttention(tf.keras.layers.Layer):
) )
if attention_mask is not None: if attention_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attention_mask), shape_list(attention_mask),
[bsz, 1, tgt_len, src_len], [bsz, 1, tgt_len, src_len],
...@@ -238,9 +232,6 @@ class TFOPTAttention(tf.keras.layers.Layer): ...@@ -238,9 +232,6 @@ class TFOPTAttention(tf.keras.layers.Layer):
attn_weights = stable_softmax(attn_weights, axis=-1) attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None: if layer_head_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(layer_head_mask), shape_list(layer_head_mask),
[self.num_heads], [self.num_heads],
...@@ -258,9 +249,6 @@ class TFOPTAttention(tf.keras.layers.Layer): ...@@ -258,9 +249,6 @@ class TFOPTAttention(tf.keras.layers.Layer):
attn_probs = self.dropout(attn_weights, training=training) attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states) attn_output = tf.matmul(attn_probs, value_states)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_output), shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim], [bsz * self.num_heads, tgt_len, self.head_dim],
...@@ -664,10 +652,8 @@ class TFOPTDecoder(tf.keras.layers.Layer): ...@@ -664,10 +652,8 @@ class TFOPTDecoder(tf.keras.layers.Layer):
present_key_values = () if use_cache else None present_key_values = () if use_cache else None
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
for attn_mask_name, attn_mask in [("head_mask", head_mask)]: for attn_mask_name, attn_mask in [("head_mask", head_mask)]:
if attn_mask is not None and tf.executing_eagerly(): if attn_mask is not None:
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_mask)[0], shape_list(attn_mask)[0],
len(self.layers), len(self.layers),
......
...@@ -72,7 +72,6 @@ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_to ...@@ -72,7 +72,6 @@ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_to
shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids
) )
if tf.executing_eagerly():
# "Verify that `labels` has only positive values and -100" # "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
...@@ -265,9 +264,6 @@ class TFPegasusAttention(tf.keras.layers.Layer): ...@@ -265,9 +264,6 @@ class TFPegasusAttention(tf.keras.layers.Layer):
src_len = shape_list(key_states)[1] src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True) attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_weights), shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len], [bsz * self.num_heads, tgt_len, src_len],
...@@ -278,9 +274,6 @@ class TFPegasusAttention(tf.keras.layers.Layer): ...@@ -278,9 +274,6 @@ class TFPegasusAttention(tf.keras.layers.Layer):
) )
if attention_mask is not None: if attention_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attention_mask), shape_list(attention_mask),
[bsz, 1, tgt_len, src_len], [bsz, 1, tgt_len, src_len],
...@@ -297,9 +290,6 @@ class TFPegasusAttention(tf.keras.layers.Layer): ...@@ -297,9 +290,6 @@ class TFPegasusAttention(tf.keras.layers.Layer):
attn_weights = stable_softmax(attn_weights, axis=-1) attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None: if layer_head_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(layer_head_mask), shape_list(layer_head_mask),
[self.num_heads], [self.num_heads],
...@@ -317,9 +307,6 @@ class TFPegasusAttention(tf.keras.layers.Layer): ...@@ -317,9 +307,6 @@ class TFPegasusAttention(tf.keras.layers.Layer):
attn_probs = self.dropout(attn_weights, training=training) attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states) attn_output = tf.matmul(attn_probs, value_states)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_output), shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim], [bsz * self.num_heads, tgt_len, self.head_dim],
...@@ -377,9 +364,6 @@ class TFPegasusEncoderLayer(tf.keras.layers.Layer): ...@@ -377,9 +364,6 @@ class TFPegasusEncoderLayer(tf.keras.layers.Layer):
hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
) )
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(hidden_states), shape_list(hidden_states),
shape_list(residual), shape_list(residual),
...@@ -804,9 +788,7 @@ class TFPegasusEncoder(tf.keras.layers.Layer): ...@@ -804,9 +788,7 @@ class TFPegasusEncoder(tf.keras.layers.Layer):
all_attentions = () if output_attentions else None all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired # check if head_mask has a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they if head_mask is not None:
# have to be disabled in other modes than eager.
if head_mask is not None and tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(head_mask)[0], shape_list(head_mask)[0],
len(self.layers), len(self.layers),
...@@ -1015,10 +997,8 @@ class TFPegasusDecoder(tf.keras.layers.Layer): ...@@ -1015,10 +997,8 @@ class TFPegasusDecoder(tf.keras.layers.Layer):
present_key_values = () if use_cache else None present_key_values = () if use_cache else None
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
if attn_mask is not None and tf.executing_eagerly(): if attn_mask is not None:
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_mask)[0], shape_list(attn_mask)[0],
len(self.layers), len(self.layers),
......
...@@ -74,7 +74,6 @@ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_to ...@@ -74,7 +74,6 @@ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_to
shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids
) )
if tf.executing_eagerly():
# "Verify that `labels` has only positive values and -100" # "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
...@@ -324,9 +323,6 @@ class TFSpeech2TextAttention(tf.keras.layers.Layer): ...@@ -324,9 +323,6 @@ class TFSpeech2TextAttention(tf.keras.layers.Layer):
src_len = shape_list(key_states)[1] src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True) attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_weights), shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len], [bsz * self.num_heads, tgt_len, src_len],
...@@ -337,9 +333,6 @@ class TFSpeech2TextAttention(tf.keras.layers.Layer): ...@@ -337,9 +333,6 @@ class TFSpeech2TextAttention(tf.keras.layers.Layer):
) )
if attention_mask is not None: if attention_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attention_mask), shape_list(attention_mask),
[bsz, 1, tgt_len, src_len], [bsz, 1, tgt_len, src_len],
...@@ -356,9 +349,6 @@ class TFSpeech2TextAttention(tf.keras.layers.Layer): ...@@ -356,9 +349,6 @@ class TFSpeech2TextAttention(tf.keras.layers.Layer):
attn_weights = stable_softmax(attn_weights, axis=-1) attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None: if layer_head_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(layer_head_mask), shape_list(layer_head_mask),
[self.num_heads], [self.num_heads],
...@@ -376,9 +366,6 @@ class TFSpeech2TextAttention(tf.keras.layers.Layer): ...@@ -376,9 +366,6 @@ class TFSpeech2TextAttention(tf.keras.layers.Layer):
attn_probs = self.dropout(attn_weights, training=training) attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states) attn_output = tf.matmul(attn_probs, value_states)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_output), shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim], [bsz * self.num_heads, tgt_len, self.head_dim],
...@@ -434,9 +421,6 @@ class TFSpeech2TextEncoderLayer(tf.keras.layers.Layer): ...@@ -434,9 +421,6 @@ class TFSpeech2TextEncoderLayer(tf.keras.layers.Layer):
training=training, training=training,
) )
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(hidden_states), shape_list(hidden_states),
shape_list(residual), shape_list(residual),
...@@ -866,8 +850,7 @@ class TFSpeech2TextEncoder(tf.keras.layers.Layer): ...@@ -866,8 +850,7 @@ class TFSpeech2TextEncoder(tf.keras.layers.Layer):
all_attentions = () if output_attentions else None all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired # check if head_mask has a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they have to be disabled in other modes than eager. if head_mask is not None:
if head_mask is not None and tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(head_mask)[0], shape_list(head_mask)[0],
len(self.layers), len(self.layers),
...@@ -1068,9 +1051,8 @@ class TFSpeech2TextDecoder(tf.keras.layers.Layer): ...@@ -1068,9 +1051,8 @@ class TFSpeech2TextDecoder(tf.keras.layers.Layer):
next_decoder_cache = () if use_cache else None next_decoder_cache = () if use_cache else None
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they have to be disabled in other modes than eager.
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
if attn_mask is not None and tf.executing_eagerly(): if attn_mask is not None:
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_mask)[0], shape_list(attn_mask)[0],
len(self.layers), len(self.layers),
......
...@@ -161,7 +161,6 @@ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_to ...@@ -161,7 +161,6 @@ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_to
shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids
) )
if tf.executing_eagerly():
# "Verify that `labels` has only positive values and -100" # "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
......
...@@ -852,9 +852,6 @@ class TFWav2Vec2Attention(tf.keras.layers.Layer): ...@@ -852,9 +852,6 @@ class TFWav2Vec2Attention(tf.keras.layers.Layer):
src_len = shape_list(key_states)[1] src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True) attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_weights), shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len], [bsz * self.num_heads, tgt_len, src_len],
...@@ -865,9 +862,6 @@ class TFWav2Vec2Attention(tf.keras.layers.Layer): ...@@ -865,9 +862,6 @@ class TFWav2Vec2Attention(tf.keras.layers.Layer):
) )
if attention_mask is not None: if attention_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attention_mask), shape_list(attention_mask),
[bsz, 1, tgt_len, src_len], [bsz, 1, tgt_len, src_len],
...@@ -884,9 +878,6 @@ class TFWav2Vec2Attention(tf.keras.layers.Layer): ...@@ -884,9 +878,6 @@ class TFWav2Vec2Attention(tf.keras.layers.Layer):
attn_weights = stable_softmax(attn_weights, axis=-1) attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None: if layer_head_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(layer_head_mask), shape_list(layer_head_mask),
[self.num_heads], [self.num_heads],
...@@ -904,9 +895,6 @@ class TFWav2Vec2Attention(tf.keras.layers.Layer): ...@@ -904,9 +895,6 @@ class TFWav2Vec2Attention(tf.keras.layers.Layer):
attn_probs = self.dropout(attn_weights, training=training) attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states) attn_output = tf.matmul(attn_probs, value_states)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_output), shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim], [bsz * self.num_heads, tgt_len, self.head_dim],
......
...@@ -239,9 +239,6 @@ class TFXGLMAttention(tf.keras.layers.Layer): ...@@ -239,9 +239,6 @@ class TFXGLMAttention(tf.keras.layers.Layer):
src_len = shape_list(key_states)[1] src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True) attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_weights), shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len], [bsz * self.num_heads, tgt_len, src_len],
...@@ -252,9 +249,6 @@ class TFXGLMAttention(tf.keras.layers.Layer): ...@@ -252,9 +249,6 @@ class TFXGLMAttention(tf.keras.layers.Layer):
) )
if attention_mask is not None: if attention_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attention_mask), shape_list(attention_mask),
[bsz, 1, tgt_len, src_len], [bsz, 1, tgt_len, src_len],
...@@ -271,9 +265,6 @@ class TFXGLMAttention(tf.keras.layers.Layer): ...@@ -271,9 +265,6 @@ class TFXGLMAttention(tf.keras.layers.Layer):
attn_weights = stable_softmax(attn_weights, axis=-1) attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None: if layer_head_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(layer_head_mask), shape_list(layer_head_mask),
[self.num_heads], [self.num_heads],
...@@ -291,9 +282,6 @@ class TFXGLMAttention(tf.keras.layers.Layer): ...@@ -291,9 +282,6 @@ class TFXGLMAttention(tf.keras.layers.Layer):
attn_probs = self.dropout(attn_weights, training=training) attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states) attn_output = tf.matmul(attn_probs, value_states)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_output), shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim], [bsz * self.num_heads, tgt_len, self.head_dim],
...@@ -568,10 +556,8 @@ class TFXGLMMainLayer(tf.keras.layers.Layer): ...@@ -568,10 +556,8 @@ class TFXGLMMainLayer(tf.keras.layers.Layer):
next_decoder_cache = () if use_cache else None next_decoder_cache = () if use_cache else None
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
if attn_mask is not None and tf.executing_eagerly(): if attn_mask is not None:
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_mask)[0], shape_list(attn_mask)[0],
len(self.layers), len(self.layers),
......
...@@ -105,9 +105,9 @@ def get_masks(slen, lengths, causal, padding_mask=None): ...@@ -105,9 +105,9 @@ def get_masks(slen, lengths, causal, padding_mask=None):
# sanity check # sanity check
# assert shape_list(mask) == [bs, slen] # assert shape_list(mask) == [bs, slen]
if tf.executing_eagerly():
tf.debugging.assert_equal(shape_list(mask), [bs, slen]) tf.debugging.assert_equal(shape_list(mask), [bs, slen])
assert causal is False or shape_list(attn_mask) == [bs, slen, slen] if causal:
tf.debugging.assert_equal(shape_list(attn_mask), [bs, slen, slen])
return mask, attn_mask return mask, attn_mask
...@@ -384,7 +384,6 @@ class TFXLMMainLayer(tf.keras.layers.Layer): ...@@ -384,7 +384,6 @@ class TFXLMMainLayer(tf.keras.layers.Layer):
# check inputs # check inputs
# assert shape_list(lengths)[0] == bs # assert shape_list(lengths)[0] == bs
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(lengths)[0], bs shape_list(lengths)[0], bs
), f"Expected batch size {shape_list(lengths)[0]} and received batch size {bs} mismatched" ), f"Expected batch size {shape_list(lengths)[0]} and received batch size {bs} mismatched"
...@@ -405,7 +404,6 @@ class TFXLMMainLayer(tf.keras.layers.Layer): ...@@ -405,7 +404,6 @@ class TFXLMMainLayer(tf.keras.layers.Layer):
position_ids = tf.expand_dims(tf.range(slen), axis=0) position_ids = tf.expand_dims(tf.range(slen), axis=0)
position_ids = tf.tile(position_ids, (bs, 1)) position_ids = tf.tile(position_ids, (bs, 1))
if tf.executing_eagerly():
# assert shape_list(position_ids) == [bs, slen] # (slen, bs) # assert shape_list(position_ids) == [bs, slen] # (slen, bs)
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(position_ids), [bs, slen] shape_list(position_ids), [bs, slen]
...@@ -413,7 +411,7 @@ class TFXLMMainLayer(tf.keras.layers.Layer): ...@@ -413,7 +411,7 @@ class TFXLMMainLayer(tf.keras.layers.Layer):
# position_ids = position_ids.transpose(0, 1) # position_ids = position_ids.transpose(0, 1)
# langs # langs
if langs is not None and tf.executing_eagerly(): if langs is not None:
# assert shape_list(langs) == [bs, slen] # (slen, bs) # assert shape_list(langs) == [bs, slen] # (slen, bs)
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(langs), [bs, slen] shape_list(langs), [bs, slen]
......
...@@ -1693,7 +1693,6 @@ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_to ...@@ -1693,7 +1693,6 @@ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_to
shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids
) )
if tf.executing_eagerly():
# "Verify that `labels` has only positive values and -100" # "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0)) assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0))
...@@ -1837,9 +1836,6 @@ class TF{{cookiecutter.camelcase_modelname}}Attention(tf.keras.layers.Layer): ...@@ -1837,9 +1836,6 @@ class TF{{cookiecutter.camelcase_modelname}}Attention(tf.keras.layers.Layer):
src_len = shape_list(key_states)[1] src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True) attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_weights), shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len], [bsz * self.num_heads, tgt_len, src_len],
...@@ -1847,9 +1843,6 @@ class TF{{cookiecutter.camelcase_modelname}}Attention(tf.keras.layers.Layer): ...@@ -1847,9 +1843,6 @@ class TF{{cookiecutter.camelcase_modelname}}Attention(tf.keras.layers.Layer):
) )
if attention_mask is not None: if attention_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attention_mask), shape_list(attention_mask),
[bsz, 1, tgt_len, src_len], [bsz, 1, tgt_len, src_len],
...@@ -1862,9 +1855,6 @@ class TF{{cookiecutter.camelcase_modelname}}Attention(tf.keras.layers.Layer): ...@@ -1862,9 +1855,6 @@ class TF{{cookiecutter.camelcase_modelname}}Attention(tf.keras.layers.Layer):
attn_weights = stable_softmax(attn_weights, axis=-1) attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None: if layer_head_mask is not None:
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(layer_head_mask), shape_list(layer_head_mask),
[self.num_heads], [self.num_heads],
...@@ -1880,9 +1870,6 @@ class TF{{cookiecutter.camelcase_modelname}}Attention(tf.keras.layers.Layer): ...@@ -1880,9 +1870,6 @@ class TF{{cookiecutter.camelcase_modelname}}Attention(tf.keras.layers.Layer):
attn_output = tf.matmul(attn_probs, value_states) attn_output = tf.matmul(attn_probs, value_states)
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_output), shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim], [bsz * self.num_heads, tgt_len, self.head_dim],
...@@ -1929,9 +1916,6 @@ class TF{{cookiecutter.camelcase_modelname}}EncoderLayer(tf.keras.layers.Layer): ...@@ -1929,9 +1916,6 @@ class TF{{cookiecutter.camelcase_modelname}}EncoderLayer(tf.keras.layers.Layer):
hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
) )
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
if tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(hidden_states), shape_list(hidden_states),
shape_list(residual), shape_list(residual),
...@@ -2332,9 +2316,7 @@ class TF{{cookiecutter.camelcase_modelname}}Encoder(tf.keras.layers.Layer): ...@@ -2332,9 +2316,7 @@ class TF{{cookiecutter.camelcase_modelname}}Encoder(tf.keras.layers.Layer):
all_attentions = () if output_attentions else None all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired # check if head_mask has a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they if head_mask is not None:
# have to be disabled in other modes than eager.
if head_mask is not None and tf.executing_eagerly():
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(head_mask)[0], shape_list(head_mask)[0],
len(self.layers), len(self.layers),
...@@ -2529,10 +2511,8 @@ class TF{{cookiecutter.camelcase_modelname}}Decoder(tf.keras.layers.Layer): ...@@ -2529,10 +2511,8 @@ class TF{{cookiecutter.camelcase_modelname}}Decoder(tf.keras.layers.Layer):
present_key_values = () if use_cache else None present_key_values = () if use_cache else None
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
# The tf.debugging asserts are not compliant with XLA then they
# have to be disabled in other modes than eager.
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
if attn_mask is not None and tf.executing_eagerly(): if attn_mask is not None:
tf.debugging.assert_equal( tf.debugging.assert_equal(
shape_list(attn_mask)[0], shape_list(attn_mask)[0],
len(self.layers), len(self.layers),
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment