Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
2fb9a934
Commit
2fb9a934
authored
Aug 30, 2019
by
jamin
Browse files
re-format
parent
c8731b95
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
23 additions
and
23 deletions
+23
-23
examples/lm_finetuning/finetune_on_pregenerated.py
examples/lm_finetuning/finetune_on_pregenerated.py
+23
-23
No files found.
examples/lm_finetuning/finetune_on_pregenerated.py
View file @
2fb9a934
import
json
from
argparse
import
ArgumentParser
from
pathlib
import
Path
import
os
import
torch
import
logging
import
json
import
random
from
argparse
import
ArgumentParser
import
numpy
as
np
from
collections
import
namedtuple
from
pathlib
import
Path
from
tempfile
import
TemporaryDirectory
import
numpy
as
np
import
torch
from
torch.utils.data
import
DataLoader
,
Dataset
,
RandomSampler
from
torch.utils.data.distributed
import
DistributedSampler
from
tqdm
import
tqdm
from
pytorch_transformers
import
WEIGHTS_NAME
,
CONFIG_NAME
from
pytorch_transformers.modeling_bert
import
BertForPreTraining
from
pytorch_transformers.optimization
import
AdamW
,
WarmupLinearSchedule
from
pytorch_transformers.tokenization_bert
import
BertTokenizer
from
pytorch_transformers.optimization
import
AdamW
,
WarmupLinearSchedule
InputFeatures
=
namedtuple
(
"InputFeatures"
,
"input_ids input_mask segment_ids lm_label_ids is_next"
)
...
...
@@ -70,16 +72,16 @@ class PregeneratedDataset(Dataset):
if
reduce_memory
:
self
.
temp_dir
=
TemporaryDirectory
()
self
.
working_dir
=
Path
(
self
.
temp_dir
.
name
)
input_ids
=
np
.
memmap
(
filename
=
self
.
working_dir
/
'input_ids.memmap'
,
input_ids
=
np
.
memmap
(
filename
=
self
.
working_dir
/
'input_ids.memmap'
,
mode
=
'w+'
,
dtype
=
np
.
int32
,
shape
=
(
num_samples
,
seq_len
))
input_masks
=
np
.
memmap
(
filename
=
self
.
working_dir
/
'input_masks.memmap'
,
input_masks
=
np
.
memmap
(
filename
=
self
.
working_dir
/
'input_masks.memmap'
,
shape
=
(
num_samples
,
seq_len
),
mode
=
'w+'
,
dtype
=
np
.
bool
)
segment_ids
=
np
.
memmap
(
filename
=
self
.
working_dir
/
'segment_ids.memmap'
,
segment_ids
=
np
.
memmap
(
filename
=
self
.
working_dir
/
'segment_ids.memmap'
,
shape
=
(
num_samples
,
seq_len
),
mode
=
'w+'
,
dtype
=
np
.
bool
)
lm_label_ids
=
np
.
memmap
(
filename
=
self
.
working_dir
/
'lm_label_ids.memmap'
,
lm_label_ids
=
np
.
memmap
(
filename
=
self
.
working_dir
/
'lm_label_ids.memmap'
,
shape
=
(
num_samples
,
seq_len
),
mode
=
'w+'
,
dtype
=
np
.
int32
)
lm_label_ids
[:]
=
-
1
is_nexts
=
np
.
memmap
(
filename
=
self
.
working_dir
/
'is_nexts.memmap'
,
is_nexts
=
np
.
memmap
(
filename
=
self
.
working_dir
/
'is_nexts.memmap'
,
shape
=
(
num_samples
,),
mode
=
'w+'
,
dtype
=
np
.
bool
)
else
:
input_ids
=
np
.
zeros
(
shape
=
(
num_samples
,
seq_len
),
dtype
=
np
.
int32
)
...
...
@@ -123,8 +125,7 @@ def main():
parser
=
ArgumentParser
()
parser
.
add_argument
(
'--pregenerated_data'
,
type
=
Path
,
required
=
True
)
parser
.
add_argument
(
'--output_dir'
,
type
=
Path
,
required
=
True
)
parser
.
add_argument
(
"--bert_model"
,
type
=
str
,
required
=
True
,
help
=
"Bert pre-trained model selected in the list: bert-base-uncased, "
parser
.
add_argument
(
"--bert_model"
,
type
=
str
,
required
=
True
,
help
=
"Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese."
)
parser
.
add_argument
(
"--do_lower_case"
,
action
=
"store_true"
)
parser
.
add_argument
(
"--reduce_memory"
,
action
=
"store_true"
,
...
...
@@ -336,8 +337,7 @@ def main():
# Save a trained model
if
args
.
local_rank
==
-
1
or
torch
.
distributed
.
get_rank
()
==
0
:
logging
.
info
(
"** ** * Saving fine-tuned model ** ** * "
)
model_to_save
=
model
.
module
if
hasattr
(
model
,
'module'
)
else
model
# Take care of distributed/parallel training
model_to_save
=
model
.
module
if
hasattr
(
model
,
'module'
)
else
model
# Take care of distributed/parallel training
model_to_save
.
save_pretrained
(
args
.
output_dir
)
tokenizer
.
save_pretrained
(
args
.
output_dir
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment